留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物改性剂和石油沥青相容性评价方法研究进展

汪海年 郑文华 尤占平 季节 李廉 陈玉

汪海年, 郑文华, 尤占平, 季节, 李廉, 陈玉. 聚合物改性剂和石油沥青相容性评价方法研究进展[J]. 交通运输工程学报, 2023, 23(1): 8-26. doi: 10.19818/j.cnki.1671-1637.2023.01.002
引用本文: 汪海年, 郑文华, 尤占平, 季节, 李廉, 陈玉. 聚合物改性剂和石油沥青相容性评价方法研究进展[J]. 交通运输工程学报, 2023, 23(1): 8-26. doi: 10.19818/j.cnki.1671-1637.2023.01.002
WANG Hai-nian, ZHENG Wen-hua, YOU Zhan-ping, JI Jie, LI Lian, CHEN Yu. Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 8-26. doi: 10.19818/j.cnki.1671-1637.2023.01.002
Citation: WANG Hai-nian, ZHENG Wen-hua, YOU Zhan-ping, JI Jie, LI Lian, CHEN Yu. Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 8-26. doi: 10.19818/j.cnki.1671-1637.2023.01.002

聚合物改性剂和石油沥青相容性评价方法研究进展

doi: 10.19818/j.cnki.1671-1637.2023.01.002
基金项目: 

国家重点研发计划 2021YFB2601000

国家自然科学基金项目 52078047

国家自然科学基金项目 52078048

详细信息
    作者简介:

    汪海年(1977-),男,江苏涟水人,长安大学教授,工学博士,从事可持续路面材料开发与数值仿真、耐久性交通基础设施智慧建造及运维评估等研究

  • 中图分类号: U414

Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts

Funds: 

National Key Research and Development Program of China 2021YFB2601000

National Natural Science Foundation of China 52078047

National Natural Science Foundation of China 52078048

More Information
  • 摘要: 综述了6类聚合物改性剂和石油沥青的相容性评价方法,即定性观察法、流变学方法、热力学方法、化学分析法、形貌图法和数值模拟法,分析并比较了各种方法的优缺点与适用性,在此基础上针对聚合物改性剂和石油沥青的共混反应类型特点,建议了适宜的相容性评价方法,并展望了未来聚合物改性剂和石油沥青相容性评价的研究方向。研究结果表明:聚合物改性沥青属于黏弹性材料,基于流变学方法的相分离系数对于检测聚合物改性剂与石油沥青之间的差异较为敏感,适于评价两者之间的相容性;单一评价指标不宜准确评价聚合物改性剂和石油沥青的相容性,建议采用多种分析方法综合评价;对于物理共混的聚合物改性沥青,可以优先采用基于流变学的相分离系数结合形貌图法评价聚合物改性剂和石油沥青的相容性;对于反应型聚合物改性剂和石油沥青的相容性评价,建议采用相分离系数和红外光谱法;基于热力学的分子动力学模拟方法可以通过设置适宜的聚合物模型、作用温度等参数从微观角度进一步模拟和阐释聚合物改性剂和石油沥青的相互作用机理;未来结合聚合物改性沥青实际储存条件建立Cigar Tube试验储存时间区间范围,在此基础上通过适宜的相容性评价方法,动态连续地评价聚合物改性剂和石油沥青的相容性。

     

  • 图  1  胶粉与石油沥青作用过程[39]

    Figure  1.  Interaction process of crumb rubber and petroleum asphalt[39]

    图  2  Cigar Tube试验流程

    Figure  2.  Procedure of cigar tube test

    图  3  聚合物改性剂和石油沥青共混体系的Cole-Cole图[59, 69]

    Figure  3.  Cole-Cole diagram of blending system of polymer modifier and petroleum asphalt[59, 69]

    图  4  橡胶沥青在50 ℃下的Cole-Cole图[65]

    Figure  4.  Cole-Cole diagram of rubber asphalt at 50 ℃[65]

    图  5  SBS(3%)改性沥青在不同温度下的Han曲线[70]

    Figure  5.  Han curves of SBS (3%) modified asphalt at different temperatures[70]

    图  6  两聚合物共混物DSC曲线[59, 69]

    Figure  6.  DSC curves of two polymers blends[59, 69]

    图  7  5% PE改性沥青[110]

    Figure  7.  5% PE modified asphalt[110]

    图  8  5% SBS改性沥青[110]

    Figure  8.  5% SBS modified asphalt[110]

    图  9  聚合物改性沥青相态随聚合物掺量的变化[114]

    Figure  9.  Phase state change of polymer modified asphalt with polymer content[114]

    图  10  三种SBS改性沥青的原子力显微镜图[96]

    Figure  10.  AFM images of three SBS modified asphalts[96]

    图  11  三种橡胶沥青模型(深褐色代表沥青质,浅棕色代表环烷芳烃,黄色代表饱和分,灰色代表橡胶粉)[126-127]

    Figure  11.  Three kinds of rubber asphalt models(puce represents asphaltene, light brown represents naphthene aromatic, yellow represents saturate, and grey represents rubber powder)[126-127]

    表  1  聚合物改性沥青相容性定性观察评价

    Table  1.   Qualitative observation and evaluation of compatibility of polymer modified asphalt

    现象 评价
    均匀,无结皮和沉淀 均匀
    在杯边缘有轻微的聚合物结皮 边缘轻微结皮
    在整个表面有薄的聚合物结皮 薄的全面结皮
    在整个表面有厚的聚合物结皮(大于0.8 mm) 厚的全面结皮
    无表面结皮,但容器底部有薄的沉淀 薄的底部沉淀
    无表面结皮,但容器底部有厚的沉淀(大于0.6 mm) 厚的底部沉淀
    下载: 导出CSV

    表  2  不同国家标准对软化点差的要求

    Table  2.   Requirements of soften point difference in different national standards

    不同国家标准 软化点差要求/℃
    JTG F40—2004 2.5
    ASTM D5976—1996 2.2
    德国标准 2.0
    下载: 导出CSV

    表  3  基于流变学的聚合物改性沥青的相分离系数

    Table  3.   Phase separation coefficients of polymer modified asphalt based on rheology

