-
摘要: 为减少沥青混合料施工过程中大量的能源消耗和废气排放,在传统搅拌技术中加入振动功能以降低搅拌过程所需要的温度,采用布氏旋转黏度试验探究了振动参数(振动频率和幅值)和试验温度对SBS改性沥青的降黏效果,通过沥青的基本性能指标(针入度、软化点和延度)试验揭示2种振动方式对SBS改性沥青基本性能的影响,基于标准、高温与重载车辙试验,浸水马歇尔稳定度试验和冻融劈裂试验分别分析了振动拌和对SBS改性沥青混合料高温稳定性和水稳定性的影响。试验结果表明:振动拌和可以显著降低SBS改性沥青的黏度,提高改性沥青的流动性,且随着振动参数的增大,改性沥青降黏效果越好,最大降黏率可达14%;振动降黏可等效于温度降黏,且随着温度的升高,振动效应所带来的温度等效作用越显著;振动拌和结束后SBS改性沥青可恢复其黏稠属性,故基本性能不存在负面影响;当振动频率小于40 Hz时,SBS改性沥青混合料的动稳定度、残留稳定度和抗拉强度比均随振动频率的增大而增大,表明振动拌和可提高沥青混合料的高温稳定性和水稳定性,但当振动频率为50 Hz时,沥青混合料路用性能与振动频率为30 Hz时作用效果一致,表明增大振动频率对提高沥青混合料路用性能具有局限性。Abstract: To reduce the vast energy consumption and exhaust emissions during the construction of asphalt mixture, a vibration function was added to the traditional mixing technology to reduce the temperature required for the mixing process. The effects of vibration parameters (vibration frequency and amplitude) and test temperature on the viscosity reduction for the SBS modified asphalt were investigated by the Brockfield rotational viscosity test. The basic performance indicators (penetration, softening point, and ductility) of the asphalt were tested to reveal the effects of two vibration methods on the basic performance of SBS modified asphalt. Based on the standard, high-temperature and heavy load rutting tests, water immersion Marshall stability test, and freeze-thaw splitting test, the effects of vibratory mixing on the high-temperature stability and water stability of SBS modified asphalt mixture were investigated separately. Test results show that the vibratory mixing can significantly reduce the viscosity of SBS modified asphalt, improve the mobility of the asphalt. With the increase in the vibration parameters, the viscosity reduction effect of modified asphalt is better, and the maximum viscosity reduction rate is up to 14%. The viscosity reduction by vibration can be equivalent to the temperature viscosity reduction, and the temperature equivalent effect brought by the vibration effect is more significant with the increase in temperature. After the vibratory mixing, the viscosity property of SBS modified asphalt can be recovered, and hence, no negative impact is exerted on its basic performance. When the vibration frequency is less than 40 Hz, the dynamic stability, residual stability, and tensile strength ratio of SBS modified asphalt mixture increase with the rise in the vibration frequency. It is indicated that the vibratory mixing can improve the high-temperature stability and water stability of asphalt mixture. However, when the vibration frequency is 50 Hz, the pavement performance of asphalt mixture is consistent with that at 30 Hz. In other words, the effect of vibration frequency increase on the pavement performance of asphalt mixture is limited.
