留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical model of drying shrinkage behavior of recycled coarse aggregate concrete

CHOI Donguk ENKHBOLD Odontuya YANG Sungchul

再生粗骨料混凝土干燥收缩特性理论模型[J]. 交通运输工程学报, 2022, 22(5): 73-84. doi: 10.19818/j.cnki.1671-1637.2022.05.003
引用本文: 再生粗骨料混凝土干燥收缩特性理论模型[J]. 交通运输工程学报, 2022, 22(5): 73-84. doi: 10.19818/j.cnki.1671-1637.2022.05.003
CHOI Donguk, ENKHBOLD Odontuya, YANG Sungchul. Theoretical model of drying shrinkage behavior of recycled coarse aggregate concrete[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 73-84. doi: 10.19818/j.cnki.1671-1637.2022.05.003
Citation: CHOI Donguk, ENKHBOLD Odontuya, YANG Sungchul. Theoretical model of drying shrinkage behavior of recycled coarse aggregate concrete[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 73-84. doi: 10.19818/j.cnki.1671-1637.2022.05.003

再生粗骨料混凝土干燥收缩特性理论模型

doi: 10.19818/j.cnki.1671-1637.2022.05.003
基金项目: 

National Research Foundation of Korea 2021K1A3A1A200017221112582071420101

详细信息
    作者简介:

    :CHOI Donguk(1956-), 男,韩国首尔人,国立韩京大学教授,工学博士,从事桥面铺装性能研究

  • 中图分类号: U444

Theoretical model of drying shrinkage behavior of recycled coarse aggregate concrete

Funds: 

National Research Foundation of Korea 2021K1A3A1A200017221112582071420101

More Information
  • 摘要: 为研究再生粗骨料混凝土的干燥收缩特性,收集了现有12项研究与32组收缩数据并进行了比较,试验时间跨度为41~480 d,分析参数包括水灰比(0.36~0.68)、普通混凝土抗压强度(27~60 MPa)、再生粗骨料替换率(20%~100%)、相对湿度(43%~65%)、湿养护时间(1~28 d)和测量收缩的时间(41~480 d);通过比较试验数据和理论预测结果,利用基于天然骨料混凝土干燥收缩试验数据的多个统计指标,评估了现有ACI 209R-92模型、Bazant-Baweja B3模型以及FIB MC2010模型;采用基于Fathifazl等研究的方法来评估混凝土的干燥收缩增量;通过上述选定模型来评估再生粗骨料混凝土的干燥收缩率的增量,并使用评价残差、欧洲国际混凝土委员会(CEB)变异系数、CEB均方差与CEB偏差等统计指标评价了试验数据。研究结果表明:当将已知收缩行为的天然骨料混凝土的部分或全部粗骨料替换为已知残留砂浆含量的再生粗骨料,可以最准确地预测总收缩的演变;通过将残余砂浆系数应用于天然骨料混凝土的实测收缩量,可以相对准确地预测再生骨料混凝土的收缩;当再生粗骨料混凝土的替代率为20%~33%时,残余砂浆系数为1.03~1.08,当再生粗骨料混凝土的替代率为50%时,残余砂浆系数为1.07~1.16,即再生骨料混凝土的干燥收缩率比天然骨料混凝土的干燥收缩率增加了约16%或更小;当再生粗骨料混凝土的替代率为100%时,残余砂浆系数为1.18~1.76;当天然骨料混凝土的替代率大于50%时,再生粗骨料混凝土的干燥收缩率的增加相比天然骨料混凝土的干燥收缩率的增加更明显。由此可见,当前的研究方法可用于利用扩展的数据库进一步改进再生粗骨料混凝土干燥收缩行为的理论预测。

     