    公式序号 相分离系数(S)计算公式 符号定义 要求
    (1) $S_1=\frac{G_{\mathrm{t}}^* / \sin \left(\delta_{\mathrm{t}}\right)}{G_{\mathrm{b}}^* / \sin \left(\delta_{\mathrm{b}}\right)}$ Gt*δtGt*/sin(δt)分别为储存管1/3顶部复数剪切模量、相位角与车辙因子;Gb*δbGb*/sin(δb)分别为储存管1/3底部复数剪切模量、相位角与车辙因子 S1为0.8~1.2表示相容性好
    (2) $S_2=\frac{G_{\mathrm{t}}^* / \sin \left(\delta_{\mathrm{t}}\right)}{G_{\mathrm{b}}^* / \sin \left(\delta_{\mathrm{b}}\right)}-1$ S2为-0.2~0.2表示相容性好
    (3) $S_3=\frac{C_{\mathrm{m}}-C_{\mathrm{a}}}{C_{\mathrm{a}}}$ CmCa分别为储存管1/3顶部和底部车辙因子最大值与平均值 S3越小,相容性越好
    (4) $S_4=\frac{J_{\mathrm{t}}-J_{\mathrm{b}}}{J_{\mathrm{a}}}$ JtJb分别为储存管1/3顶部与底部的不可恢复蠕变柔量;JaJm分别为顶部和底部不可恢复蠕变柔量的平均值与最大值 S4越小,相容性越好
    (5) $S_5=\frac{J_{\mathrm{m}}-J_{\mathrm{a}}}{J_{\mathrm{a}}}$ S5越小,相容性越好
    (6) $S_6=\frac{\eta_{\mathrm{b}}-\eta_{\mathrm{t}}}{\eta_0}$ ηbηt分别为储存管1/3底部与顶部的零剪切黏度;η0为未储存改性沥青的零剪切黏度 S6越小,相容性越好
    (7) $S_7=\sum\limits_{T_{\mathrm{a}}}^{T_{\mathrm{f}}}|1-| \frac{\tan \left(\delta_{\mathrm{t}}\right)-\tan \left(\delta_{\mathrm{b}}\right)}{\tan \left(\delta_{\mathrm{t}}\right)} \| / N$ TaTf分别为测试温度区间的起始值与终止值;δtδb分别为储存管1/3顶部与底部的损耗角;N为测试次数 S7越接近1,相容性越好
    下载: 导出CSV

    表  4  流变学相容性评价方法对比

    Table  4.   Comparison of compatibility evaluation methods based on rheology

    评价方法 优点与适用性 不足
    软化点差法 试验简易,操作简单,适用于聚合物改性剂和石油沥青的物理共混相容性评价 受试验员操作影响较大,不能检测到两相体系在热存储过程中的相态变化
    相分离系数法 基于聚合物改性剂和石油沥青共混物的黏弹特性,定量表征聚合物改性剂和石油沥青的相容或相分离程度,适用于聚合物改性剂和石油沥青的物理及化学共混相容性评价 目前相分离系数公式较多,且主要是针对某一特定温度计算的相分离系数
    Cole-Cole图法 可表征和预测聚合物改性剂和石油沥青物理共混的相态变化及相分离程度 不能定量计算表征二者相容性及相分离程度
    Han曲线法 可表征聚合物改性剂和石油沥青在某一温度区间的相容性 聚合物改性剂含量较高时,改性剂与石油沥青共混前后与温度的可混溶性略有差异
    下载: 导出CSV

    表  5  几种石油沥青的溶解度参数

    Table  5.   Solubility parameters of several petroleum asphalts

    石油沥青种类 溶解度参数/(J·ml-3)1/2 参考文献
    克拉玛依-A 11.47 [76]
    壳牌90# 9.98 [77]
    兰炼90# 9.93
    欢喜岭90# 9.69
    中海泰州70# 9.47 [78]
    SK-90# 9.35 [79]
    克炼-90# 9.48
    中海-90# 9.73
    东海-90# 9.88
    下载: 导出CSV

    表  6  石油沥青四组分的溶解度参数

    Table  6.   Solubility parameters of four fractions of petroleum asphalt

    石油沥青组分 溶解度参数/(J·ml-3)1/2 参考文献
    沥青质 10.93 [80]~[83]
    胶质 10.93
    芳香分 9.15
    饱和分 7.45
    下载: 导出CSV

    表  7  几种聚合物改性剂的溶解度参数

    Table  7.   Solubility parameters of several polymer modifiers

    聚合物改性剂种类 溶解度参数/(J·ml-3)1/2 参考文献
    SBS 7.20~9.60 [76]
    PE 7.85~8.04 [84]
    EVA 8.10~8.30 [10]、[85]
    聚苯乙烯 9.10 [83]
    聚丁二烯 8.40
    橡胶粉(主要成分为聚苯乙烯丁二烯) 17.80 [82]、[86]
    下载: 导出CSV

    表  8  聚合物改性剂和石油沥青相容性评价方法的综合分析

    Table  8.   Comprehensive analysis of compatibility evaluation methods of polymer modifiers and petroleum asphalts

    序号 评价方法 优点 缺点 适用性
    1 定性观察法 试验简易,操作简单 受人为主观因素影响较大,测试精度低 适用于聚合物改性剂与石油沥青物理共混的相容性评价
    2 流变学方法 聚合物改性沥青属于黏弹性材料,基于流变学测试的Cole-Cole图可以初步预测聚合物改性剂和石油沥青的相容程度,相分离系数可进一步定量评价其相容性 相分离系数公式较多,针对某一类聚合物改性剂,还没提出更为适宜的计算公式 对聚合物改性剂和石油沥青物理共混和化学反应相容性评价均为适用
    3 热力学方法 从分子极性、溶解度参数等属性角度初步预测聚合物改性剂和石油沥青的相容性,可以为获取相容性较好的改性沥青的石油沥青配伍性选择提供参考 计算溶解度参数的Hildebrand理论只考虑了分子之间的色散力,没有考虑偶极力、氢键的作用 适用于非极性聚合物共混的相容性评价
    4 化学分析法 从化学反应角度表征聚合物改性剂和石油沥青的相容性,受人为主观及环境因素影响较小 改性剂和石油沥青中碳、氢等原子及化合物组成及含量较为复杂,例如NMR存在不能敏锐检测和准确表征改性剂与沥青相互作用反应的情况 适用于反应型聚合物改性剂与石油沥青的化学相容性评价
    5 形貌图法 通过沥青中聚合物改性剂的轮廓(尺寸与体积膨胀)和分布等直观表征聚合物改性剂在石油沥青中的分散程度及相结构 测试样品制备较为复杂,试验离散性较大,分析较为定性 适用于聚合物改性剂与石油沥青物理共混相容性评价
    6 数值模拟法 可设置温度等参数从微观角度模拟和预测聚合物改性剂和石油沥青的相容性行为 石油沥青和聚合物改性剂分子模型的建立及参数选取对其共混物相容性评价有较大影响,需要宏观试验验证 适用于聚合物改性剂与石油沥青物理共混相容性评价
    下载: 导出CSV
  • [1] 于华洋, 马涛, 王大为, 等. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001

    YU Hua-yang, MA Tao, WANG Da-wei, et al. Review on China's pavement engineering research·2020[J]. China Journal of Highway Transport, 2020, 33(10): 1-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.001
    [2] PORTO M, CAPUTO P, LOISE V, et al. Bitumen and bitumen modification: a review on latest advances[J]. Applied Sciences-Basel, 2019, 9(4): 742. doi: 10.3390/app9040742
    [3] ZHENG Wen-hua, WANG Hai-nian, CHEN Yu, et al. A review on compatibility between crumb rubber and asphalt binder[J]. Construction and Building Materials, 2021, 297: 123820. doi: 10.1016/j.conbuildmat.2021.123820
    [4] 黄彬, 马丽萍, 许文娟. 改性沥青的研究进展[J]. 材料导报, 2010, 24(1): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201001033.htm

