留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
何亮, 周子栋, VAN DEN BERGHWim, BALIEURomain, CANNONE FALCHETTOAugusto, 朱继青, ALEXIADISAlessio, KOWALSKIKarol, VALENTINJan, 蔡皓东, 李后君, 乔亚宁. 多孔沥青混合料堵塞规律离散元仿真[J]. 交通运输工程学报, 2023, 23(2): 78-91. doi: 10.19818/j.cnki.1671-1637.2023.02.005
引用本文: 何亮, 周子栋, VAN DEN BERGHWim, BALIEURomain, CANNONE FALCHETTOAugusto, 朱继青, ALEXIADISAlessio, KOWALSKIKarol, VALENTINJan, 蔡皓东, 李后君, 乔亚宁. 多孔沥青混合料堵塞规律离散元仿真[J]. 交通运输工程学报, 2023, 23(2): 78-91. doi: 10.19818/j.cnki.1671-1637.2023.02.005
HE Liang, ZHOU Zi-dong, VAN DEN BERGH Wim, BALIEU Romain, CANNONE FALCHETTO Augusto, ZHU Ji-qing, ALEXIADIS Alessio, KOWALSKI Karol, VALENTIN Jan, CAI Hao-dong, LI Hou-jun, QIAO Ya-ning. Discrete element simulation of porous asphalt mixture clogging law[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 78-91. doi: 10.19818/j.cnki.1671-1637.2023.02.005
Citation: HE Liang, ZHOU Zi-dong, VAN DEN BERGH Wim, BALIEU Romain, CANNONE FALCHETTO Augusto, ZHU Ji-qing, ALEXIADIS Alessio, KOWALSKI Karol, VALENTIN Jan, CAI Hao-dong, LI Hou-jun, QIAO Ya-ning. Discrete element simulation of porous asphalt mixture clogging law[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 78-91. doi: 10.19818/j.cnki.1671-1637.2023.02.005

多孔沥青混合料堵塞规律离散元仿真

doi: 10.19818/j.cnki.1671-1637.2023.02.005
基金项目: 

国家自然科学基金项目 52278440

国家自然科学基金项目 52111530134

中国-中东欧国家高校联合教育项目 2021090

重庆市研究生科研创新项目 CYS21340

重庆市自然科学基金项目 cstc2020jcyj-msxmX0431

重庆交通大学交通土建工程材料国家地方联合工程研究中心开放基金项目 LHSYS-2021-003

详细信息
    作者简介:

    何亮(1983-), 男, 重庆人, 重庆交通大学教授, 工学博士, 从事路面材料与养护技术研究

  • 中图分类号: U414

Discrete element simulation of porous asphalt mixture clogging law

Funds: 

National Natural Science Foundation of China 52278440

National Natural Science Foundation of China 52111530134

China-CEEC Higher Education Institutions Joint Educational Program 2021090

Chongqing Graduate Research Innovation Project CYS21340

Natural Science Foundation of Chongqing cstc2020jcyj-msxmX0431

Open Fund of National and Local Joint Engineering Research Centre of Transportation and Civil Engineering Materials LHSYS-2021-003

More Information
  • 摘要: 为揭示多孔沥青混合料孔隙堵塞机理,开展了多孔沥青混合料堵塞模型试验与仿真模拟结合研究;基于电子计算机断层扫描与离散元软件PFC3D V5.0分析了多孔沥青混合料孔隙特征,得到了多孔沥青混合料的孔隙数据;在PFC3D V5.0中投放各粒径集料并根据孔隙特征生成压实虚拟试件,以MATLAB切片对比实际试件孔隙图像验证模型准确性;在自重条件下设置特定级配组成堵塞物侵入多孔沥青混合料试件模拟仿真,并以室内试验结果对照验证,改变投放堵塞物粒径,分析了试件孔隙衰变率,找出了堵塞敏感颗粒;在自重条件下引入流体模拟仿真试验,改变了流体渗流速度,分析了试件堵塞变化规律。研究结果表明:PFC3D V5.0生成的虚拟试件具备较高的精确度,仿真揭示了试件堵塞规律,小颗粒除堆积于喉孔处产生堵塞外,还会在嵌挤成型后与大粒径颗粒积聚产生堵塞;自重条件下的堵塞主要集中在混合料试件上层30 mm处,相应堵塞敏感颗粒粒径分布为0.150~0.600 mm,堵塞颗粒粒径分布对堵塞结果影响较大;在重力与流体条件下,随着渗流速度从0.005 m·s-1增加到0.030 m·s-1,孔隙衰变率变化速度增加,残留在混合料内部的堵塞物减少,孔隙衰变率减小,排水沥青路面在设计与养护时也需将当地降雨条件带入考虑。

