留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干湿循环试验的黄土路堑浅层边坡长期稳定性分析

石玉玲 常洲 安宁 晏长根 兰恒星 杨万里

石玉玲, 常洲, 安宁, 晏长根, 兰恒星, 杨万里. 基于干湿循环试验的黄土路堑浅层边坡长期稳定性分析[J]. 交通运输工程学报, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007
引用本文: 石玉玲, 常洲, 安宁, 晏长根, 兰恒星, 杨万里. 基于干湿循环试验的黄土路堑浅层边坡长期稳定性分析[J]. 交通运输工程学报, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007
SHI Yu-ling, CHANG Zhou, AN Ning, YAN Chang-gen, LAN Heng-xing, YANG Wang-li. Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007
Citation: SHI Yu-ling, CHANG Zhou, AN Ning, YAN Chang-gen, LAN Heng-xing, YANG Wang-li. Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007

基于干湿循环试验的黄土路堑浅层边坡长期稳定性分析

doi: 10.19818/j.cnki.1671-1637.2023.04.007
基金项目: 

国家自然科学基金项目 42077265

国家自然科学基金项目 41927806

甘肃省交通运输厅科技项目 2021-19

详细信息
    作者简介:

    石玉玲(1972-),女,河北曲周人,长安大学副教授,工学博士,从事岩土工程与灾害治理研究

  • 中图分类号: U416.1

Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test

Funds: 

National Natural Science Foundation of China 42077265

National Natural Science Foundation of China 41927806

Science and Technology Project of Gansu Provincial Department of Transportation 2021-19

More Information
  • 摘要: 为评估干湿循环作用对黄土边坡浅层土体强度的劣化效应,对甘肃定西Q3原状黄土开展了不同干湿循环路径下的室内直剪试验,分析干湿循环次数、循环幅度与下限含水率对土体抗剪强度的影响,建立了考虑干湿循环三参数的强度劣化模型,并运用强度折减法对比了不同干湿循环路径下黄土路堑浅层边坡的长期稳定性。试验结果表明:随着干湿循环次数增加,原状黄土的黏聚力呈现先减小后趋于稳定的变化趋势,可采用双曲线函数进行拟合,内摩擦角呈线性下降趋势,10次干湿循环后,原状黄土黏聚力与内摩擦角的最大劣化度分别为27.64%与9.88%;在相同干湿循环次数下,循环幅度对原状黄土黏聚力和内摩擦角的劣化效应大于下限含水率;干湿循环过程中黄土路堑浅层边坡的长期稳定性系数遵循指数下降函数,不同干湿循环路径下边坡稳定性系数最大降幅为61.5%,且在6次循环后稳定性系数降幅约占总减小值的85%;干湿循环中循环幅度和下限含水率影响着黄土路堑浅层边坡稳定性,表现为随着下限含水率增大,浅层边坡稳定性系数先增大后趋于稳定,但随着循环幅度增大,稳定性系数线性减小;工程实际中边坡不同深度土体含水率变化范围不同,干湿循环路径存在差异,在进行黄土路堑边坡长期稳定性分析时建议考虑土体的干湿循环分层效应。

     

  • 图  1  原状黄土颗粒分布曲线

    Figure  1.  Particle distribution curves of undisturbed loess

    图  2  干湿循环对黏聚力的影响

    Figure  2.  Influence of wet-dry cycle on cohesion

    图  3  干湿循环对内摩擦角的影响

    Figure  3.  Influence of wet-dry cycle on internal friction angle

    图  4  路径D作用下土样的裂隙发育

    Figure  4.  Crack development of soil sample under action of path D

    图  5  干湿循环下原状黄土强度劣化规律

    Figure  5.  Strength deterioration laws of undisturbed loess under wet-dry cycle

    图  6  试验结束后各路径作用下土样的裂隙发育

    Figure  6.  Crack development of soil samples under different paths after test

    图  7  劣化度参数与循环路径参数的关系

    Figure  7.  Relationship between deterioration degree parameters and cycling path parameters

    图  8  黄土边坡模型尺寸

    Figure  8.  Model sizes of loess slope

    图  9  土-水特征曲线

    Figure  9.  Soil-water characteristic curve

    图  10  边坡稳定性系数与干湿循环路径的关系

    Figure  10.  Relationship between slope stability coefficients and wet-dry cycle paths

    图  11  边坡稳定性系数与干湿循环次数的关系

    Figure  11.  Relationship between slope stability coefficients and number of wet-dry cycles

    图  12  黄土边坡干湿循环分层效应剖面

    Figure  12.  Profile of layering effect of wet-dry cycle on loess slope

    图  13  黄土边坡位移云图

    Figure  13.  Displacement nephogram of loess slope

    图  14  边坡稳定性系数曲线

    Figure  14.  Slope stability coefficient curves

    表  1  原状黄土干湿循环试验方案

    Table  1.   Wet-dry cycle test schemes of undisturbed loess

    试验编号 试验路径 干密度/(g·cm-3) 循环路径 干湿循环次数
    1 A 1.35 5%→15%→5% 10
    2 B 10%→20%→10%
    3 C 15%→25%→15%
    4 D 5%→25%→5%
    下载: 导出CSV