    HUANG Bin, MA Li-ping, XU Wen-juan. Research development of modified asphalt[J]. Materials Reports, 2010, 24(1): 137-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201001033.htm
    [5] 孙敏, 郑木莲, 毕玉峰, 等. 聚氨酯改性沥青改性机理和性能[J]. 交通运输工程学报, 2019, 19(2): 49-58. doi: 10.3969/j.issn.1671-1637.2019.02.005

    SUN Min, ZHENG Mu-lian, BI Yu-feng, et al. Modification mechanism and performance of polyurethane modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 49-58. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.02.005
    [6] 魏建国, 时松, 周育名, 等. 多聚磷酸改性沥青流变性能[J]. 交通运输工程学报, 2019, 19(6): 14-26. doi: 10.19818/j.cnki.1671-1637.2019.06.002

    WEI Jian-guo, SHI Song, ZHOU Yu-ming, et al. Rheological property of polyphosphoric acid modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 14-26. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.002
    [7] LIANG Ming, XIN Xue, FAN Wei-yu, et al. Experimental and simulation study of phase microstructure and storage stability of asphalt modified with ethylene-vinyl acetate[J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019288. doi: 10.1061/(ASCE)MT.1943-5533.0002931
    [8] 罗来龙, 蔺习雄, 李剑新. 克拉玛依SBS改性沥青的热稳定性[J]. 石油炼制与化工, 2005, 36(5): 43-46. doi: 10.3969/j.issn.1005-2399.2005.05.011

    LUO Lai-long, LIN Xi-xiong, LI Jian-xin. Study on the thermal stability of SBS modified Kelamayi asphalt[J]. Journal of Petroleum Processing and Petrochemicals, 2005, 36(5): 43-46. (in Chinese) doi: 10.3969/j.issn.1005-2399.2005.05.011
    [9] POLACCO G, FILIPPI S, MERUSI F, et al. A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility[J]. Advances in Colloid Interface Science, 2015, 224: 72-112. doi: 10.1016/j.cis.2015.07.010
    [10] 王晓燕, 王林. 高聚物改性剂与沥青的相容性分析[J]. 筑路机械与施工机械化, 2010, 27(2): 42-44, 47. doi: 10.3969/j.issn.1000-033X.2010.02.027

    WANG Xiao-yan, WANG Lin. Research of compatibility between polymer modified and asphalt[J]. Road Machinery and Construction Mechanization, 2010, 27(2): 42-44, 47. (in Chinese) doi: 10.3969/j.issn.1000-033X.2010.02.027
    [11] 吉永海, 郭淑华, 李锐. SBS改性沥青的相容性和稳定性机理[J]. 石油学报(石油加工), 2002, 18(3): 23-29. doi: 10.3969/j.issn.1001-8719.2002.03.005

    JI Yong-hai, GUO Shu-hua, LI Rui. Mechanism of compatibility and stability of SBS modified asphalt[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2002, 18(3): 23-29. (in Chinese) doi: 10.3969/j.issn.1001-8719.2002.03.005
    [12] 韩森, 张彩利, 薛生高, 等. SBS改性克拉玛依沥青相容性的改善[J]. 公路交通科技, 2004, 21(10): 22-25. doi: 10.3969/j.issn.1002-0268.2004.10.006

    HAN Sen, ZHANG Cai-li, XUE Sheng-gao, et al. Modification of KLM asphalt by SBS and improvement of their compatibility[J]. Journal of Highway and Transportation Research and Development, 2004, 21(10): 22-25. (in Chinese) doi: 10.3969/j.issn.1002-0268.2004.10.006
    [13] 曹雪娟. SBS改性沥青的研究[D]. 成都: 四川大学, 2004.

    CAO Xue-juan. A study on SBS modified asphalt[D]. Chengdu: Sichuan University, 2004. (in Chinese)
    [14] ABDELRAHMAN M A, CARPENTER S H. Mechanism of interaction of asphalt cement with crumb rubber modifier[J]. Transportation Research Record, 1999, 1661: 106-113. doi: 10.3141/1661-15
    [15] DUBKOV K A, SEMIKOLENOV S V, IVANOV D P, et al. Reclamation of waste tyre rubber with nitrous oxide[J]. Polymer Degradation and Stability, 2012, 97(7): 1123-1130. doi: 10.1016/j.polymdegradstab.2012.04.006
    [16] WU Xiao-yu, WANG Shi-feng, DONG Rui-kun. Lightly pyrolyzed tire rubber used as potential asphalt alternative[J]. Construction and Building Materials, 2016, 112: 623-628. doi: 10.1016/j.conbuildmat.2016.02.208
    [17] HALLMARK-HAACK B L, HERNANDEZ N B, CHRISTOPHER WILLIAMS R, et al. Ground tire rubber modification for improved asphalt storage stability[J]. Energy and Fuels, 2019, 33(4): 2659-2664. doi: 10.1021/acs.energyfuels.8b03558
    [18] TANG Nai-peng, HUANG Wei-dong, XIAO Fei-peng. Chemical and rheological investigation of high-cured crumb rubber-modified asphalt[J]. Construction and Building Materials, 2016, 123: 847-854. doi: 10.1016/j.conbuildmat.2016.07.131
    [19] 吕泉, 黄卫东, 柴冲冲. Terminal Blending橡胶沥青的特性与应用前景[J]. 重庆交通大学学报(自然科学版), 2014, 33(4): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201404011.htm

    LYU Quan, HUANG Wei-dong, CHAI Chong-chong. Properties and application of terminal blending rubber asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2014, 33(4): 51-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201404011.htm
    [20] LIANG Ming, REN Shi-song, FAN Wei-yu, et al. Characterization of fume composition and rheological properties of asphalt with crumb rubber activated by microwave and TOR[J]. Construction and Building Materials, 2017, 154: 310-322. doi: 10.1016/j.conbuildmat.2017.07.199
    [21] 孟勇军, 郭贺源, 徐锐光, 等. 石墨烯橡胶复合改性沥青流变性能及微观性能[J]. 建筑材料学报, 2020, 23(5): 1246-1251. doi: 10.3969/j.issn.1007-9629.2020.05.034