     

  • 图  1  多孔沥青混合料矿料级配

    Figure  1.  Mineral aggregate gradings of porous asphalt mixture

    图  2  孔隙结构重构过程

    Figure  2.  Reconstruction process of pore structure

    图  3  多孔沥青混合料孔隙分布

    Figure  3.  Pore distribution of porous asphalt mixture

    图  4  孔隙结构分类

    Figure  4.  Classification of pore structure

    图  5  粗集料生成

    Figure  5.  Generation of coarse aggregates

    图  6  多孔沥青混料合料马歇尔试件生成过程

    Figure  6.  Marshall specimens generation process of porous asphalt mixture

    图  7  试件二维图像

    Figure  7.  2D images of specimens

    图  8  孔隙率-高度曲线

    Figure  8.  Porosity-height curves

    图  9  密封试件

    Figure  9.  Sealing specimens

    图  10  孔隙结构中的堵塞状态与规律

    Figure  10.  Clogging state and law in pore structure

    图  11  堵塞状态分析

    Figure  11.  Analysis of clogging state

    图  12  堵塞颗粒粒径与残留堵塞颗粒质量关系

    Figure  12.  Relationship between particle size of clogging particle and mass of residual clogging particles

    图  13  孔隙衰变率-时间曲线

    Figure  13.  Pore decay rate-time curves

    图  14  降雨模拟装置

    Figure  14.  Rainfall simulation device

    图  15  不同降雨量下残留堵塞颗粒质量

    Figure  15.  Masses of residual clogging particles under different rainfall

    图  16  堵塞颗粒在孔隙结构中的堵塞状态

    Figure  16.  Clogging states of clogging particles in pore structure

    图  17  孔隙结构残留堵塞颗粒质量变化规律

    Figure  17.  Change law of residual clogging particle mass of pore structure

    图  18  不同渗流速度下堵塞颗粒质量变化

    Figure  18.  Change of clogging particle mass under different seepage rates

    图  19  不同质量比的堵塞颗粒的孔隙衰变率

    Figure  19.  Pore decay rates of clogging particles with different mass ratios

    图  20  不同渗流速度下堵塞颗粒分布情况

    Figure  20.  Distributions of clogging particles under different seepage rates

    表  1  各粒径堵塞颗粒投放个数

    Table  1.   Numbers of clogging particles of each particle size

    粒径/mm 4.750~2.360 2.360~1.180 1.180~0.600 0.600~0.300 0.300~0.150 0.150~0.075 ≤0.075
    质量/g 0.61 1.27 1.33 0.96 0.91 0.68 0.23
    密度/(g·cm-3) 2.73 2.65
    总体积/mm3 226.72 478.64 500.38 364.08 343.25 257.66 88.30
    单个体积/mm3 47.000 0 23.230 0 2.950 0 0.380 0 0.050 0 0.010 0 0.000 2
    颗粒数目 5 21 169 954 7 194 43 202 399 749
    下载: 导出CSV

    表  2  不同粒径下堵塞颗粒的质量比

    Table  2.   Mass ratios of clogging particles under different particle sizes  %

    方案 0.000~0.600 0.600~2.360 2.360~4.750
    1 70 20 10
    2 50 40 10
    3 30 60 10
    4 10 80 10
    下载: 导出CSV
  • [1] LUBLOY E, AMBRIS D, KAPITANY K, et al. Air void distribution of asphalts determined by computed tomography[J]. Periodica Polytechnic—Civil Engineering, 2015, 59(4): 503-510. doi: 10.3311/PPci.7608
    [2] 裴建中, 王富玉, 张嘉林. 基于X-CT技术的多孔排水沥青混合料空隙竖向分布特性[J]. 吉林大学学报(工学版), 2009, 39(增2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2009S2046.htm

