留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受电弓故障的车载图像识别技术

丁建明 周敬尧 江海凡

丁建明, 周敬尧, 江海凡. 受电弓故障的车载图像识别技术[J]. 交通运输工程学报, 2023, 23(3): 173-187. doi: 10.19818/j.cnki.1671-1637.2023.03.013
引用本文: 丁建明, 周敬尧, 江海凡. 受电弓故障的车载图像识别技术[J]. 交通运输工程学报, 2023, 23(3): 173-187. doi: 10.19818/j.cnki.1671-1637.2023.03.013
DING Jian-ming, ZHOU Jing-yao, JIANG Hai-fan. In-vehicle image technology for identifying faults of pantograph[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 173-187. doi: 10.19818/j.cnki.1671-1637.2023.03.013
Citation: DING Jian-ming, ZHOU Jing-yao, JIANG Hai-fan. In-vehicle image technology for identifying faults of pantograph[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 173-187. doi: 10.19818/j.cnki.1671-1637.2023.03.013

受电弓故障的车载图像识别技术

doi: 10.19818/j.cnki.1671-1637.2023.03.013
基金项目: 

国家重点研发计划 2020YFA0710902

详细信息
    作者简介:

    丁建明(1981-),男,四川平昌人,西南交通大学副研究员,工学博士,从事设备安全检测、故障诊断与性能评估研究

  • 中图分类号: U279.3

In-vehicle image technology for identifying faults of pantograph

Funds: 

National Key Research and Development Program of China 2020YFA0710902

More Information
  • 摘要: 针对列车在途中因受电弓发生故障而影响运行安全的问题,提出了一种受电弓故障的车载图像识别技术,以实时检测受电弓降弓、变形与毁坏,碳滑板异常磨耗与缺口,弓角变形与缺失故障;基于更快速的区域卷积神经网络(Faster R-CNN)目标检测框架设计了弓头图像定位目标检测模型,利用残差网络代替原有卷积网络,利用特征金字塔多尺度预测结构构建了候选区域推荐网络,以精准、快速地进行弓头定位和状态检侧;基于掩码区域卷积神经网络(Mask R-CNN)实例分割框架设计了弓头图像分割模型,并针对性地重新设计了检测头的网络结构与特征图尺寸,以适应受电弓的细长弯曲特征,从而准确、快速分割弓头图像;为了在分割后的二值图中更快速地识别与定位故障,根据受电弓结构尺寸和图像分割模型输出的位置坐标,制定了弓角与碳滑板故障的快速模板匹配策略,并在此基础上编制了详细的故障检测算法与程序。研究结果表明:在相应的数据集上,弓头图像定位目标检测模型的平均检测精度为0.944,平均每帧检测时间为0.029 s,弓头图像分割模型的平均分割精度为0.967,平均每帧检测时间为0.031 s,模板匹配的检测精度为0.985,平均每帧检测时间为0.005 s,故障检测算法的平均检测精度为0.966,平均每帧检测时间为0.051 s。由此可见,提出的检测算法具备了较高的可靠性和实时性。

     

  • 图  1  Faster R-CNN模型结构

    Figure  1.  Structure of faster R-CNN model

    图  2  特征提取骨干网络的结构参数

    Figure  2.  Structure parameters of feature extraction backbone network

    图  3  基于ResNet与FPN的多尺度检测结构

    Figure  3.  Multi-scale detection structure based on ResNet and FPN

    图  4  RPN_Head结构

    Figure  4.  RPN_head structure

    图  5  Predict_Head结构

    Figure  5.  Predict_head structure

    图  6  弓头图像定位模型结构

    Figure  6.  Pantograph bow image localization model structure

    图  7  ResNet50-FPN模型训练过程

    Figure  7.  Training process of ResNet50-FPN model

    图  8  Faster R-CNN模型训练过程

    Figure  8.  Training process of Faster R-CNN model

    图  9  ResNet101-FPN模型训练过程

    Figure  9.  Training process of ResNet101-FPN model

    图  10  复杂环境下的检测效果

    Figure  10.  Detection performance in complex environments

    图  11  Mask R-CNN检测头结构

    Figure  11.  Detection head structure of Mask R-CNN

    图  12  弓头图像分割模型结构

    Figure  12.  Structure of pantograph bow image segmentation model

    图  13  原始Mask R-CNN的检测结果

    Figure  13.  Detection results of original Mask R-CNN

    图  14  重新设计的检测头结构

    Figure  14.  Redesigned structure of detection head

    图  15  受电弓故障图像

    Figure  15.  Fault image of pantograph

    图  16  类别识别精度与RPN识别精度变化

    Figure  16.  Changes in class identification accuracy and RPN identification accuracy

