留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桥梁火灾科学与安全保障技术综述

张岗 赵晓翠 宋超杰 李徐阳 汤陈皓 万豪 陆泽磊 丁宇航

张岗, 赵晓翠, 宋超杰, 李徐阳, 汤陈皓, 万豪, 陆泽磊, 丁宇航. 桥梁火灾科学与安全保障技术综述[J]. 交通运输工程学报, 2023, 23(6): 94-113. doi: 10.19818/j.cnki.1671-1637.2023.06.004
引用本文: 张岗, 赵晓翠, 宋超杰, 李徐阳, 汤陈皓, 万豪, 陆泽磊, 丁宇航. 桥梁火灾科学与安全保障技术综述[J]. 交通运输工程学报, 2023, 23(6): 94-113. doi: 10.19818/j.cnki.1671-1637.2023.06.004
ZHANG Gang, ZHAO Xiao-cui, SONG Chao-jie, LI Xu-yang, TANG Chen-hao, WAN Hao, LU Ze-lei, DING Yu-hang. Review on bridge fire science and safety guarantee technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 94-113. doi: 10.19818/j.cnki.1671-1637.2023.06.004
Citation: ZHANG Gang, ZHAO Xiao-cui, SONG Chao-jie, LI Xu-yang, TANG Chen-hao, WAN Hao, LU Ze-lei, DING Yu-hang. Review on bridge fire science and safety guarantee technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 94-113. doi: 10.19818/j.cnki.1671-1637.2023.06.004

桥梁火灾科学与安全保障技术综述

doi: 10.19818/j.cnki.1671-1637.2023.06.004
基金项目: 

国家自然科学基金项目 52078043

陕西省自然科学基础研究计划项目 2022JC-23

陕西省创新能力支撑计划项目 2023-CX-TD-38

中央高校基本科研业务费专项资金项目 300102212907

详细信息
    作者简介:

    张岗(1980-),男,甘肃庆阳人,长安大学教授,工学博士,从事桥梁火灾安全控制研究

  • 中图分类号: U448.213

Review on bridge fire science and safety guarantee technology

Funds: 

National Natural Science Foundation of China 52078043

Natural Science Basic Research Project of Shaanxi Province 2022JC-23

Innovation Capability Support Program of Shaanxi Province 2023-CX-TD-38

Fundamental Research Funds for the Central Universities 300102212907

More Information
  • 摘要: 综述了桥梁结构火灾安全理论与保障技术等方面的研究现状,介绍了国内外桥梁火灾事故出现的频次和发生垮塌的概率,给出了危化品运载车辆等交通工具的安全运营形势和危化品车辆(油轮)致桥梁火灾的危险性,指出了桥梁火灾安全控制新技术的发展方向。分析结果表明:桥梁火灾具有多发性、多样性特点;桥梁火灾安全控制受到许多学者与部门的重视,已开展了部分桥梁结构的火灾试验与抗火防护工作,但桥梁抗火设计规范当前仍处于空白状态;混凝土爆裂行为存在完全随机性,混凝土的高温爆裂是混凝土结构桥梁抗火分析的难点;火灾下预应力混凝土桥梁受剪研究难度大,目前以受弯为主;复杂截面形式钢梁的传热与结构热响应研究较少,远达不到钢结构桥梁智能建造与长寿命安全运维的需求,相关的设计细节、智能防护措施与系统亟待研发;索支承体系桥梁由于结构形式复杂,火灾下构件热膨胀,致其之间相互牵制、相互影响,结构的整体行为中又表现出显著的局部增强效应,其精细化数值预测困难多,而当前研究仅聚焦于构件与连接件或者结构的温度场,结构的整体响应研究欠缺,火灾下索支承体系桥梁的耐火性能与破坏准则是研究的热点与难点;桥梁结构处于开放空间,干扰其火灾监测与预警的因素多,难度大,但重大桥梁火灾安全监测、智能预警、智能防护以及性能增强十分必要,应持续研究;复杂极端环境火灾下桥梁结构的智能防护方法,桥梁结构遭遇复杂突发火情时的智能监测、预警与防护技术亟待形成体系研究;桥梁耐火韧性问题是桥梁火灾科学与安全保障研究的难点,涉及灾时抗火和灾后康复,需深入研究,从而为桥梁全寿命建造与安全运维提供理论依据。

     

  • 图  1  油罐车火灾

    Figure  1.  Oil-tanker truck fire

    图  2  桥梁垮塌数据分析

    Figure  2.  Data analysis of bridge collapse

    图  3  桥梁火灾

    Figure  3.  Bridge fire hazards

    图  4  桥梁耐火韧性模型

    Figure  4.  Fire resistance toughness model of bridge

    图  5  混凝土梁桥高温爆裂和裂缝

    Figure  5.  Spalling and crack of concrete beam bridge exposed to high temperature