  • Figure  1.  Predicted vs. observed shrinkage strains

    Figure  2.  Predicted shrinkage by ACI 209 times SRM vs. RAC test data

    Figure  3.  Predicted shrinkage by MC2010 times SRM vs. RAC test data

    Figure  4.  Predicted shrinkages by B3 times SRM vs. RAC test data

    Table  1.   Summary of shrinkage research collected for this study

    Data Batch w/c RCA -absorption, density, RMC Hardened concrete Replacement ratio of RCA/% Shrinkage SRM
    fcm28/MPa E/GPa Measured period(started, RH)
    Domingo[9] Replacement ratios of RCAs are 20%, 50%, 100% 0.50 4/8 mm-5.19%, 2 460 kg·m-3, 31.5%
    8/20 mm- 5.19%, 2 460 kg·m-3, 18.0%
    47.4 32.4 20 252 d (7 d, 23 ℃, 65%) 1.03
    1.09
    1.20
    47.3 33.5 50
    54.8 30.3 100
    Duan[11] C30-RA1, RA2, RA3 0.68 RA1 (5/10 mm)-3.13%, 2 540 kg·m-3, 14.3%
    RA1 (10/20 mm)-3.47%, 2 450 kg·m-3, 24.3%
    RA2 (5/10 mm)-7.09%, 2 350 kg·m-3, 37.2%
    RA2 (10/20 mm)-5.66%, 2 370 kg·m-3, 34.0%
    RA3 (5/10 mm)-7.77%, 2 370 kg·m-3, 63.8%
    RA3 (10/20 mm)-5.77%, 2 360 kg·m-3, 61.1%
    27.7-35.0 24.5-28.9 100 112 d (28 d, 23 ℃, 55%) 1.34-1.76
    C45-RA1, RA2, RA3 0.51 42.0-47.6 24.6-29.4 100 1.35-1.78
    C60-RA1, RA2, RA3 0.44 53.2-60.0 29.5-34.8 100 1.32-1.70
    Fathifazl[10] CM, CV 0.45 RCA-M, 5.4%, 2 420 kg·m-3, 41%
    RCA-V, 3.3%, 2 500 kg·m-3, 23%
    43.9-45.9 100 224 d (28 d, 23 ℃, 50%) 1.18-1.30
    EM 41.4 64 1.26
    EV 44.8 74 1.17
    He[15] RCA30 0.40 RCA30, 6.43%, 2 281 kg·m-3, 48.2%
    RCA80, 4.75%, 2 386 kg·m-3, 41.3%
    33.0 23.5 100 180 d (7 d, 20 ℃, 60%) 1.69
    RCA80 42.0 29.0 100 1.54
    Zhang[16] RAC-C50 0.45 5.1%, 2 795 kg·m-3, 40.0% 47.9 30.5 50 480 d (28 d, 20 ℃, 60%) 1.16
    RAC-C100 44.0 26.3 100 1.46
    Gholampur[12] NC-40 0.50 RCA-40, 5.9%, 2 240 kg·m-3, 48% 32.0 26.7 100 450 d (3 d, 23 ℃, 60%) 1.19
    Chinzorigt-1[13] RAC-50, CRAC-50
    RAC-100, CRAC-100
    0.50 RA, 3.84%, 2 430 kg·m-3, 24.2%
    CRA, 3.14%, 2 490 kg·m-3, 24.2%
    27.0-33.1 23.6-25.4 50 180 d (1 d, 20 ℃, 60%) 1.07
    27.5-34.4 23.8-25.2 100 1.19
    Chinzorigt-2[14] RC-100 0.50 RCA, 3.84%, 2 430 kg·m-3, 24.2% 33.8 26.4 100 300 d (1 d, 20 ℃, 60%) 1.18
    Yang-1[26] Mix series 0.38 RCA (5/32 mm), 4.45%, 2 350 kg·m-3, 35.5% 40.2 25.2 50 105 d (7 d, 20 ℃, 50%) 1.16
    Yang-2[27] Replacement ratio of RCA is 40% 0.41 RCA (5/25 mm), 4.51%, 2 490 kg·m-3, 32.0% 43.9 20.3 40 41 d (7 d, 20 ℃, 60%) 1.08
    Yang-3[28] Replacement ratios of RCAs are 68%, 33% 0.39 RCA (5/20 mm), 4.53%, 2 480 kg·m-3, 40.1% 41.9, 48.1 24.8, 25.8 68, 33 54 d (7 d, 20 ℃, 43%) 1.18
    1.08
    Yang-4[29] Replacement ratios of RCAs are 25%, 50% 0.36 RP (5/20 mm), 2.62%, 2 600 kg·m-3, 20.0% 31.6, 30.8 27.7, 26.3 25, 50 145 d (7 d, 20 ℃, 60%) 1.03
    1.07
    下载: 导出CSV

    Table  2.   Summary and rating of theoretical models for shrinkage strain of NAC (number of data point is 164)