    图  17  掩码分割精度变化

    Figure  17.  Changes in mask segmentation accuracies

    图  18  模型训练中损失变化

    Figure  18.  Changes in losses during model training

    图  19  分割模型检测效果

    Figure  19.  Detection effects of segmentation model

    图  20  模板匹配检测区域

    Figure  20.  Template matching detection areas

    图  21  碳滑板与弓角模板

    Figure  21.  Templates of carbon contact strip and pantograph horn

    图  22  误检测情况分析

    Figure  22.  Analysis of misdetection cases

    图  23  受电弓故障识别与定位检测

    Figure  23.  Pantograph fault identification and location detection

    表  1  小目标测试数据集上模型的性能

    Table  1.   Performance of models on small target test datasets

    模型 IOU(0.75) IOU(0.85) IOU(0.95) IOU(0.50~0.95)
    Faster R-CNN 1.000 1.000 0.517 0.934
    YOLO-V3 1.000 0.958 0.375 0.907
    ResNet50-FPN 1.000 1.000 0.566 0.939
    ResNet101-FPN 1.000 1.000 0.592 0.942
    下载: 导出CSV

    表  2  中等目标测试数据集上模型的性能

    Table  2.   Performance of models on medium target test datasets

    模型 IOU(0.75) IOU(0.85) IOU(0.95) IOU(0.50~0.95)
    Faster R-CNN 1.000 1.000 0.583 0.936
    YOLO-V3 1.000 0.950 0.483 0.929
    ResNet50-FPN 1.000 1.000 0.633 0.953
    ResNet101-FPN 1.000 1.000 0.617 0.944
    下载: 导出CSV

    表  3  大目标测试数据集上模型的性能

    Table  3.   Performance of models on large target test datasets

    模型 IOU(0.75) IOU(0.85) IOU(0.95) IOU(0.50~0.95)
    Faster R-CNN 1.000 1.000 0.559 0.931
    YOLO-V3 1.000 1.000 0.450 0.912
    ResNet50-FPN 1.000 1.000 0.642 0.945
    ResNet101-FPN 1.000 1.000 0.675 0.948
    下载: 导出CSV

    表  4  总测试数据集上模型的性能

    Table  4.   Performance of models on total test dataset

    模型 IOU(0.85) IOU(0.95) IOU(0.50~0.95) 平均每帧检测时间/s
    Faster R-CNN 1.000 0.547 0.933 0.210
    YOLO-V3 0.973 0.427 0.913 0.018
    ResNet50-FPN 1.000 0.610 0.944 0.029
    ResNet101-FPN 1.000 0.630 0.945 0.034
    下载: 导出CSV

    表  5  分割模型的定位精度与检测速度

    Table  5.   Location accuracies and detection speeds of segmentation model

    数据集 IOU(0.75) IOU(0.85) IOU(0.95) IOU(0.50~0.95) 每帧检测时间/s
    故障图像 1.000 1.000 0.352 0.936 0.031
    正常图像 1.000 1.000 0.381 0.947 0.031
    合集 1.000 1.000 0.359 0.948 0.031
    下载: 导出CSV

    表  6  分割模型掩码分割精度

    Table  6.   Mask segmentation accuracies of segmentation model

    数据集 IOU(0.75) IOU(0.85) IOU(0.95) IOU(0.50~0.95)
    故障图像 1.000 1.000 0.644 0.964
    正常图像 1.000 1.000 0.667 0.968
    合集 1.000 1.000 0.661 0.967
    下载: 导出CSV

    表  7  标准相关系数匹配测试结果

    Table  7.   Test results of standard correlation coefficient matching

    项目 左弓角故障 右弓角故障 碳滑板故障 正常图像
    样本数 40 40 40 40
    识别数 40 39 40 38
    误判数 0 1 0 2
    下载: 导出CSV

    表  8  模板匹配测试结果

    Table  8.   Test results of template matching

    数据集 样本数 识别数 误检数 检测精度 每帧检测时间/s
    故障数据 400 395 5 0.987 5 0.005
    正常数据 400 393 7 0.982 5 0.005
    下载: 导出CSV