    MENG Yong-jun, GUO He-yuan, XU Rui-guang, et al. Rheological and microscopic properties of graphene rubber composite modified asphalt[J]. Journal of Building Materials, 2020, 23(5): 1246-1251. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.05.034
    [22] FINI E H, OLDHAM D J, ABU-LEBDEH T. Synthesis and characterization of biomodified rubber asphalt: sustainable waste management solution for scrap tire and swine manure[J]. Journal of Environmental Engineering, 2013, 139(12): 1454-1461. doi: 10.1061/(ASCE)EE.1943-7870.0000765
    [23] HOSSEINNEZHAD S, BOCOUM A, MARTINEZ F M, et al. Biomodification of rubberized asphalt and its high temperature properties[J]. Transportation Research Record, 2015, 2506: 81-89. doi: 10.3141/2506-09
    [24] FINI E H, HOSSEINNEZHAD S, OLDHAM D, et al. Bio-modification of rubberised asphalt binder to enhance its performance[J]. International Journal of Pavement Engineering, 2019, 20(10): 1216-1225. doi: 10.1080/10298436.2017.1398548
    [25] YU Jiang-miao, REN Zhi-bin, YU Hua-yang, et al. Modification of asphalt rubber with nanoclay towards enhanced storage stability[J]. Materials, 2018, 11(11): 2093. doi: 10.3390/ma11112093
    [26] QIAN Cheng-duo, FAN Wei-yu, REN Fang-yong, et al. Influence of polyphosphoric acid (PPA) on properties of crumb rubber (CR) modified asphalt[J]. Construction and Building Materials, 2019, 227: 117094. doi: 10.1016/j.conbuildmat.2019.117094
    [27] XIE Juan, YANG Yue-ming, LYU Song-tao, et al. Investigation on rheological properties and storage stability of modified asphalt based on the grafting activation of crumb rubber[J]. Polymers, 2019, 11(10): 1563. doi: 10.3390/polym11101563
    [28] HOSSEINNEZHAD S, KABIR S F, OLDHAM D, et al. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction[J]. Journal of Cleaner Production, 2019, 225: 82-89. doi: 10.1016/j.jclepro.2019.03.219
    [29] YU Guo-xian, ZHOU Xiao-long, LI Chen-lie, et al. Crumb rubber-modified asphalt: microwave treatment effects[J]. Petroleum Science and Technology, 2011, 29(4): 411-417. doi: 10.1080/10916460903394102
    [30] LI Jin, XIAO Fei-peng, AMIRKHANIAN S N. Rheological and chemical characterization of plasma-treated rubberized asphalt using customized extraction method[J]. Fuel, 2020, 264: 116819. doi: 10.1016/j.fuel.2019.116819
    [31] SHATANAWI K, BIRO S, THODESEN C, et al. Effects of water activation of crumb rubber on the properties of crumb rubber-modified binders[J]. International Journal of Pavement Engineering, 2009, 10(4): 289-297. doi: 10.1080/10298430802169424
    [32] SHATANAWI K M, BIRO S, GEIGER A, et al. Effects of furfural activated crumb rubber on the properties of rubberized asphalt[J]. Construction and Building Materials, 2012, 28(1): 96-103. doi: 10.1016/j.conbuildmat.2011.08.041
    [33] ROMERO-SÁNCHEZ M D, MARTÍN-MARTÍNEZ J M. Ultrasonic cleaning of SBR rubber to improve the performance of subsequent plasma torch treatment[J]. Journal of Adhesion Science and Technology, 2005, 19(11): 927-946. doi: 10.1163/1568561054951031
    [34] CHEN Si-yu, GE Dong-gong, GONG Fang-yuan, et al. Rheological properties and chemical characterisation of reacted and activated rubber modified asphalt binder[J]. Road Materials and Pavement Design, 2020, 21: 140-154. doi: 10.1080/14680629.2020.1746689
    [35] MOUSAVI M, HOSSEINNEZHAD S, KABIR S F, et al. Reaction pathways for surface activated rubber particles[J]. Resources, Conservation and Recycling, 2019, 149: 292-300. doi: 10.1016/j.resconrec.2019.05.041
    [36] 梁明, 蒋福山, 范维玉, 等. PE分子结构对改性沥青黏弹性能及微观结构的影响[J]. 中国石油大学学报(自然科学版), 2016, 40(6): 170-177. doi: 10.3969/j.issn.1673-5005.2016.06.022

    LIANG Ming, JIANG Fu-shan, FAN Wei-yu, et al. Effects of polyethylene molecular structure on the viscoelastic properties and microstructure of PE modified asphalt[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(6): 170-177. (in Chinese) doi: 10.3969/j.issn.1673-5005.2016.06.022
    [37] 肖川, 蒋兴华, 杨锡武, 等. 废旧塑料改性沥青储存稳定性试验[J]. 重庆交通大学学报(自然科学版), 2011, 30(5): 943-947. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201105012.htm

    XIAO Chuan, JIANG Xing-hua, YANG Xi-wu, et al. Experimental study on storage stability of waste plastic-modified asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(5): 943-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201105012.htm
    [38] 刘红瑛, 张振兴, 常睿, 等. 多聚磷酸改性沥青流变特性及改性机理[J]. 同济大学学报(自然科学版), 2016, 44(12): 1880-1888. doi: 10.11908/j.issn.0253-374x.2016.12.011

    LIU Hong-ying, ZHANG Zhen-xing, CHANG Rui, et al. Study on the rheological properties and mechanism of polyphosphoric acid modified asphalt[J]. Journal of Tongji University (Natural Science), 2016, 44(12): 1880-1888. (in Chinese) doi: 10.11908/j.issn.0253-374x.2016.12.011
    [39] WANG Hao-peng, LIU Xue-yan, APOSTOLIDIS P, et al. Numerical investigation of rubber swelling in bitumen[J]. Construction and Building Materials, 2019, 214: 506-515. doi: 10.1016/j.conbuildmat.2019.04.144
    [40] KIM H, LEE S J. Laboratory investigation of different standards of phase separation in crumb rubber modified asphalt binders[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1975-1978. doi: 10.1061/(ASCE)MT.1943-5533.0000751
    [41] LIU Sheng-jie, ZHOU Sheng-bo, PENG Ai-hong, et al. Analysis of the performance and mechanism of desulfurized rubber and low-density polyethylene compound-modified asphalt[J]. Journal of Applied Polymer Science, 2019, 136(45): 48194. doi: 10.1002/app.48194
    [42] KABIR S F, MOUSAVI M, FINI E H. Selective adsorption of bio-oils' molecules onto rubber surface and its effects on stability of rubberized asphalt[J]. Journal of Cleaner Production, 2020, 252: 119856. doi: 10.1016/j.jclepro.2019.119856
    [43] LI Ben-liang, HUANG Wei-dong, TANG Nai-peng, et al. Evolution of components distribution and its effect on low temperature properties of terminal blend rubberized asphalt binder[J]. Construction and Building Materials, 2017, 136: 598-608. doi: 10.1016/j.conbuildmat.2017.01.118
    [44] LI Jin, XIAO Fei-peng, AMIRKHANIAN S N. Storage, fatigue and low temperature characteristics of plasma treated rubberized binders[J]. Construction and Building Materials, 2019, 209: 454-462. doi: 10.1016/j.conbuildmat.2019.03.136
    [45] LIN Peng, HUANG Wei-dong, TANG Nai-peng, et al. Performance characteristics of terminal blend rubberized asphalt with SBS and polyphosphoric acid[J]. Construction and Building Materials, 2017, 141: 171-182. doi: 10.1016/j.conbuildmat.2017.02.138
    [46] 李福普, 沈金安. 聚合物改性沥青的配伍性与相容性[J]. 公路交通科技, 1999, 16(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK199903000.htm