-
表 1 SBS改性沥青性能指标
Table 1. Performance indexes of SBS modified asphalt
检测项目 技术要求 试验结果 针入度(25 ℃,100 g,5 s)/0.1 mm 40.0~60.0 52.2 软化点/℃ ≥60.0 72.9 延度(5 ℃,5 cm·min-1)/cm ≥20.0 35.6 闪点/℃ ≥230 326 运动黏度(135 ℃)/(Pa·s) ≤3.0 2.7 弹性恢复(25 ℃)/% ≥75 91 经旋转薄膜烘箱处理后 质量变化/% [-1.00, 1.00] -0.06 针入度比(25 ℃)/% ≥65 88 残留延度(5 ℃)/cm ≥15 23 表 2 辉绿岩基本性能指标
Table 2. Basic performance indexes of dolerite
检测项目 技术要求 试验结果 压碎值/% ≤20.0 16.8 吸水率/% ≤2.0 0.5 片状颗粒含量/% ≤15.0 3.3 表观相对密度 ≥2.600 2.972 洛杉矶磨耗/% ≤28.0 14.9 表 3 石灰石矿粉技术指标
Table 3. Technical indexes of limestone powder
检测项目 技术要求 试验结果 筛孔通过率(<0.075 mm)/% 75~100 89.5 密度/(kg·m-3) ≥2 600 2 700 含水量/% ≤1.0 0.3 亲水系数 ≤0.80 0.69 表 4 WS-Z30振动台基本参数
Table 4. Basic parameters of WS-Z30 vibration table
参数 工作频率/Hz 最大振幅/mm 功率/W 长/mm 宽/mm 高/mm 电压/V 电源频率/Hz 取值 0.5~2 500.0 8 500 516 380 22 200 50 表 5 沥青混合料级配设计
Table 5. Gradation design of asphalt mixtures
项目 筛孔(mm)通过率/% 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 级配上限 100.0 100.0 85.0 68.0 50.0 38.0 28.0 20.0 15.0 8.0 级配下限 100.0 90.0 68.0 38.0 24.0 15.0 10.0 7.0 5.0 4.0 合成级配 100.0 95.3 78.4 50.8 32.5 22.3 18.2 13.7 9.5 5.6 表 6 沥青混合料马歇尔试验结果(无振动)
Table 6. Marshall test results of asphalt mixture (without vibration)
指标 不同油石比(%)下的指标值 4.0 4.5 5.0 5.5 6.0 毛体积密度/(g·cm-3) 2.371 2.397 2.427 2.421 2.417 空隙率/% 6.99 5.91 3.69 3.28 2.97 稳定度/kN 7.74 8.36 9.21 9.06 8.02 饱和度/% 53.48 60.73 73.73 77.64 80.62 矿料间隙率% 15.03 15.05 14.03 14.66 15.34 表 7 振动前后SBS改性沥青的主要技术指标
Table 7. Main technical indexes of SBS modified asphalt before and after vibration
振动频率/Hz 针入度(25 ℃,100 g,5 s)/0.1 mm 软化点/℃ 延度(5 ℃,5 cm·min-1)/cm 0 52.2 72.9 35.6 10 49.8 73.5 34.6 100 49.3 73.6 34.4 -
[1] 谭忆秋, 李冠男, 单丽岩, 等. 沥青微观结构组成研究进展[J]. 交通运输工程学报, 2020, 20(6): 1-17. doi: 10.19818/j.cnki.1671-1637.2020.06.001TAN Yi-qiu, LI Guan-nan, SHAN Li-yan, et al. Research progress of bitumen microstructures and components[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 1-17. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.001 [2] XU Pei-xin, ZHANG De-run, LIU Zi-yang, et al. Chemical and rheological properties evaluation of a novel synchronous rejuvenated aged SBS modified asphalt[J]. Journal of Cleaner Production, 2022, 381: 135213. doi: 10.1016/j.jclepro.2022.135213 [3] HAN Xiao-bin, MAO San-peng, ZENG Shang-heng, et al. Effect of reactive flexible rejuvenators on thermal-oxidative aging resistance of regenerated SBS modified asphalt[J]. Journal of Cleaner Production, 2022, 380: 135027. doi: 10.1016/j.jclepro.2022.135027 [4] 徐世法, 卢兆洋, 房聪, 等. 紫外光及温度老化对冷拌冷铺乳化沥青混合料的性能影响评价[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(1): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ202201014.htmXU Shi-fa, LU Zhao-yang, FANG Cong, et al. Evaluation of the influence of temperature and UV aging on the properties of cold mix emulsified asphalt mixture[J]. Journal of Shenyang Jianzhu University (Natural Science), 2022, 38(1): 111-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ202201014.htm [5] RODRÍGUEZ-ALLOZA A M, GALLEGO J, PÉREZ J, et al. High and low temperature properties of crumb rubber modified binders containing warm mix asphalt additives[J]. Construction and Building Materials, 2014, 53: 460-466. doi: 10.1016/j.conbuildmat.2013.12.026 [6] 杨小龙, 申爱琴, 蒋宜馨, 等. 基于阻燃抑烟的纳米黏土改性沥青综述[J]. 交通运输工程学报, 2021, 21(5): 42-61. doi: 10.19818/j.cnki.1671-1637.2021.05.004YANG Xiao-long, SHEN Ai-qin, JIANG Yi-xin, et al. Review on nano clay modified asphalt based on flame retardant and smoke suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 42-61. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.05.004 [7] CAO Zhi-long, CHEN Mei-zhu, HAN Xiao-bin, et al. Evaluation of viscosity-temperature characteristics and rheological properties of rejuvenated SBS modified bitumen with active warm additive[J]. Construction and Building Materials, 2020, 236: 117548. doi: 10.1016/j.conbuildmat.2019.117548 [8] 高志伟, 陈姣, 王朝辉, 等. 