    表  9  受电弓故障视频数据中检测结果

    Table  9.   Detection results of pantograph fault video data

    故障类型 数据量/帧 检出数/帧 故障正检数/帧 精度 召回率
    整体故障 101 101 101 1.000 1.0
    弓角故障 150 150 150 1.000 1.0
    碳滑板故障 150 164 150 0.915 1.0
    下载: 导出CSV

    表  10  算法性能综合评估结果

    Table  10.   Comprehensive evaluation results of algorithm performance

    视频大小/帧 故障数据/帧 检出数/帧 正检数/帧 精度 检出率 平均每帧检测时间/s
    8 925 401 415 401 0.966 1.0 0.051
    下载: 导出CSV

    表  11  不同方法的检测性能对比

    Table  11.   Comparison of detection performance among different methods

    检测算法 实现功能 平均精度 检测速度/(帧·s-1)
    YOLO[21] 受电弓变形、毁坏、降弓 0.931 55
    YOLO[24] 受电弓变形、毁坏 0.936
    Faster R-CNN[24] 受电弓变形、毁坏 0.968
    本文算法 弓角故障、碳滑板故障、整体故障(4.1节) 0.966 20
    下载: 导出CSV
  • [1] 鲁小兵, 刘志刚, 宋洋, 等. 受电弓主动控制综述[J]. 交通运输工程学报, 2014, 14(2): 49-61. http://transport.chd.edu.cn/article/id/201402008

    LU Xiao-bing, LIU Zhi-gang, SONG Yang, et al. Review of pantograph active control[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 49-61. (in Chinese) http://transport.chd.edu.cn/article/id/201402008
    [2] 胡艳, 董丙杰, 黄海, 等. 碳滑板/接触线摩擦磨损性能[J]. 交通运输工程学报, 2016, 16(2): 56-63. doi: 10.19818/j.cnki.1671-1637.2016.02.007

    HU Yan, DONG Bing-jie, HUANG Hai, et al. Friction and wear behavior of carbon strip/contact wire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 56-63. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.007
    [3] 杨卢强, 韩通新, 王志良. 高速动车组受电弓安全检测的研究[J]. 铁道运输与经济, 2017, 39(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201708013.htm

    YANG Lu-qiang, HAN Tong-xin, WANG Zhi-liang. Study on safety detection of high-speed emu pantograph[J]. Railway Transport and Economy, 2017, 39(8): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201708013.htm
    [4] 杨红娟, 胡艳, 陈光雄. 受电弓滑板载流磨损机理演变过程试验研究[J]. 西南交通大学学报, 2015, 50(1): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501013.htm

    YANG Hong-juan, HU Yan, CHEN Guang-xiong. Experimental study on evolution of wear mechanism of contact strip with electric current[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 77-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501013.htm
    [5] 魏秀琨, 所达, 魏德华, 等. 机器视觉在轨道交通系统状态检测中的应用综述[J]. 控制与决策, 2021, 36(2): 257-282. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102001.htm

    WEI Xiu-kun, SUO Da, WEI De-hua, et al. A survey of the application of machine vision in rail transit system inspection[J]. Control and Decision, 2021, 36(2): 257-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102001.htm
    [6] 周宁, 杨文杰, 刘久锐, 等. 基于受电弓状态感知的弓网安全监测系统研究与探讨[J]. 中国科学: 技术科学, 2021, 51(1): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202101002.htm

    ZHOU Ning, YANG Wen-jie, LlU Jiu-rui, et al. Investigation of a pantograph-catenary monitoring system using condition-based pantograph recognition[J]. Scientia Sinica: Technologica, 2021, 51(1): 23-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202101002.htm
    [7] 韩志伟, 刘志刚, 张桂南, 等. 非接触式弓网图像检测技术研究综述[J]. 铁道学报, 2013, 35(6): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306009.htm

    HAN Zhi-wei, LIU Zhi-gang, ZHANG Gui-nan, et al. Overview of non-contact image detection technology for pantograph-catenary monitoring[J]. Journal of the China Railway Society, 2013, 35(6): 40-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306009.htm
    [8] GAO Shi-bin. Automatic detection and monitoring system of pantograph-catenary in China's high-speed railways[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3502012.
    [9] 施莹, 林建辉, 庄哲, 等. 基于振动信号时频分解-样本熵的受电弓裂纹故障诊断[J]. 振动与冲击, 2019, 38(8): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908027.htm