    表  2  原状黄土强度劣化度参数

    Table  2.   Strength deterioration degree parameters of undisturbed loess

    试验路径 参数 M/% N R2
    A c 28.06 2.239 0.998
    φ 0.983 0.992
    B c 23.10 3.078 0.993
    φ 0.922 0.974
    C c 17.16 1.599 0.996
    φ 0.681 0.988
    D c 36.07 2.658 0.997
    φ 1.131 0.963
    下载: 导出CSV

    表  3  土体物理力学参数

    Table  3.   Physical and mechanical parameters of soil

    干密度/(g·cm-3) 饱和渗透系数/(cm·s-1) 弹性模量/MPa 初始黏聚力/kPa 初始内摩擦角/(°)
    1.35 1.08×10-4 14 19.1 26.6
    下载: 导出CSV
  • [1] 高国瑞, 韩爱民. 论中国区域性土的分布和岩土性质的形成[J]. 岩土工程学报, 2005, 27(5): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200505005.htm

    GAO Guo-rui, HAN Ai-min. Distribution of regional soils in China and formation of their special geotechnical properties[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 511-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200505005.htm
    [2] 徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007, 26(7): 1297-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707001.htm

    XU Zhang-jian, LIN Zai-guan, ZHANG Mao-sheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1297-1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707001.htm
    [3] LAN Heng-xing, PENG Jian-bing, ZHU Yan-bo, et al. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 2022, 65(2): 234-256. doi: 10.1007/s11430-021-9830-8
    [4] LIU Yang, HAN Dong-dong, LIU Ni-na, et al. Reinforcement mechanism analysis of lattice beam and prestressed anchor rod system for loess slope[J]. Frontiers in Earth Science, 2023(11): 1121172.
    [5] 周峙, 张家铭, 宁伏龙, 等. 降雨入渗下裂土边坡水分运移时空特征与失稳机理[J]. 交通运输工程学报, 2020, 20(4): 107-119. doi: 10.19818/j.cnki.1671-1637.2020.04.008

    ZHOU Zhi, ZHANG Jia-ming, NING Fu-long, et al. Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 107-119. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.008
    [6] 杨和平, 王兴正, 肖杰. 干湿循环效应对南宁外环膨胀土抗剪强度的影响[J]. 岩土工程学报, 2014, 36(5): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405027.htm

    YANG He-ping, WANG Xing-zheng, XIAO Jie. Influence of wetting-drying cycles on strength characteristics of Nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 949-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405027.htm
    [7] JING Jing, HOU Jing-ming, SUN Wen, et al. Study on influencing factors of unsaturated loess slope stability under dry-wet cycle conditions[J]. Journal of Hydrology, 2022, 612: 128187. doi: 10.1016/j.jhydrol.2022.128187
    [8] 陈正汉, 方祥位, 朱元青, 等. 膨胀土和黄土的细观结构及其演化规律研究[J]. 岩土力学, 2009, 30(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901003.htm

    CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, et al. Research on meso-structures and their evolution laws of expansive soil and loess[J]. Rock and Soil Mechanics, 2009, 30(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901003.htm
    [9] NI Wan-kui, YUAN Kang-ze, LYU Xiang-fei, et al. Comparison and quantitative analysis of microstructure parameters between original loess and remoulded loess under different wetting-drying cycles[J]. Scientific Reports, 2020, 10: 5547. doi: 10.1038/s41598-020-62571-1
    [10] LU Hai-jun, LI Ji-xiang, WANG Wei-wei, et al. Cracking and water seepage of Xiashu loess used as landfill cover under wetting-drying cycles[J]. Environmental Earth Sciences, 2015, 74(11): 7441-7450. doi: 10.1007/s12665-015-4729-4
    [11] YE Wan-jun, BAI Yang, CUI Chen-yang, et al. Deterioration of the internal structure of loess under dry-wet cycles[J]. Advances in Civil Engineering, 2020, 2020: 1-17.
    [12] 叶万军, 李长清, 杨更社, 等. 增湿-减湿作用下黄土裂隙演化规律研究[J]. 工程地质学报, 2017, 25(2): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702015.htm

    YE Wan-jun, LI Chang-qing, YANG Geng-she, et al. Evolution of loess crack under action of dehumidification-humidification[J]. Journal of Engineering Geology, 2017, 25(2): 376-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702015.htm
    [13] 刘宏泰, 张爱军, 段涛, 等. 干湿循环对重塑黄土强度和渗透性的影响[J]. 水利水运工程学报, 2010(4): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201004007.htm

    LIU Hong-tai, ZHANG Ai-jun, DUAN Tao, et al. The influence of alternate dry-wet on the strength and permeability of remolded loess[J]. Hydro-Science and Engineering, 2010(4): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201004007.htm
    [14] HAO Rui-hua, ZHANG Zi-zhao, GUO Ze-zhou, et al. Investigation of changes to triaxial shear strength parameters and microstructure of Yili loess with drying-wetting cycles[J]. Materials, 2021, 15(1): 255. doi: 10.3390/ma15010255
    [15] 袁志辉, 倪万魁, 唐春, 等. 干湿循环下黄土强度衰减与结构强度试验研究[J]. 岩土力学, 2017, 38(7): 1894-1902, 1942. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707007.htm