    LI Fu-pu, SHEN Jin-an. Compatibility and consistency of polymer modified bitumen[J]. Journal of Highway and Transportation Research and Development, 1999, 16(3): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK199903000.htm
    [47] YU Rui-en, FANG Chang-qing, LIU Pei, et al. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite[J]. Applied Clay Science, 2015, 104: 1-7. doi: 10.1016/j.clay.2014.11.033
    [48] LENG Zhen, TAN Zhi-fei, YU Hua-yang, et al. Improvement of storage stability of SBS-modified asphalt with nanoclay using a new mixing method[J]. Road Materials and Pavement Design, 2019, 20(7): 1601-1614. doi: 10.1080/14680629.2018.1465842
    [49] GALOOYAK S S, DABIR B, NAZARBEYGI A E, et al. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites[J]. Construction and Building Materials, 2010, 24(3): 300-307. doi: 10.1016/j.conbuildmat.2009.08.032
    [50] XU Ou-ming, RANGARAJU P R, WANG Shi-feng, et al. Comparison of rheological properties and hot storage characteristics of asphalt binders modified with devulcanized ground tire rubber and other modifiers[J]. Construction and Building Materials, 2017, 154: 841-848. doi: 10.1016/j.conbuildmat.2017.07.221
    [51] TANG Nai-peng, HUANG Wei-dong, HU Jian-ying, et al. Rheological characterisation of terminal blend rubberised asphalt binder containing polymeric additive and sulphur[J]. Road Materials and Pavement Design, 2018, 19(6): 1288-1300. doi: 10.1080/14680629.2017.1305436
    [52] WANG Jia-rong, ZHANG Zheng-qi, LI Zhuo-lin. Performance evaluation of desulfurized rubber asphalt based on rheological and environmental effects[J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019330. doi: 10.1061/(ASCE)MT.1943-5533.0002971
    [53] LENG Zhen, PADHAN R K, SREERAM A. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt[J]. Journal of Cleaner Production, 2018, 180: 682-688. doi: 10.1016/j.jclepro.2018.01.171
    [54] POOVANESHVARAN S, MOHD HASAN M R, PUTRA JAYA R. Impacts of recycled crumb rubber powder and natural rubber latex on the modified asphalt rheological behaviour, bonding, and resistance to shear[J]. Construction and Building Materials, 2020, 234: 117357. doi: 10.1016/j.conbuildmat.2019.117357
    [55] DUAN Shao-chan, MUHAMMAD Y, LI Jing, et al. Enhancing effect of microalgae biodiesel incorporation on the performance of crumb rubber/SBS modified asphalt[J]. Journal of Cleaner Production, 2019, 237: 117725. doi: 10.1016/j.jclepro.2019.117725
    [56] 颜可珍, 李慧丽, 洪哲, 等. LDPE/EVA复合改性沥青的流变性能[J]. 建筑材料学报, 2022, 25(4): 408-414. doi: 10.3969/j.issn.1007-9629.2022.04.012

    YAN Ke-zhen, LI Hui-li, HONG Zhe, et al. Rheological properties of LDPE/EVA composite modified asphalt[J]. Journal of Building Materials, 2022, 25(4): 408-414. (in Chinese) doi: 10.3969/j.issn.1007-9629.2022.04.012
    [57] BAHIA H U, ZHAI Hua-chun. Storage stability of modified binders using the newly developed LAST procedure[J]. Road Materials and Pavement Design, 2000, 1(1/2): 53-73.
    [58] NASR D, PAKSHIR A H. Rheology and storage stability of modified binders with waste polymers composites[J]. Road Materials and Pavement Design, 2019, 20(4): 773-792. doi: 10.1080/14680629.2017.1417152
    [59] 武昊. 煤直接液化残渣与石油沥青相容性研究[D]. 北京: 北京建筑大学, 2019.

    WU Hao. Study on compatibility between direct coal liquefaction residue and bitumen[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019. (in Chinese)
    [60] 姬杨蓓蓓, 陈华鑫, 鲍燕妮. 改性沥青存储稳定性试验方法与指标[J]. 同济大学学报(自然科学版), 2006, 34(8): 1035-1039. doi: 10.3321/j.issn:0253-374X.2006.08.009

    JI Yang-bei-bei, CHEN Hua-xin, BAO Yan-ni. Experiment and index of storage stability of modified asphalt[J]. Journal of Tongji University (Natural Science), 2006, 34(8): 1035-1039. (in Chinese) doi: 10.3321/j.issn:0253-374X.2006.08.009
    [61] 熊萍, 郝培文. SBS改性沥青储存稳定性试验方法和评价指标的研究[J]. 中国公路学报, 2005, 18(1): 1-6. doi: 10.3321/j.issn:1001-7372.2005.01.001

    XIONG Ping, HAO Pei-wen. Study of the experimental method and evaluating index of SBS modified asphalt storage stability[J]. China Journal of Highway and Transport, 2005, 18(1): 1-6. (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.01.001
    [62] D'ANGELO J, DONGRÉ R. Practical use of multiple stress creep and recovery test[J]. Transportation Research Record, 2009, 2126: 73-82. doi: 10.3141/2126-09
    [63] WANG Hao-peng, LIU Xue-yan, ERKENS S, et al. Experimental characterization of storage stability of crumb rubber modified bitumen with warm-mix additives[J]. Construction and Building Materials, 2020, 249: 118840. doi: 10.1016/j.conbuildmat.2020.118840
    [64] NAVARRO F J, PARTAL P, MARTÍ NEZ-BOZA F, et al. Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens[J]. Fuel, 2004, 83(14/15): 2041-2049.
    [65] LIANG Ming, XIN Xue, FAN Wei-yu, et al. Thermo-stability and aging performance of modified asphalt with crumb rubber activated by microwave and TOR[J]. Materials and Design, 2017, 127: 84-96. doi: 10.1016/j.matdes.2017.04.060
    [66] BECKER Y, MVLLER A J, RODRIGUEZ Y. Use of rheological compatibility criteria to study SBS modified asphalts[J]. Journal of Applied Polymer Science, 2003, 90(7): 1772-1782. doi: 10.1002/app.12764
    [67] AJJI A, UTRACKI L A. Interphase and compatibilization of polymer blends[J]. Polymer Engineering and Science, 1996, 36(12): 1574-1585. doi: 10.1002/pen.10554
    [68] MAROUFKHANI M, EBRAHIMI N G. Melt rheology of linear and long-chain branched polypropylene blends[J]. Iranian Polymer Journal, 2015, 24(9): 715-724. doi: 10.1007/s13726-015-0357-9
    [69] JI Jie, WU Hao, XU Ying, et al. Compatibility evaluation between direct coal liquefaction residue and bitumen[J]. China Petroleum Processing and Petrochemical Technology, 2019, 21(1): 90-100.
    [70] 何颖. SBS改性沥青相态与抗老化性能研究[D]. 青岛: 中国石油大学(华东), 2018.