    PEI Jian-zhong, WANG Fu-yu, ZHANG Jia-lin. Characteristic of vertical distribution of porous asphalt based on X-ray computed tomography imaging techniques[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(S2): 215-219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2009S2046.htm
    [3] 卢恺, 王劲松, 陈振富, 等. 基于CT数字图像处理的沥青混合料车辙试件空隙特征测定[J]. 公路工程, 2017, 42(6): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201706012.htm

    LU Kai, WANG Jin-song, CHEN Zhen-fu, et al. Measurement of air void characters in rutting specimens for asphalt mixtures based on CT digital image processing[J]. Highway Engineering, 2017, 42(6): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201706012.htm
    [4] ISLAHUDDIN M, JANSSEN H. Pore-structure-based determination of unsaturated hygric properties of porous materials[J]. Transport in Porous Media, 2019, 130(3): 675-698. doi: 10.1007/s11242-019-01334-7
    [5] HOKARI K, MARUYAMA T, OHKAWA H, et al. A fundamental study on void structure of the drainage asphalt pavement[J]. Proceedings of the Japan Society of Civil Engineers, 1994, 22(484): 69-76.
    [6] GARCIA A, ABOUFOUL M, ASAMOAH F, et al. Study the influence of the air void topology on porous asphalt clogging[J]. Construction and Building Materials, 2019, 227(10): 116791.
    [7] LIAO Gong-yun, WANG Can, WANG Hao, et al. Characterization of interlayer mechanical performance of double-layer porous asphalt compacted by three methods: simulations and observations[J]. Construction and Building Materials, 2022, 353(24): 129127.
    [8] MARTIN W D, PUTMAN B J, NEPTUNE A I. Influence of aggregate gradation on clogging characteristics of porous asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2014, 26(7): 04014026. doi: 10.1061/(ASCE)MT.1943-5533.0000975
    [9] YONG C F, MCCARTHY D T, DELETIC A. Predicting physical clogging of porous and permeable pavements[J]. Journal of Hydrology, 2013, 481: 48-55. doi: 10.1016/j.jhydrol.2012.12.009
    [10] KANDRA H S, MCCARTHY D, FLETCHER T D, et al. Assessment of clogging phenomena in granular filter media used for stormwater treatment[J]. Journal of Hydrology, 2014, 512: 518-527. doi: 10.1016/j.jhydrol.2014.03.009
    [11] 叶向前. 基于离散元方法的薄层罩面沥青混合料力学特性研究[D]. 重庆: 重庆交通大学, 2021.

    YE Xiang-qian. Study on mechanical properties of thin overlay asphalt mixture based on discrete element method[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese)
    [12] XIAO Yuan-jie, TUTUMLUER E. Gradation and packing characteristics affecting stability of granular materials: aggregate imaging-based discrete element modeling approach[J]. International Journal of Geomechanics, 2016, 17(3): 04016064.
    [13] MICAELO R, RIBEIRO J, AZEVEDO M, et al. Asphalt compaction study: micromechanical modelling of a simplified lab compaction procedure[J]. Road Materials and Pavement Design, 2011, 12(3): 461-491.
    [14] CARLOS C C, DENIS J, MANFRED N P, et al. Contact- induced deformation and damage of rocks used in pavement materials[J]. Materials and Design, 2017, 133(5): 255-265.
    [15] HILL B C, GIRALDO-LONDONO O, PAULINO G H, et al. Inverse estimation of cohesive fracture properties of asphalt mixtures using an optimization approach[J]. Experimental Mechanics, 2017, 57(4): 637-648.
    [16] 周韡, 黄晓明. 多孔沥青路面空隙衰变离散元模拟[J]. 中国公路学报, 2014, 27(7): 10-16.

    ZHOU Wei, HUANG Xiao-ming. Simulation of void reduction in porous asphalt mixture based on discrete element method[J]. China Journal of Highway and Transport, 2014, 27(7): 10-16. (in Chinese)
    [17] 马康. 双层排水沥青路面孔隙衰变研究[D]. 南京: 东南大学, 2019.

