-
摘要: 考虑船舶行为的时序相关性,提出了一种基于上下文自编码的船舶行为语义表征(SRCAE)模型;提取船舶经度、纬度、航速、航向等行为特征参量,建立了行为特征序列;借助连续词袋模型将行为特征序列划分为中心船舶行为和上下文船舶行为,利用深度自编码网络构建了船舶上下文行为的语义表征模型,将得到的中心船舶行为编码作为表征向量输出,通过聚类算法构建船舶行为词典;选取长江口南槽交汇水域作为研究对象,利用船舶自动识别系统产生的数据对提出的模型和方法进行了验证。分析结果表明:所提出的SRCAE模型能有效表征船舶行为之间的上下文联系,与传统自编码器和长短期记忆网络自编码器等模型相比SRCAE模型具有更低的表征误差;分别采用k均值(k-Means)、高斯混合模型(GMM)与核k均值(Kernel k-Means)3种聚类算法提取船舶行为词典,与原始数据相比SRCAE模型产生的表征向量更易于区分不同船舶行为模式,其中k-Means效果最优,轮廓系数、卡林斯基-哈拉巴斯指数和戴维森堡丁指数指标分别达到了0.384、18.308、0.531,共产生转向加速、转向减速、直行加速、直行减速等30种复合行为,有效提取了不同行为模式下船舶行为词组合关系。Abstract: Considering the temporal correlation of ship behavior, a semantic representation model based on the context autoencoder (SRCAE) was proposed for ship behavior. The behavioral feature parameters, such as the longitude, latitude, speed, as well as the course, were extracted to establish the behavioral feature sequence. The behavioral feature sequence was divided into the center ship behavior and context ship behavior via the continuous bag-of-words (CBOW) model. The deep autoencoder (AE) networks were utilized to construct the semantic representation model of context ship behavior, and the encoded center ship behavior obtained from the model was output as the representation vector. The clustering algorithm was employed to establish the ship behavior dictionary. The South Passage Intersection Water of the Yangtze Estuary was selected as the research object, and the data from the automatic identification system (AIS) for ships were employed for verification of the proposed model and method. Analysis results show that the context relationships between ship behaviors can be effectively represented by the proposed SRCAE model, and the representation error of the SRCAE model is lower than that of the traditional AE model and long short-term memory autoencoder (LSTMAE) model. Three clustering algorithms, namely, k-means, Gaussian mixture model (GMM), and kernel k-means, were used to extract the ship behavior dictionary. Compared with the original data, the representation vectors generated by the SRCAE model are easier to distinguish different ship behavior patterns, among which the effect of k-means is the best, and the Silhouette coefficient (SC), Calinski-Harabasz index (CHI), and Davies-Bouldin index (DBI) of k-means reach 0.384, 18.308, and 0.531, respectively. A total of 30 types of composite behaviors are generated, such as steering acceleration, steering deceleration, straight-ahead acceleration, straight-ahead deceleration, and so on and the combination relationships of ship behavior words under different behavior patterns are effectively extracted.
-
表 1 三种聚类算法在表征向量中聚类效果对比
Table 1. Comparison of three clustering algorithms in representation vector
方法 指标 SC CHI DBI k-Means 0.384 18.308 0.531 GMM 0.368 18.665 1.675 核k-Means 0.376 17.874 0.792 表 2 6类船舶行为词典统计描述
Table 2. Statistical descriptions of six kinds of ship behavior dictionary
类别 行为参数 均值 标准差 上分位数 中位数 下分位数 B2 经度/(°) 122.561 0.022 122.545 122.549 122.581 纬度/(°) 31.017 0.022 30.992 31.028 31.038 对地航速/kn 10.429 2.462 8.300 10.600 12.200 对地航向/(°) 271.868 115.087 278.730 287.880 357.760 B3 经度/(°) 122.568 0.024 122.546 122.551 122.592 纬度/(°) 31.011 0.027 30.989 31.018 31.038 对地航速/kn 10.173 2.439 8.300 10.100 11.400 对地航向/(°) 187.562 144.453 2.920 275.320 287.000 B5 经度/(°) 122.531 0.032 122.543 122.545 122.548 纬度/(°) 30.949 0.030 30.930 30.935 30.948 对地航速/kn 7.664 3.477 6.400 7.300 8.270 对地航向/(°) 292.245 120.646 282.490 356.000 358.180 B14 经度/(°) 122.543 0.008 122.543 122.545 122.548 纬度/(°) 30.968 0.012 30.958 30.966 30.974 对地航速/kn 9.049 3.865 7.600 8.820 10.000 对地航向/(°) 318.687 100.557 353.790 357.000 358.280 B19 经度/(°) 122.524 0.017 122.512 122.520 122.543 纬度/(°) 30.969 0.016 30.958 30.968 30.986 对地航速/kn 9.173 3.626 7.950 8.840 9.800 对地航向/(°) 145.350 97.907 103.840 172.680 180.620 B28 经度/(°) 122.472 0.015 122.462 122.469 122.479 纬度/(°) 31.004 0.014 30.997 31.010 31.013 对地航速/kn 10.387 2.686 8.500 9.700 12.800 对地航向/(°) 231.500 78.093 115.530 279.830 282.250 -