    HE Ying. Study on the phase state and aging of SBS modified asphalt[D]. Qingdao: China University of Petroleum (East China), 2018. (in Chinese)
    [71] HILDEBRAND J H, SCOTT R L. The Solubility of Non- Electrolytes[M]. New York: Reinhold Pub. Corp., 1950.
    [72] 孙志娟, 张心亚, 黄洪, 等. 溶解度参数的发展及应用[J]. 橡胶工业, 2007, 54(1): 54-58. doi: 10.3969/j.issn.1000-890X.2007.01.013

    SUN Zhi-juan, ZHANG Xin-ya, HUANG Hong, et al. Development and application of solubility parameters[J]. China Rubber Industry, 2007, 54(1): 54-58. (in Chinese) doi: 10.3969/j.issn.1000-890X.2007.01.013
    [73] ZHU Ji-qing, BALIEU R, WANG Hao-peng. The use of solubility parameters and free energy theory for phase behaviour of polymer-modified bitumen: a review[J]. Road Materials and Pavement Design, 2021, 22(4): 757-778. doi: 10.1080/14680629.2019.1645725
    [74] LO PRESTI D, IZQUIERDO M A, JIMÉNEZ DEL BARCO CARRIÓN A. Towards storage-stable high-content recycled tyre rubber modified bitumen[J]. Construction and Building Materials, 2018, 172: 106-111. doi: 10.1016/j.conbuildmat.2018.03.226
    [75] 熊良铨, 毛三鹏, 彭煜. 基质沥青与SBS相容性的预测[J]. 石油沥青, 2014, 28(4): 1-6. doi: 10.3969/j.issn.1006-7450.2014.04.001

    XIONG Liang-quan, MAO San-peng, PENG Yu. Prediction on compatibility of asphalt and SBS[J]. Petroleum Asphalt, 2014, 28(4): 1-6. (in Chinese) doi: 10.3969/j.issn.1006-7450.2014.04.001
    [76] 文跃. SBS改性克拉玛依沥青的相容性研究[D]. 青岛: 中国石油大学(华东), 2011.

    WEN Yue. Study on compatibility of SBS modified Karamay asphalt[D]. Qingdao: China University of Petroleum (East China), 2011. (in Chinese)
    [77] 郝培文, 申艳梅. SBS与沥青相容性的研究[J]. 西安公路交通大学学报, 2001, 21(2): 27-29. doi: 10.3321/j.issn:1671-8879.2001.02.008

    HAO Pei-wen, SHEN Yan-mei. Study on compatibility between SBS modified modifier and asphalt[J]. Journal of Xi'an Highway University, 2001, 21(2): 27-29. (in Chinese) doi: 10.3321/j.issn:1671-8879.2001.02.008
    [78] 刘克非, 邓林飞, 郑佳宇, 等. 废旧轮胎橡胶粉改性沥青结合料相容性评价研究[J]. 新型建筑材料, 2017, 44(5): 13-16. doi: 10.3969/j.issn.1001-702X.2017.05.004

    LIU Ke-fei, DENG Lin-fei, ZHENG Jia-yu, et al. Compatibility evaluation of waste tire rubber powder modified asphalt binder[J]. New Building Materials, 2017, 44(5): 13-16. (in Chinese) doi: 10.3969/j.issn.1001-702X.2017.05.004
    [79] 余永宏. 基质沥青与SBS改性剂的相容性分析[J]. 公路, 2020, 65(11): 324-327. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202011062.htm

    YU Yong-hong. Compatibility evaluation of base asphalt and SBS modifier[J]. Highway, 2020, 65(11): 324-327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202011062.htm
    [80] 彭煜, 杨克红, 蔺习雄, 等. SBS改性克拉玛依沥青的相容性和稳定性机理[J]. 石油沥青, 2018, 32(5): 25-32, 37. doi: 10.3969/j.issn.1006-7450.2018.05.005

    PENG Yu, YANG Ke-hong, LIN Xi-xiong, et al. The compatibility and stability mechanism of SBS modified Karamay asphalt[J]. Petroleum Asphalt, 2018, 32(5): 25-32, 37. (in Chinese) doi: 10.3969/j.issn.1006-7450.2018.05.005
    [81] 杨军. 聚合物改性沥青[M]. 北京: 化学工业出版社, 2007.

    YANG Jun. Polymer Modified Asphalt[M]. Beijing: Chemical Industry Press, 2007. (in Chinese)
    [82] 刘克非, 吴超凡. 费托蜡温拌沥青结合料相容性的评定方法[J]. 材料研究学报, 2015, 29(9): 707-713. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201509010.htm

    LIU Ke-fei, WU Chao-fan. Evaluation method for compatibility of Sasobit warm mix asphalt binder[J]. Chinese Journal of Materials Research, 2015, 29(9): 707-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201509010.htm
    [83] 方杨, 郭莉, 李智慧. SBS与基质沥青相容性指标的研究[J]. 石油沥青, 2010, 24(2): 14-17. doi: 10.3969/j.issn.1006-7450.2010.02.004

    FANG Yang, GUO Li, LI Zhi-hui. Determination of indicator parameters of compatibility properties of mixture comprising SBS modifier and matrix asphalt[J]. Petroleum Asphalt, 2010, 24(2): 14-17. (in Chinese) doi: 10.3969/j.issn.1006-7450.2010.02.004
    [84] 吴少鹏. 橡胶-沥青改性机理的研究[J]. 武汉工业大学学报, 1997, 19(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY703.002.htm

    WU Shao-peng. Study on rubber-asphalt modification mechanism[J]. Journal of Wuhan University of Technology, 1997, 19(3): 7-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY703.002.htm
    [85] 张登良, 赵可. 不同改性剂对沥青改性效果研究[J]. 中国公路, 2004(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201311010.htm

    ZHANG Deng-liang, ZHAO Ke. Study on modification effect of different modifiers on asphalt[J]. Journal of Chinese Highway, 2004(10): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201311010.htm
    [86] 唐军, 王静, 田华, 等. 反相气相色谱法测定丁苯橡胶的溶解度参数[J]. 橡胶工业, 2012, 59(4): 243-246. doi: 10.3969/j.issn.1000-890X.2012.04.011

    TANG Jun, WANG Jing, TIAN Hua, et al. Determination of solubility parameters of SBR by inverse gas chromatography[J]. China Rubber Industry, 2012, 59(4): 243-246. (in Chinese) doi: 10.3969/j.issn.1000-890X.2012.04.011
    [87] 曾凡奇, 黄晓明, 李海军. 沥青性能的DSC评价方法[J]. 交通运输工程学报, 2005, 5(4): 37-42. doi: 10.3321/j.issn:1671-1637.2005.04.008

    ZENG Fan-qi, HUANG Xiao-ming, LI Hai-jun. Evaluation method of differential scanning calorimetry for asphalt performance[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 37-42. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.04.008
    [88] ALI F, KUMAR R, SAHU P L, et al. Physicochemical characterization and compatibility study of roflumilast with various pharmaceutical excipients[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(3): 1627-1641. doi: 10.1007/s10973-017-6274-8
    [89] TAUSTE R, MORENO-NAVARRO F, SOL-SÁNCHEZ M, et al. Understanding the bitumen ageing phenomenon: a review[J]. Construction and Building Materials, 2018, 192: 593-609. doi: 10.1016/j.conbuildmat.2018.10.169
    [90] GE Dong-dong, YAN Ke-zhen, YOU Zhan-ping, et al. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene[J]. Construction and Building Materials, 2016, 126: 66-76. doi: 10.1016/j.conbuildmat.2016.09.014
    [91] TANG Jun-cheng, ZHU Chong-zheng, ZHANG Heng-long, et al. Effect of liquid ASAs on the rheological properties of crumb rubber modified asphalt[J]. Construction and Building Materials, 2019, 194: 238-246. doi: 10.1016/j.conbuildmat.2018.11.028
    [92] YAO Hui, YOU Zhan-ping, LI Liang, et al. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy[J]. Construction and Building Materials, 2013, 38: 327-337. doi: 10.1016/j.conbuildmat.2012.08.004
    [93] YAO Hui, DAI Qing-li, YOU Zhan-ping. Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders[J]. Construction and Building Materials, 2015, 101: 1078-1087. doi: 10.1016/j.conbuildmat.2015.10.085
    [94] 施沈越, 孙钟良, 张言, 等. 基于凝胶渗透色谱技术的沥青老化研究进展[J]. 石油沥青, 2018, 32(1): 22-30. doi: 10.3969/j.issn.1006-7450.2018.01.004