    Indicator ACI 209 fib MC2010 B3
    Residuals Positive/% 47.0 50.6 32.7
    Negative/% 53.0 49.4 67.3
    Rating 2 1 3
    CEB COV VCEB 0.311 0.391 0.445
    Rating 1 2 3
    CEB MSE FCEB/% 65.4 53.1 39.7
    Rating 3 2 1
    CEB mean deviation MCEB 1.150 1.150 0.785
    Rating 1 1 3
    Total rating 7 6 10
    下载: 导出CSV

    Table  3.   Comparison between predicted shrinkage strains vs. test data

    Indicator NAC data times SRM vs. RAC data Shrinkage data from ACI 209 times SRM vs. RAC data Shrinkage data from MC 2010 times SRMvs. RAC data Shrinkage data from B3 times SRM vs. RAC data
    Residuals Positive/% 77.8 67.4 62.4 45.5
    Negative/% 22.2 32.6 37.6 54.5
    Rating 4 3 2 1
    CEB COV VCEB 0.228 0.371 0.580 0.363
    Rating 1 3 4 2
    CEB MSE FCEB/% 28.4 73.0 80.2 33.8
    Rating 1 3 4 2
    CEB mean deviation MCEB 1.141 1.411 1.469 0.930
    Rating 2 3 4 1
    Total rating 8 12 14 6
    下载: 导出CSV
  • [1] MAO Yu-guang, LIU Jian-hui, SHI Cai-jun. Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: a review[J]. Journal of Cleaner Production, 2021, 295: 126435. doi: 10.1016/j.jclepro.2021.126435
    [2] WANG Qing-he, GENG Yue, WANG Yu-yin, et al. Drying shrinkage model for recycled aggregate concrete accounting for the influence of parent concrete[J]. Engineering Structures, 2020, 202: 109888. doi: 10.1016/j.engstruct.2019.109888
    [3] WANG Bo, YAN Li-bo, FU Qiu-ni, et al. A comprehensive review on recycled aggregate and recycled aggregate concrete[J]. Resources, Conservation and Recycling, 2021, 171: 105565. doi: 10.1016/j.resconrec.2021.105565
    [4] BEHERA M, MINOCHA A K, BHATTACHARYYA S K. Flow behavior, microstructure, strength and shrinkage properties of self-compacting concrete incorporating recycled fine aggregate[J]. Construction and Building Materials, 2019, 228: 116819. doi: 10.1016/j.conbuildmat.2019.116819
    [5] TOŠIĆ N, DE LA FUENTE A, MARINKOVIĆ S. Shrinkage of recycled aggregate concrete: experimental database and application of fib Model Code 2010[J]. Materials and Structures, 2018, 51(5): 126. doi: 10.1617/s11527-018-1258-0
    [6] MANZI S, MAZZOTTI C, BIGNOZZI M C. Short and long-term behavior of structural concrete with recycled concrete aggregate[J]. Cement and Concrete Composites, 2013, 37: 312-318. doi: 10.1016/j.cemconcomp.2013.01.003
    [7] BRAVO M, DE BRITO J, EVANGELISTA L, et al. Durability and shrinkage of concrete with CDW as recycled aggregates: benefits from superplasticizer's incorporation and influence of CDW composition[J]. Construction and Building Materials, 2018, 168: 818-830. doi: 10.1016/j.conbuildmat.2018.02.176
    [8] ISMAIL S, RAMLI M. Mechanical strength and drying shrinkage properties of concrete containing treated coarse recycled concrete aggregates[J]. Construction and Building Materials, 2014, 68: 726-739. doi: 10.1016/j.conbuildmat.2014.06.058
    [9] DOMINGO-CABO A, LÁZARO C, LÓPEZ-GAYARRE F, et al. Creep and shrinkage of recycled aggregate concrete[J]. Construction and Building Materials, 2009, 23(7): 2545-2553. doi: 10.1016/j.conbuildmat.2009.02.018
    [10] FATHIFAZL G, RAZAQPUR A G, ISGOR O B, et al. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate[J]. Cement and Concrete Composites, 2011, 33(10): 1026-1037. doi: 10.1016/j.cemconcomp.2011.08.004
    [11] GHOLAMPOUR A, OZBAKKALOGLU T. Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates[J]. Engineering Structures, 2018, 157: 224-234. doi: 10.1016/j.engstruct.2017.12.015
    [12] GHOLAMPOUR A, OZBAKKALOGLU T. Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates[J]. Engineering Structures, 2018, 157: 224-234. doi: 10.1016/j.engstruct.2017.12.015