    图  6  燃油火灾下预应力混凝土薄腹梁破坏模式

    Figure  6.  Failure modes of prestressed concrete thin-wall beams under fuel fire

    图  7  燃油火灾下组合梁和钢梁破坏模式

    Figure  7.  Failure modes of composite and steel girders under fuel fire

    图  8  预应力混凝土桥梁高强钢束高温断裂特征与应力时程

    Figure  8.  High-temperature fracture characteristics and stress time histories of high-strength strands in prestressed concrete bridge

    图  9  考虑气流影响的火灾下拉索时变内力

    Figure  9.  Time-dependent internal forces of cable exposed to fire considering airflow

    图  10  悬索桥遭遇油罐车火灾的局部响应

    Figure  10.  Local response in suspension bridge subjected to oil-tanker truck fire

    图  11  钢桥防火保护

    Figure  11.  Fire prevention of steel bridge

    图  12  钢箱梁抗火设计

    Figure  12.  Fire resistance design of steel box girder

    表  1  桥梁结构火灾全过程破坏特征与耐火时间

    Table  1.   Failure characteristics and fire resistance times of bridge structures

    桥梁类型 结构分类 火灾致易损场景 全过程破坏特征(升温与降温阶段) 耐火时间/min 破坏准则
    混凝土梁桥 钢筋混凝土梁 桥下跨中区域火灾、支座区域火灾 钢筋混凝土梁发生较大挠度(变形),混凝土高温爆裂和层剥严重,受火面外层钢筋熔断鼓胀,破坏前混凝土梁有明显的跨中挠度、混凝土压碎与裂缝扩展特征,降温后钢筋混凝土梁挠度基本保持不变 45~200 挠度破坏准则为L/20
    预应力混凝土箱形梁 桥下跨中区域火灾、支座区域火灾、桥面负弯矩区域火灾 预应力混凝土箱形梁发生较小挠度(变形),混凝土高温爆裂和压碎严重,受火面外层钢筋熔断鼓胀,预应力管道外露,预应力钢束突然断裂,高温过程中腹板沿预应力管道会发生较大贯通裂缝,高温与冷却过程中预应力混凝土梁均可能发生突然倾覆和垮塌,降温后预应力混凝土箱形梁挠度基本保持不变,火灾下预应力混凝土梁发生高温爆裂的严重程度远超钢筋混凝土梁 50~160 挠度破坏准则为L/35;宜用挠变率破坏准则,因挠变率无法直接测量,所以此破坏准则只能用于预测
    预应力混凝土T形梁 桥下跨中区域火灾、支座区域火灾、桥面负弯矩区域火灾 预应力混凝土T形梁发生较小挠度(变形),混凝土高温爆裂和层剥严重,受火面外层钢筋熔断鼓胀以及预应力管道外露,预应力钢束突然断裂,高温过程中腹板易发生横向失稳,结构会发生突然垮塌,降温后预应力混凝土T形梁挠度基本保持不变,火灾下预应力混凝土T形梁比箱形梁更易破坏 40~100 挠度破坏准则为L/35;宜用挠变率破坏准则,因挠变率无法直接测量,所以此破坏准则只能用于预测
    预应力混凝土空心板梁 桥下跨中区域火灾、支座区域火灾 预应力混凝土空心板梁发生较小挠度(变形),混凝土高温爆裂和层剥严重,受火面外层钢筋熔断鼓胀,预应力管道外露,预应力钢束突然断裂,高温过程中底板易出现纵向贯通裂缝,降温后预应力混凝土空心板梁挠度基本保持不变 40~100 挠度破坏准则为L/35;宜用挠变率破坏准则, 此破坏准则只能用于预测