新型温拌改性沥青流变性能及微观机理[J]. 材料导报, 2015, 29(增2): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2116.htmGAO Zhi-wei, CHEN Jiao, WANG Chao-hui, et al. Rheological properties and microstructure of warm mixing asphalt[J]. Materials Reports, 2015, 29(S2): 468-471. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2116.htm [9] 丁海波, 周刚. 温拌剂对橡胶改性沥青性能的影响研究[J]. 公路, 2014, 59(4): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201404042.htmDING Hai-bo, ZHOU Gang. Effect of warm mix agent on rubber modified asphalt[J]. Highway, 2014, 59(4): 175-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201404042.htm [10] SANCHEZ-ALONSO E, VEGA- ZAMANILLO A, CASTRO- FRESNO D, et al. Evaluation of compactability and mechanical properties of bituminous mixes with warm additives[J]. Construction and Building Materials, 2011, 25(5): 2304-2311. doi: 10.1016/j.conbuildmat.2010.11.024 [11] 左锋, 叶奋. 国外温拌沥青混合料技术与性能评价[J]. 中外公路, 2007, 27(6): 164-168. doi: 10.3969/j.issn.1671-2579.2007.06.044ZUO Feng, YE Fen. Foreign warm mix asphalt mixture technology and performance evaluation[J]. Journal of China and Foreign Highway, 2007, 27(6): 164-168. (in Chinese) doi: 10.3969/j.issn.1671-2579.2007.06.044 [12] 王涛, 肖飞鹏, 侯向导. 温拌沥青混合料技术简述[J]. 交通科技, 2018(2): 145-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201802037.htmWANG Tao, XIAO Fei-peng, HOU Xiang-dao. Brief introduction of warm mix asphalt mixture technology[J]. Transportation Science and Technology, 2018(2): 145-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201802037.htm [13] 吴爱祥, 孙业志, 黎剑华. 振动出矿时碎岩的激励响应[J]. 湘潭矿业学院学报, 2001, 16(2): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200102001.htmWU Ai-xiang, SUN Ye-zhi, LI Jian-hua. Excited response of broken ores drawn by vibration[J]. Journal of Xiangtan Mining Institute, 2001, 16(2): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200102001.htm [14] 李以农, 闻邦椿, 李竟志. 可控震源振动采油机理及实验研究[J]. 振动与冲击, 2000, 19(3): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200003001.htmLI Yi-nong, WEN Bang-chun, LI Jing-zhi. Study on the mechanism and the experiments of controllable hypocentre to extract oil with vibration[J]. Journal of Vibration and Shock, 2000, 19(3): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200003001.htm [15] 宫丽虹, 王英敏, 刘铁民, 等. 湿式纤维栅振动除尘机理与效率的研究[J]. 安全与环境学报, 2003, 3(3): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ200303007.htmGONG Li-hong, WANG Ying-min, LIU Tie-min, et al. Research on dust removing mechanism and efficiency of wet vibration fibrous grid[J]. Journal of Safety and Environment, 2003, 3(3): 32-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ200303007.htm [16] 刘静, 蒲春生, 郑黎明, 等. 低频振动对原油黏度影响的实验研究[J]. 科学技术与工程, 2012, 12(27): 7061-7063, 7067. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201227044.htmLIU Jing, PU Chun-sheng, ZHENG Li-ming, et al. Experiment research on effects of low frequency vibration wave for crude oil viscosity[J]. Science Technology and Engineering, 2012, 12(27): 7061-7063, 7067. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201227044.htm [17] 付莉红, 王中武, 严山明, 等. 振动挤出对聚烯烃流变行为的影响[J]. 塑料科技, 2013, 41(2): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKJ201302004.htmFU Li-hong, WANG Zhong-wu, YAN Shan-ming, et al. Effect of vibration extrusion on rheological behavior of polyolefins[J]. Plastics Science and Technology, 2013, 41(2): 41-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLKJ201302004.htm [18] 冯西宁, 冯忠绪, 王卫中. 混凝土振动拌合研究的回顾[J]. 中国工程机械学报, 2007, 5(1): 113-116.FENG Xi-ning, FENG Zhong-xu, WANG Wei-zhong. Review on concrete vibratory mixing techniques[J]. Chinese Journal of Construction Machinery, 2007, 5(1): 113-116. (in Chinese) [19] 冯建生, 冯忠绪, 王博. 