    MA Kang. Study on reduction behavior of void structure of double-layer drained asphalt pavement[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [18] ZHANG Jiong, MA Guo-dong, DAI Zhao-xia, et al. Numerical study on pore clogging mechanism in pervious pavements[J]. Journal of Hydrology, 2018, 565: 589-598. doi: 10.1016/j.jhydrol.2018.08.072
    [19] ZHANG Jiong, MA Guo-dong, MING Rui-ping, et al. Numerical study on seepage flow in pervious concrete based on 3D CT imaging[J]. Construction and Building Materials, 2018, 161: 468-478. doi: 10.1016/j.conbuildmat.2017.11.149
    [20] 魏定邦. 基于细观结构的排水沥青路面孔隙堵塞规律及其机理研究[D]. 兰州: 兰州交通大学, 2020.

    WEI Ding-bang. Research on the law and mechanism of void clogging for porous asphalt concrete pavement based on mesostructure[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
    [21] 吴文亮, 王端宜, 张肖宁, 等. 基于工业CT技术的沥青混合料内部空隙分布特性[J]. 中南大学学报(自然科学版), 2012, 43(6): 2343-2348.

    WU Wen-liang, WANG Duan-yi, ZHANG Xiao-ning, et al. Air voids distribution of asphalt mixtures based on industrial computerized tomography[J]. Journal of Central South University (Science and Technology), 2012, 43 (6): 2343-2348. (in Chinese)
    [22] 裴建中, 张嘉林, 常明丰. 矿料级配对多孔沥青混合料空隙分布特性的影响[J]. 中国公路学报, 2010, 23(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201001004.htm

    PEI Jian-zhong, ZHANG Jia-lin, CHANG Ming-feng. Influence of mineral aggregate gradation on air void distribution characteristic of porous asphalt mixture[J]. China Journal of Highway and Transport, 2010, 23(1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201001004.htm
    [23] MAHMUD M Z H, HASSAN N A, HAININ M R, et al. Microstructural investigation on air void properties of porous asphalt using virtual cut section[J]. Construction and Building Materials, 2017, 155(30): 485-494.
    [24] HASSAN N A, ABDULLAH N A M, SHUKRY N A M, et al. Laboratory evaluation on the effect of clogging on permeability of porous asphalt mixtures[J]. Jurnal Teknologi, 2015, 76(14): 77-84.
    [25] CHEN Jun, YAO Cheng, WANG Hao, et al. Expansion and contraction of clogged open graded friction course exposed to freeze-thaw cycles and degradation of mechanical performance[J]. Construction and Building Materials, 2018, 182(10): 167-177.
    [26] YOU Zhan-ping, ADHIKARI S M, KUTAY M E. Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images[J]. Materials and Structures, 2009, 42(5): 617-630.
    [27] 蒋玮, 沙爱民, 肖晶晶, 等. 多孔沥青混合料的空隙堵塞试验研究[J]. 建筑材料学报, 2013, 16(2): 271-275. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201302018.htm

    JIANG Wei, SHA Ai-min, XIAO Jing-jing, et al. Experimental study on the clogging of porous asphalt concrete[J]. Journal of Building Materials, 2013, 16(2): 271-275. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201302018.htm
    [28] TASHMAN L, WANG Lin-bing, THYAGARAJAN S. Microstructure characterization for modeling HMA behaviour using imaging technology[J]. Road Materials and Pavement Design, 2007, 8(2): 207-238.
    [29] QIAN Ni-gui, WANG Duan-yi, LI Dan-ning, et al. Three- dimensional mesoscopic permeability of porous asphalt mixture[J]. Construction and Building Materials, 2020, 236: 138-149.
    [30] 周韡, 黄晓明, 梁彦龙, 等. 多孔沥青路面渗水性能衰变规律[J]. 长安大学学报(自然科学版), 2016, 36(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201601005.htm

    ZHOU Wei, HUANG Xiao-ming, LIANG Yan-long, et al. Permeability performance decay law of porous asphalt pavement[J]. Journal of Chang'an University (Natural Science Edition), 2016, 36(1): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201601005.htm
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  191
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回