    [13] CHINZORIGT G, CHOI D, ENKHBOLD O, et al. Strength, shrinkage and creep of concrete including CO2 treated recycled coarse aggregate[J]. Journal of Asian Concrete Federation, 2018, 4(2): 89-102. doi: 10.18702/acf.2019.1.4.2.89
    [14] CHINZORIGT G, LIM M K, YU M, et al. Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate[J]. Cement and Concrete research, 2020, 136: 106062. doi: 10.1016/j.cemconres.2020.106062
    [15] HE Zhi-hai, HU Hai-bo, CASANOVA I, et al. Effect of shrinkage reducing admixture on creep of recycled aggregate concrete[J]. Construction and Building Materials, 2020, 254: 119312. doi: 10.1016/j.conbuildmat.2020.119312
    [16] ZHANG Huan, WANG Yu-yin, LEHMAN D E, et al. Time dependent drying shrinkage model for concrete with coarse and fine recycled aggregate[J]. Cement and Concrete Composites, 2020, 105: 103426. doi: 10.1016/j.cemconcomp.2019.103426
    [17] TAM V W Y, KOTRAYOTHAR D, XIAO Jian-zhuang. Long-term deformation behaviour of recycled aggregate concrete[J]. Construction and Building Materials, 2015, 100: 262-272. doi: 10.1016/j.conbuildmat.2015.10.013
    [18] SILVA R V, DE BRITO J, DHIR R K. Prediction of the shrinkage behavior of recycled aggregate concrete: a review[J]. Construction and Building Materials, 2015, 77: 327-339. doi: 10.1016/j.conbuildmat.2014.12.102
    [19] MEDJIGBODO S, BENDIMERAD A Z, ROZIÈRE E, et al. How do recycled concrete aggregates modify the shrinkage and self-healing properties?[J]. Cement and Concrete Composites, 2018, 86: 72-86. doi: 10.1016/j.cemconcomp.2017.11.003
    [20] XIAO Jian-zhuang, LI Wen-gui, SUN Zhi-hui, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation[J]. Cement and Concrete Composites, 2013, 37: 276-292. doi: 10.1016/j.cemconcomp.2013.01.006
    [21] THOMAS C, SETIÉN J, POLANCO J A, et al. Durability of recycled aggregate concrete[J]. Construction and Building Materials, 2013, 40: 1054-1065. doi: 10.1016/j.conbuildmat.2012.11.106
    [22] American Concrete Institute. Guide for modeling and calculating shrinkage and creep in hardened concrete[R]. Farmington Hills: American Concrete Institute, 2008.
    [23] HEDJAZI S, RAHAI A, SENNAH K. Evaluation of creep effects on the time-dependent deflections and stresses in prestressed concrete bridges[J]. Bridge Structures, 2007, 3(2): 119-132. doi: 10.1080/15732480701496629
    [24] AL-MANASEER A, LAM J. Statistical evaluation of shrinkage and creep models[J]. ACI Materials Journal, 2005, 102(3): 170-176.
    [25] WALRAVEN J. Fib model code for concrete structures 2010: mastering challenges and encountering new ones[J]. Structural Concrete, 2013, 14(1): 3-9. doi: 10.1002/suco.201200062
    [26] YANG S, LEE H. Freeze-thaw resistance and drying shrinkage of recycled aggregate concrete proportioned by the modified equivalent mortar volume method[J]. International Journal of Concrete Structures and Materials, 2017, 11(4): 617-626. doi: 10.1007/s40069-017-0216-5
    [27] YANG S, LEE H. Structural performance of reinforced RCA concrete beams made by a modified EMV method[J]. Sustainability, 2017, 9(1): 131. doi: 10.3390/su9010131
    [28] YANG S, LIM Y. Mechanical strength and drying shrinkage properties of RCA concretes produced from old railway concrete sleepers using by a modified EMV method[J]. Construction and Building Materials, 2018, 185: 499-507. doi: 10.1016/j.conbuildmat.2018.07.074
    [29] YANG S, LEE H. Drying shrinkage and rapid chloride penetration resistance of recycled aggregate concretes using cement paste dissociation agent[J]. Materials, 2021, 14(6): 1478. doi: 10.3390/ma14061478
    [30] NEVILLE A M. Properties of concrete-an overview[J]. Concrete International, 1986, 8(2): 20-26.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  214
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回