    YUAN Zhi-hui, NI Wan-kui, TANG Chun, et al. Experimental study of structure strength and strength attenuation of loess under wetting-drying cycle[J]. Rock and Soil Mechanics, 2017, 38(7): 1894-1902, 1942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707007.htm
    [16] 袁志辉, 倪万魁, 唐春, 等. 干湿循环效应下黄土抗拉强度试验研究[J]. 岩石力学与工程学报, 2017, 36(增1): 3670-3677. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1062.htm

    YUAN Zhi-hui, NI Wan-kui, TANG Chun, et al. Experimental studies of tensile strength of loess in drying-wetting cycle[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3670-3677. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1062.htm
    [17] YUAN Kang-ze, NI Wan-kui, LYU Xiang-fei. Collapse behavior and microstructural change of loess under different wetting-drying cycles[J]. IOP Conference Series Earth and Environmental Science, 2020, 598: 012036.
    [18] 叶万军, 赵志鹏, 杨更社, 等. 土体含水状态对黄土边坡剥落病害产生的影响[J]. 中国公路学报, 2015, 28(7): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507003.htm

    YE Wan-jun, ZHAO Zhi-peng, YANG Geng-she, et al. Influence of soil moisture state on loess slope spalling hazards[J]. China Journal of Highway and Transport, 2015, 28(7): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507003.htm
    [19] 曾召田, 吕海波, 赵艳林, 等. 膨胀土干湿循环效应及其对边坡稳定性的影响[J]. 工程地质学报, 2012, 20(6): 934-939. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206006.htm

    ZENG Zhao-tian, LYU Hai-bo, ZHAO Yan-lin, et al. Wetting-drying effect of expansive soils and its influence on slope stability[J]. Journal of Engineering Geology, 2012, 20(6): 934-939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206006.htm
    [20] LIAN Bao-qin, WANG Xin-gang, ZHAN Hong-bin, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589.
    [21] LI Guo-yu, WANG Fei, MA Wei, et al. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 151: 159-167.
    [22] 杜京房, 仝飞. 干湿循环与降雨对黄土边坡稳定性的影响研究[J]. 广西大学学报(自然科学版), 2020, 45(4): 783-791. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202004008.htm

    DU Jing-fang, TONG Fei. Study on the influence of wet-dry cycle and rainfall on loess slope stability[J]. Journal of Guangxi University (Natural Science Edition), 2020, 45(4): 783-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202004008.htm
    [23] MU Q Y, DONG H, LIAO H J, et al. Water-retention curves of loess under wetting-drying cycles[J]. Géotechnique Letters, 2020, 10(2): 135-140.
    [24] 赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445-2453. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206062.htm

    ZHAO Tian-yu, WANG Jin-fang. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University(Science and Technology), 2012, 43(6): 2445-2453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206062.htm
    [25] 刘奉银, 张昭, 周冬, 等. 密度和干湿循环对黄土土-水特征曲线的影响[J]. 岩土力学, 2011, 32(增2): 132-136, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2021.htm

    LIU Feng-yin, ZHANG Zhao, ZHOU Dong, et al. Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. Rock and Soil Mechanics, 2011, 32(S2): 132-136, 142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2021.htm
    [26] 郝延周, 王铁行, 汪朝, 等. 干湿循环作用下压实黄土三轴剪切特性试验研究[J]. 水利学报, 2021, 52(3): 359-368. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103012.htm

    HAO Yan-zhou, WANG Tie-hang, WANG Zhao, et al. Experimental study on triaxial shear characteristics of compacted loess under drying and wetting cycles[J]. Journal of Hydraulic Engineering, 2021, 52(3): 359-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103012.htm
    [27] 王铁行, 郝延周, 汪朝, 等. 干湿循环作用下压实黄土动强度性质试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1242-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm

    WANG Tie-hang, HAO Yan-zhou, WANG Zhao, et al. Experimental study on dynamic strength properties of compacted loess under wetting-drying cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1242-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm
    [28] HU Chang-ming, YUAN Yi-li, MEI Yuan, et al. Comprehensive strength deterioration model of compacted loess exposed to drying-wetting cycles[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(1): 383-398.
    [29] 党进谦, 郝月清. 含水量对黄土结构强度的影响[J]. 西北水资源与水工程, 1998(2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ802.002.htm

    DANG Jin-qian, HAO Yue-qing. Effect of water content on the structure strength of loess[J]. Water Resources and Water Engineering, 1998(2): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ802.002.htm
    [30] 唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200710007.htm

    TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38 (10): 1186-1193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200710007.htm
    [31] 孙巍锋. 土-岩二元结构路堑边坡失稳机理与智能预警研究[D]. 西安: 长安大学, 2020.

    SUN Wei-feng. Study of instability mechanism and intelligent pre-warning for cutting slope with soil-rock binary structure[D]. Xi'an: Chang'an University, 2020. (in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  309
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回