[1] 朱姣, 刘敬贤, 陈笑, 等. 基于轨迹的内河船舶行为模式挖掘[J]. 交通信息与安全, 2017, 35(3): 107-116, 132. doi: 10.3963/j.issn.1674-4861.2017.03.014ZHU Jiao, LIU Jing-xian, CHEN Xiao, et al. Behavior pattern mining of inland vessels based on trajectories[J]. Journal of Transport Information and Safety, 2017, 35(3): 107-116, 132. (in Chinese) doi: 10.3963/j.issn.1674-4861.2017.03.014 [2] 文元桥, 张义萌, 黄亮, 等. 基于语义的船舶行为动态推理机制[J]. 中国航海, 2019, 42(3): 34-39, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htmWEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Mechanism of ship behavior dynamic reasoning based on semantics[J]. Navigation of China, 2019, 42(3): 34-39, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htm [3] TU En-mei, ZHANG Guang-hao, RACHMAWATI L, et al. Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(5): 1559-1582. [4] LEI D, FLORIS G, PENTTI K. Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data[J]. Reliability Engineering and System Safety, 2020, 200: 106933. doi: 10.1016/j.ress.2020.106933 [5] YANG Dong, WU Ling-xiao, WANG Shuai-an, et al. How big data enriches maritime research—a critical review of automatic identification system (AIS) data applications[J]. Transport Reviews, 2019, 39(6): 755-773. doi: 10.1080/01441647.2019.1649315 [6] 甄荣, 邵哲平, 潘家财. 基于AIS数据的船舶行为特征挖掘与预测: 研究进展与展望[J]. 地球信息科学学报, 2021, 23(12): 2111-2127. doi: 10.12082/dqxxkx.2021.210495ZHEN Rong, SHAO Zhe-ping, PAN Jia-cai. Advance in character mining and prediction of ship behavior based on AIS data[J]. Journal of Geo-Information Science, 2021, 23(12): 2111-2127. (in Chinese) doi: 10.12082/dqxxkx.2021.210495 [7] 陶阳, 毛喆, 盛萍, 等. 基于船舶行为的武汉长江大桥水域货船通航规律研究[J]. 交通信息与安全, 2018, 36(1): 49-56. doi: 10.3963/j.issn.1674-4861.2018.01.007TAO Yang, MAO Zhe, SHENG Ping, et al. A study of regularity of navigation patterns of cargo ships at the waterways near Wuhan Yangtze River Bridge based on ship maneuvering behavior[J]. Journal of Transport Information and Safety, 2018, 36(1): 49-56. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.01.007 [8] WU Xing, MEHTA A L, ZALOOM V A, et al. Analysis of waterway transportation in Southeast Texas waterway based on AIS data[J]. Ocean Engineering, 2016, 121: 196-209. doi: 10.1016/j.oceaneng.2016.05.012 [9] XIAO Fang-liang, LIGTERINGEN H, VAN-GULIJK C, et al. Comparison study on AIS data of ship traffic behavior[J]. Ocean Engineering, 2015, 95: 84-93. doi: 10.1016/j.oceaneng.2014.11.020 [10] 甄荣, 邵哲平, 潘家财, 等. 基于AIS信息的航道内船舶速度分布统计分析[J]. 集美大学学报(自然科学版), 2014, 19(4): 274-278. doi: 10.3969/j.issn.1007-7405.2014.04.006ZHEN Rong, SHAO Zhe-ping, PAN Jia-cai, et al. Statistical analysis of distribution of ship speed within the fairway based on AIS data[J]. Journal of Jimei University (Natural Science), 2014, 19(4): 274-278. (in Chinese) doi: 10.3969/j.issn.1007-7405.2014.04.006 [11] HUANG Liang, WEN Yuan-qiao, GUO Wei, et al. Mobility pattern analysis of ship trajectories based on semantic transformation and topic model[J]. Ocean Engineering, 2020, 201: 107092. doi: 10.1016/j.oceaneng.2020.107092 [12] 朱飞祥, 张英俊, 高宗江. 基于数据挖掘的船舶行为研究[J]. 