    SHI Ying, LIN Jian-hui, ZHUANG Zhe, et al. Fault diagnosis for pantograph cracks based on time-frequency decomposition and sample entropy of vibration signals[J]. Journal of Vibration and Shock, 2019, 38(8): 180-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908027.htm
    [10] 彭威, 贺德强, 苗剑, 等. 弓网状态监测与故障诊断方法研究[J]. 广西大学学报(自然科学版), 2011, 36(5): 718-722. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201105005.htm

    PENG Wei, HE De-qiang, MIAO Jian, et al. Research on the real-time monitoring and fault diagnosis method of pantograph-catenary[J]. Journal of Guangxi University (Natural Science Edition), 2011, 36(5): 718-722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201105005.htm
    [11] 姚兰, 肖建. 基于模糊熵和Hough变换的受电弓滑板裂纹检测方法[J]. 铁道学报, 2014, 36(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201405015.htm

    YAO Lan, XIAO Jian. Pantograph slide cracks detection method based on fuzzy entropy and Hough transform[J]. Journal of the China Railway Society, 2014, 36(5): 58-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201405015.htm
    [12] 冯倩, 陈维荣, 王云龙, 等. 受电弓滑板磨耗测量算法的研究[J]. 铁道学报, 2010, 32(1): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201001021.htm

    FENG Qian, CHEN Wei-rong, WANG Yun-long, et al. Research on the algorithm to measure the pantographic slipper abrasion[J]. Journal of the China Railway Society, 2010, 32(1): 109-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201001021.htm
    [13] 陈维荣, 冯倩, 张健, 等. 受电弓滑板状态监测的图像目标提取[J]. 西南交通大学学报, 2010, 45(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001011.htm

    CHEN Wei-rong, FENG Qian, ZHANG Jian, et al. Image object detection in monitoring of pantograph slippers[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001011.htm
    [14] 伍川辉, 任继炜, 廖家, 等. 基于多视觉传感器的受电弓滑板磨耗检测系统设计[J]. 仪表技术与传感器, 2021(11): 78-82, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202111016.htm

    WU Chuan-hui, REN Ji-wei, LIAO Jia, et al. Design of wear detection system of pantograph slide plate based on multi-vision sensor[J]. Instrument Technique and Sensor, 2021(11): 78-82, 87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202111016.htm
    [15] 吕文阁, 刘少册, 郑云龙, 等. 基于线结构激光的侧轨受电弓磨耗视觉测量系统开发[J]. 机车电传动, 2017(2): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201702038.htm

    LYU Wen-ge. LIU Shao-ce. ZHENG Yun-long, et al. Development of vision measurement system of side rail pantograph slide wear based on line structure laser[J]. Electric Drive for Locomotives, 2017(2): 114-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201702038.htm
    [16] 陈双. 基于图像处理的受电弓故障检测算法研究[D]. 南京: 南京理工大学, 2017.

    CHEN Shuang. Research on pantograph fault detection algorithm based on image processing[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
    [17] 胡雪冰. 基于图像处理的受电弓故障在线检测系统研究[D]. 南京: 南京理工大学, 2019.

    HU Xue-bing. Research on pantograph fault online detection system based on image processing[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
    [18] WEI Xiu-kun, JIANG Si-yang, LI Yan, et al. Defect detection of pantograph slide based on deep learning and image processing technology[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 947-958.
    [19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. The 3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 1-14.
    [20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60(6): 1097-1105.
    [21] 冯勇, 宋天源, 钱学明. 基于深度学习的高铁受电装置安全状态快速检测方法[J]. 西安交通大学学报, 2019, 53(10): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201910015.htm

    FENG Yong, SONG Tian-yuan, QIAN Xue-ming. A fast detection method for safety states of power receiving device on high-speed rail based on deep learning[J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201910015.htm
    [22] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
    [23] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
    [24] 寇皓为, 苏燕辰, 李恒奎, 等. 深度学习在受电弓弓头故障检测与分类中的应用[J]. 激光杂志, 2022, 43(6): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202206010.htm

    KOU Hao-wei, SU Yan-chen, LI Heng-kui, et al. Application of deep learning in the detection and classification of pantograph head fault[J]. Laser Journal, 2022, 43(6): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202206010.htm
    [25] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[C]//IEEE. 2020 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 580-597.
    [26] REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
    [27] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
    [28] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 936-944.
    [29] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
    [30] HE Kai-ming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE. 2017 IEEE International Conference on Computer Vision. New York: IEEE, 2017: 2980-2988.
  • 加载中
图(23) / 表(11)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  579
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回