    SHI Shen-yue, SUN Zhong-liang, ZHANG Yan, et al. Research progress of asphalt aging based on GPC[J]. Petroleum Asphalt, 2018, 32(1): 22-30. (in Chinese) doi: 10.3969/j.issn.1006-7450.2018.01.004
    [95] 陈璟, 袁万杰, 郝培文. 微观指标对沥青热稳定性能的影响[J]. 长安大学学报(自然科学版), 2012, 32(1): 12-15, 25. doi: 10.3969/j.issn.1671-8879.2012.01.003

    CHEN Jing, YUAN Wan-jie, HAO Pei-wen. Influence of microcosmic index on thermal stability performance of asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(1): 12-15, 25. (in Chinese) doi: 10.3969/j.issn.1671-8879.2012.01.003
    [96] 王立志, 刘凯, 王鹏, 等. 微观特性对SBS改性沥青存储稳定性影响研究[J]. 山东建筑大学学报, 2020, 35(6): 7-14, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG202006002.htm

    WANG Li-zhi, LIU Kai, WANG Peng, et al. Research on influence of microscopic characteristics on storage stability of SBS modified asphalt[J]. Journal of Shandong Jianzhu University, 2020, 35(6): 7-14, 36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG202006002.htm
    [97] 肖鹏, 康爱红, 李雪峰. 基于红外光谱法的SBS改性沥青共混机理[J]. 江苏大学学报(自然科学版), 2005, 26(6): 529-532. doi: 10.3969/j.issn.1671-7775.2005.06.018

    XIAO Peng, KANG Ai-hong, LI Xue-feng. Cross blend mechanism of SBS modified asphalt based on infrared spectra[J]. Journal of Jiangsu University (Natural Science Edition), 2005, 26(6): 529-532. (in Chinese) doi: 10.3969/j.issn.1671-7775.2005.06.018
    [98] 孙忠武, 李晓林, 王景宇, 等. 煤沥青改性石油沥青相容性及分散性的研究[J]. 材料导报, 2013, 27(S2): 288-292. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2013S2080.htm

    SUN Zhong-wu, LI Xiao-lin, WANG Jing-yu, et al. Study on compatibility and dispersion of asphalt modified with coal tar pitch[J]. Materials Reports, 2013, 27(S2): 288-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2013S2080.htm
    [99] 徐国其, 翟博超, 胡力群, 等. 高黏度改性沥青储存稳定性试验研究[J]. 公路, 2019, 64(7): 246-251. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201907051.htm

    XU Guo-qi, ZHAI Bo-chao, HU Li-qun, et al. Tests and studies on storage stability of high viscosity modified asphalt[J]. Highway, 2019, 64(7): 246-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201907051.htm
    [100] MICHON L, MARTIN D, PLANCHE J P, et al. Estimation of average structural parameters of bitumens by 13C nuclear magnetic resonance spectroscopy[J]. Fuel, 1997, 76(1): 9-15. doi: 10.1016/S0016-2361(96)00184-6
    [101] 肖敏敏. 废胶粉改性沥青性能及机理研究[D]. 南京: 南京航空航天大学, 2005.

    XIAO Min-min. Research on performance and mechanism of waste rubber powder modified asphalts[D]. Nanjing: Nanjing University Aeronautics and Astronautics, 2005. (in Chinese)
    [102] YIN Long, ZHOU Hong-bing, QUAN Yi-wu, et al. Prompt modification of styrene-butadiene rubber surface with trichloroisocyanuric acid by increasing chlorination temperature[J]. Journal of Applied Polymer Science, 2012, 124(1): 661-668. doi: 10.1002/app.35018
    [103] BEHNOOD A, MODIRI GHAREHVERAN M. Morphology, rheology, and physical properties of polymer-modified asphalt binders[J]. European Polymer Journal, 2019, 112: 766-791. doi: 10.1016/j.eurpolymj.2018.10.049
    [104] POLACCO G, FILIPPI S. Vulcanization accelerators as alternative to elemental sulfur to produce storage stable SBS modified asphalts[J]. Construction and Building Materials, 2014, 58: 94-100. doi: 10.1016/j.conbuildmat.2014.02.018
    [105] RASOOL R T, SONG P, WANG S F. Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber[J]. Construction and Building Materials, 2018, 182: 134-143. doi: 10.1016/j.conbuildmat.2018.06.104
    [106] DAS P K, BAAJ H, TIGHE S, et al. Atomic force microscopy to investigate asphalt binders: a state-of-the-art review[J]. Road Materials and Pavement Design, 2016, 17(3): 693-718. doi: 10.1080/14680629.2015.1114012
    [107] MAZUMDER M, AHMED R, WAJAHAT ALI A, et al. SEM and ESEM techniques used for analysis of asphalt binder and mixture: a state of the art review[J]. Construction and Building Materials, 2018, 186: 313-329. doi: 10.1016/j.conbuildmat.2018.07.126
    [108] 孙国强, 庞琦, 孙大权. 基于AFM的沥青微观结构研究进展[J]. 石油沥青, 2016, 30(4): 18-24. doi: 10.3969/j.issn.1006-7450.2016.04.004

    SUN Guo-qiang, PANG Qi, SUN Da-quan. The progress of asphalt microcosmic structure research based on AFM[J]. Petroleum Asphalt, 2016, 30(4): 18-24. (in Chinese) doi: 10.3969/j.issn.1006-7450.2016.04.004
    [109] 严秋荣, 王建壮, 孔令云. 改性沥青微观结构与储存稳定性的关系[J]. 公路交通技术, 2015, 31(3): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201503009.htm

    YAN Qiu-rong, WANG Jian-zhuang, KONG Ling-yun. Relationship between microstructure and storage stability of modified asphalt[J]. Technology of Highway and Transport, 2015, 31(3): 25-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201503009.htm
    [110] 黄卫东, 孙立军. 聚合物改性沥青的相态结构[J]. 公路交通科技, 2001, 18(5): 1-3. doi: 10.3969/j.issn.1002-0268.2001.05.001

    HUANG Wei-dong, SUN Li-jun. Phase structure of modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2001, 18(5): 1-3. (in Chinese) doi: 10.3969/j.issn.1002-0268.2001.05.001
    [111] 王明, 刘黎萍. 基于荧光显微镜的SBS改性沥青显微相态分析[J]. 交通科学与工程, 2014, 30(3): 10-14. doi: 10.3969/j.issn.1674-599X.2014.03.004