振动搅拌对不同配合比混凝土性能的影响[J]. 广西大学学报(自然科学版), 2015, 40(3): 636-642. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201503019.htmFENG Jian-sheng, FENG Zhong-xu, WANG Bo. Effects of vibratory mixing on the performance of concrete with different mixing proportions[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(3): 636-642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201503019.htm [20] 陈松, 裴晓光, 韩凌. SBS改性沥青微观结构与路用性能相关性分析[J]. 化学工程师, 2018, 32(4): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201804025.htmCHEN Song, PEI Xiao-guang, HAN Ling. Correlation analysis between microstructure and road performance of SBS modified asphalt[J]. Chemical Engineer, 2018, 32(4): 82-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201804025.htm [21] WANG Yan-lei, YI Hong-yu, LIANG Peng-fei, et al. Investigation on preparation method of SBS-modified asphalt based on MSCR, LAS, and fluorescence microscopy[J]. Applied Sciences, 2022, 12(14): 7304. [22] 张东好, 李君艳, 张旭霞. 浅析沥青三大指标测定结果的影响因素[J]. 石油沥青, 2009, 23(6): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-OILE200906026.htmZHANG Dong-hao, LI Jun-yan, ZHANG Xu-xia. Analysis the influencing factors of asphalt determination results of the three indicators[J]. Petroleum Asphalt, 2009, 23(6): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OILE200906026.htm [23] WANG Hua-ping, GUO Yan-xin, WU Meng-yi, et al. Review on structural damage rehabilitation and performance assessment of asphalt pavements[J]. Reviews on Advanced Materials Science, 2021, 60(1): 438-449. [24] 黄卫东, 莫定成, 吕泉, 等. 基于汉堡车辙试验的TB复合改性沥青混合料高温性能评价[J]. 长安大学学报(自然科学版), 2020, 40(6): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202006002.htmHUANG Wei-dong, MO Ding-cheng, LYU Quan, et al. High temperature performance evaluation of TB composite modified asphalt mixture based on Hamburg wheel tracking test[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(6): 12-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202006002.htm [25] 王旭东, 何兆益. 沥青砼动稳定度和相对变形指标的研究[J]. 重庆交通学院学报, 2000, 19(3): 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200003010.htmWANG Xu-dong, HE Zhao-yi. The comparative research of asphalt mixture dynamic stability and relative deformation[J]. Journal of Chongqing Jiaotong Institute, 2000, 19(3): 44-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200003010.htm [26] THANH D V, CHENG Pei-feng. Study on Marshall and rutting test of SMA at abnormally high temperature[J]. Construction and Building Materials, 2013, 47: 1337-1341. [27] XU Hui-ning, GUO Wei, TAN Yi-qiu. Permeability of asphalt mixtures exposed to freeze-thaw cycles[J]. Cold Regions Science and Technology, 2016, 123: 99-106. [28] 杨瑞华, 许志鸿, 李宇峙. 沥青混合料水稳定性评价方法研究[J]. 同济大学学报(自然科学版), 2007, 35(11): 1486-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200711010.htmYANG Rui-hua, XU Zhi-hong, LI Yu-zhi. Research on evaluation method for moisture susceptibility of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2007, 35(11): 1486-1491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200711010.htm [29] RADEEF H R, HASSAN N A, MAHMUD M Z H, et al. Influence of ageing and moisture damage on the Illinois flexibility index value of polymer modified asphalt mixture[J]. Physics and Chemistry of the Earth, 2022, 128: 103248. [30] 党志荣, 念腾飞, 刘宗成, 等. 冻融循环-动水冲刷对间断级配沥青混合料特性参数影响[J]. 兰州理工大学学报, 2022, 48(4): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY202204020.htmDANG Zhi-rong, NIAN Teng-fei, LIU Zong-cheng, et al. Influence of freeze-thaw cycles-dynamic water scouring cycles on the characteristic parameters of intermittently graded asphalt mixture[J]. Journal of Lanzhou University of Technology, 2022, 48(4): 132-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY202204020.htm