中国航海, 2012, 35(2): 50-54. doi: 10.3969/j.issn.1000-4653.2012.02.011ZHU Fei-xiang, ZHANG Ying-jun, GAO Zong-jiang. Research on ship behaviors based on data mining[J]. Navigation of China, 2012, 35(2): 50-54. (in Chinese) doi: 10.3969/j.issn.1000-4653.2012.02.011 [13] ZHANG Wei-bin, GOERLANDT F, KUJALA P, et al. An advanced method for detecting possible near miss ship collisions from AIS data[J]. Ocean Engineering, 2016, 124: 141-156. doi: 10.1016/j.oceaneng.2016.07.059 [14] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. doi: 10.1109/TPAMI.2013.50 [15] WANG Sheng, BAO Zhi-feng, CULPEPPER J S, et al. A survey on trajectory data management, analytics, and learning[J]. ACM Computing Surveys (CSUR), 2021, 53(2): 1-36. [16] LI Li, LI Xin, YANG Yuan, et al. Indoor tracking trajectory data similarity analysis with a deep convolutional autoencoder[J]. Sustainable Cities and Society, 2019, 45: 588-595. doi: 10.1016/j.scs.2018.12.025 [17] WANG Wei, XIA Feng, NIE Han-song, et al. Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3567-3576. doi: 10.1109/TITS.2020.2995856 [18] ZHOU Yang, DAAMEN W, VELLINGA T, et al. Ship classification based on ship behavior clustering from AIS data[J]. Ocean Engineering, 2019, 175(1): 176-187. [19] YAO Di, ZHANG Chao, ZHU Zhi-hua, et al. Trajectory clustering via deep representation learning[C]//IEEE. 2017 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2017: 3880-3887. [20] ZHANG Rui, XIE Peng, JIANG Huang-bo, et al. Clustering noisy trajectories via robust deep attention auto-encoders[C]//IEEE. 2019 20th IEEE International Conference on Mobile Data Management (MDM). New York: IEEE, 2019: 63-71. [21] 谢鹏. 基于深度学习的轨迹数据中移动模式发现方法研究[D]. 武汉: 武汉理工大学, 2019.XIE Peng. Research on moving pattern discovery method in trajectory data based on deep learning[D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese) [22] 常吉亮, 谢磊, 赵建伟, 等. 基于VAE-LSTM模型的航迹异常检测算法[J]. 交通信息与安全, 2020, 38(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202006002.htmCHANG Ji-liang, XIE Lei, ZHAO Jian-wei, et al. An anomaly detection algorithm for ship trajectory data based on VAE-LSTM model[J]. Journal of Transport Information and Safety, 2020, 38(6): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202006002.htm [23] WEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Semantic modelling of ship behavior in harbor based on ontology and dynamic Bayesian network[J]. ISPRS International Journal of Geo-Information, 2019, DOI: 10.3390/ijgi8030107. [24] PARENT C, SPACCAPIETRA S, RENSO C, et al. Semantic trajectories modeling and analysis[J]. ACM Computing Surveys (CSUR), 2013, 45(4): 1-32. [25] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv, 2013, Bibcode: 2013arXiv1301.3781M. [26] 甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htmZHEN Rong, JIN Yong-xing, HU Qin-you, et al. Vessel behavior prediction based on AIS data and BP neural network[J]. Navigation of China, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm [27] 刘娇, 史国友, 杨学钱, 等. 基于DE-SVM的船舶航迹预测模型[J]. 上海海事大学学报, 2020, 41(1): 34-39, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202001006.htmLIU Jiao, SHI Guo-you, YANG Xue-qian, et al. Ship trajectory prediction model based on DE-SVM[J]. Journal of Shanghai Maritime University, 2020, 41(1): 34-39, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202001006.htm [28] FANG Zhi-xiang, YU Hong-chu, KE Ran-xuan, et al. Automatic identification system-based approach for assessing the near-miss collision risk dynamics of ships in ports[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(2): 534-543. [29] LIN J, KEOGH E, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107-144. [30] KRASNOV F, SEN A. The number of topics optimization: clustering approach[J]. Machine Learning and Knowledge Extraction, 2019, 1(1): 416-426. [31] WANG Wen-shuo, RAMESH A, ZHU Jia-cheng, et al. Clustering of driving encounter scenarios using connected vehicle trajectories[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(3): 485-496. -