    WANG Ming, LIU Li-ping. Investigation of the microscopic phase of SBS modified bitumen with fluorescence microscope (FM)[J]. Journal of Transport Science and Engineering, 2014, 30(3): 10-14. (in Chinese) doi: 10.3969/j.issn.1674-599X.2014.03.004
    [112] SIENKIEWICZ M, BORZE, DOWSKA-LABUDA K, WOJTKIEWICZ A, et al. Development of methods improving storage stability of bitumen modified with ground tire rubber: a review[J]. Fuel Processing Technology, 2017, 159: 272-279. doi: 10.1016/j.fuproc.2017.01.049
    [113] PICADO-SANTOS L G, CAPITÃO S D, NEVES J M C. Crumb rubber asphalt mixtures: a literature review[J]. Construction and Building Materials, 2020, 247: 118577. doi: 10.1016/j.conbuildmat.2020.118577
    [114] 娄可可, 康爱红, 寇长江. SBS改性沥青相态结构的参数化表征方法[J]. 材料科学与工程学报, 2016, 34(4): 638-642. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201604026.htm

    LOU Ke-ke, KANG Ai-hong, KOU Chang-jiang. Parametric characterization method for morphological structure of SBS modified asphalt[J]. Journal of Materials Science and Engineering, 2016, 34(4): 638-642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201604026.htm
    [115] 郑乃涛, 徐新蔚. 不同种类改性剂与基质沥青相容性研究[J]. 公路交通科技(应用技术版), 2012, 8(12): 167-170.

    ZHENG Nai-tao, XU Xin-wei. Research on compatibility of different modifiers and base asphalt[J]. Journal of Highway and Transportation Research and Development (Application Technology), 2012, 8(12): 167-170. (in Chinese)
    [116] 张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(S2): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2019S2052.htm

    ZHANG Qing, HOU De-hua, SHI Ji-cun. Research progress of microscopic characterization of rubber asphalt[J]. Materials Reports, 2019, 33(S2): 247-253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2019S2052.htm
    [117] 杨军, 王潇婷, 龚明辉, 等. 沥青原子力显微镜微观图像的特征分析[J]. 石油学报(石油加工), 2015, 31(5): 1110-1115. doi: 10.3969/j.issn.1001-8719.2015.05.012

    YANG Jun, WANG Xiao-ting, GONG Ming-hui, et al. Analysis of the microscopic images of asphalt getting from atomic force microscopy[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(5): 1110-1115. (in Chinese) doi: 10.3969/j.issn.1001-8719.2015.05.012
    [118] 杨军, 龚明辉, PAULI T, 等. 基于原子力显微镜的沥青微观结构研究[J]. 石油学报(石油加工), 2015, 31(4): 959-965. doi: 10.3969/j.issn.1001-8719.2015.04.018

    YANG Jun, GONG Ming-hui, PAULI T, et al. Study on micro-structures of asphalt by using atomic force microscopy[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(4): 959-965. (in Chinese) doi: 10.3969/j.issn.1001-8719.2015.04.018
    [119] 任敏达. 基于AFM的多聚磷酸改性沥青改性机理及老化前后微观性能研究[D]. 呼和浩特: 内蒙古工业大学, 2018.

    REN Min-da. Study on modification mechanism and micro-properties of poly-phosphoric acid modified asphalt considering aging performance based on AFM[D]. Hohhot: Inner Mongolia University of Technology, 2018. (in Chinese)
    [120] 汪海年, 丁鹤洋, 冯珀楠, 等. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001

    WANG Hai-nian, DING He-yang, FENG Po-nan, et al. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.001
    [121] 谭忆秋, 李冠男, 单丽岩, 等. 沥青微观结构组成研究进展[J]. 交通运输工程学报, 2020, 20(6): 1-17. doi: 10.19818/j.cnki.1671-1637.2020.06.001

    TAN Yi-qiu, LI Guan-nan, SHAN Li-yan, et al. Research progress of bitumen microstructures and components[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 1-17. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.001
    [122] 王岚, 张乐, 刘旸. 基于分子动力学的胶粉改性沥青中胶粉与沥青相容性研究[J]. 建筑材料学报, 2018, 21(4): 689-694. doi: 10.3969/j.issn.1007-9629.2018.04.027

    WANG Lan, ZHANG Le, LIU Yang. Compatibility of rubber powder and asphalt in rubber powder modified asphalt by molecular dynamics[J]. Journal of Building Materials, 2018, 21(4): 689-694. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.04.027
    [123] 王岚, 张乐, 刘旸. 老化前后沥青与胶粉相容性的分子动力学研究[J]. 建筑材料学报, 2019, 22(3): 474-479. doi: 10.3969/j.issn.1007-9629.2019.03.021

    WANG Lan, ZHANG Le, LIU Yang. Molecular dynamics study on compatibility of asphalt and rubber powders before and after aging[J]. Journal of Building Materials, 2019, 22(3): 474-479. (in Chinese) doi: 10.3969/j.issn.1007-9629.2019.03.021
    [124] 苏曼曼, 张洪亮, 张永平, 等. SBS与沥青相容性及力学性能的分子动力学模拟[J]. 长安大学学报(自然科学版), 2017, 37(3): 24-32. doi: 10.3969/j.issn.1671-8879.2017.03.004

    SU Man-man, ZHANG Hong-liang, ZHANG Yong-ping, et al. Miscibility and mechanical properties of SBS and asphalt blends based on molecular dynamics simulation[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(3): 24-32. (in Chinese) doi: 10.3969/j.issn.1671-8879.2017.03.004
    [125] 朱建勇, 何兆益. 抗剥落剂与沥青相容性的分子动力学研究[J]. 公路交通科技, 2016, 33(1): 34-40. doi: 10.3969/j.issn.1002-0268.2016.01.006

    ZHU Jian-yong, HE Zhao-yi. Research of compatibility of asphalt and anti-stripping agent using molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 34-40. (in Chinese) doi: 10.3969/j.issn.1002-0268.2016.01.006
    [126] GUO Fu-cheng, ZHANG Jiu-cheng, PEI Jian-zhong, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956. doi: 10.1016/j.conbuildmat.2020.118956
    [127] GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 435-445. doi: 10.1007/s11709-019-0603-x
    [128] ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Numerical investigation on phase separation in polymer-modified bitumen: effect of thermal condition[J]. Journal of Materials Science, 2017, 52(11): 6525-6541. doi: 10.1007/s10853-017-0887-y
    [129] ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Microstructure evaluation of polymer-modified bitumen by image analysis using two-dimensional fast Fourier transform[J]. Materials and Design, 2018, 137: 164-175. doi: 10.1016/j.matdes.2017.10.023
    [130] ZHU Ji-qing, LU Xiao-hu, BALIEU R, et al. Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method[J]. Materials and Design, 2016, 107: 322-332. doi: 10.1016/j.matdes.2016.06.041
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  1366
  • HTML全文浏览量:  446
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回