    钢结构梁桥 钢板-混凝土组合梁 桥下跨中区域火灾、支座区域火灾、桥面负弯矩区域火灾 钢板-混凝土组合梁为开口截面梁,钢板-混凝土组梁发生显著挠度(变形),连续梁负弯矩区钢腹板易发生严重屈曲,顶板混凝土大面积开裂,跨中正弯矩区钢腹板不发生屈曲,顶板混凝土严重压碎,破坏前有明显变形特征,降温后钢板-混凝土组合梁挠度会变小 20~35 挠度破坏准则为L/25;连续梁亦可采用腹板屈曲破坏准则
    钢-混凝土组合箱梁 桥下跨中区域火灾,支座区域火灾、桥面负弯矩区域火灾 钢-混凝土组合箱梁为闭口截面梁,钢-混凝土组合箱梁发生显著挠度(变形),连续梁负弯矩区钢底板和钢腹板易发生严重屈曲,顶板混凝土大面积开裂,跨中正弯矩区钢腹板不发生屈曲,顶板混凝土严重压碎,破坏前有明显变形特征,降温后钢-混凝土组合箱梁挠度会变小,火灾下钢板- 混凝土组梁(开口截面)比钢-混凝土组合箱梁(闭口截面)易于破坏 25~35 挠度破坏准则为L/25;连续梁亦可采用腹板屈曲破坏准则
    钢桁-混凝土组合梁 对于下承式钢桁-混凝土组合梁,可发生桥面火灾或桥下火灾;对于上承式钢桁-混凝土组合梁,可发生桥下火灾;对于双层钢桁-混凝土组合梁(公轨合建桥梁),可发生上层或下层火灾 钢桁-混凝土组合梁发生显著桁杆屈曲变形,桁杆节点撕裂,桥面板混凝土严重爆裂,混凝土桥面板与钢桁架剥离,桥面板混凝土发生局部压碎,产生贯通裂缝,最终破坏形式主要表现为以局部桁杆屈曲、节点撕裂和混凝土桥面板严重爆裂致整体结构失稳,降温后钢桁-混凝土组合梁结构挠度会变小,桁杆变形会减弱 15~25 桁杆挠度破坏准则为L0/5;结构破坏准则为L/35
    钢箱梁 桥下跨中区域火灾、支座区域火灾、桥面负弯矩区域火灾 钢箱梁发生显著挠度(变形),连续梁负弯矩区钢腹板和钢底板易发生严重屈曲,薄顶板混凝土大面积开裂,跨中正弯矩区钢腹板和钢底板不发生屈曲,薄顶板混凝土严重压碎,与钢箱梁剥离,破坏前有明显变形特征,降温后钢箱梁挠度会变小 20~30 挠度破坏准则为L/25;连续梁亦采用腹板屈曲破坏准则
    钢桁架梁 对于下承式钢桁梁,可发生桥面火灾或桥下火灾;对于上承式钢桁梁,可发生桥下火灾;对于双层钢桁架梁(公轨合建桥梁),可发生上层或下层火灾 钢桁架梁发生显著平联屈曲,桁杆节点撕裂,腹板和上下弦杆发生扭转失稳,具有显著的桁杆-结构动态破坏过程,最终破坏形式主要表现为以局部桁杆屈曲、节点撕裂致整体结构失稳,降温后钢桁梁结构挠度会变小,桁杆变形会降低,火灾下钢桁架梁比钢桁-混凝土组合梁更易破坏 10~20 桁杆挠度破坏准则为L0/5;结构破坏准则为L/35
    组合体系桥 悬索桥 桥面跨中缆索附近火灾、桥塔处火灾 悬索桥加劲梁发生显著挠度(变形),吊索锚固段滑移或吊索断裂,跨中区域吊索与主缆连接处的吊耳会发生严重变形,主缆高温会损伤,最终破坏形式主要表现为因吊索失效发生的局部梁体大幅度下挠或扭转;混凝土桥塔会发生严重损伤,钢桥塔会发生严重屈曲,最终破坏形式主要表现为桥塔失稳 20~55 形态破坏准则为断索、加劲梁突然下挠、主要承重构件严重屈曲或结构突然倾覆
    斜拉桥 桥面拉索附近火灾、桥塔处火灾 斜拉桥加劲梁发生显著变形,斜拉索锚固段滑移或斜拉索断裂,最终破坏形式主要表现为因斜拉索失效发生的局部梁体大幅度下挠或扭转;混凝土桥塔会发生严重损伤,钢桥塔会发生严重屈曲,最终破坏形式主要表现为桥塔失稳 20~60
    拱桥 桥面吊杆附近火灾、拱脚处火灾 拱桥加劲梁发生显著挠度变形,吊索锚固段滑移或吊索断裂,拱肋压溃,最终破坏形式主要表现为因吊索失效发生的梁体大幅度下挠或扭转,或者拱肋高温压溃导致的结构垮塌 25~70
    下载: 导出CSV
  • [1] ZHANG Gang, ZHAO Xiao-cui, LU Ze-lei, et al. Review and discussion on fire behavior of bridge girders[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 422-446. doi: 10.1016/j.jtte.2022.05.002
    [2] 张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-11. doi: 10.3969/j.issn.1001-7372.2021.01.001

    ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-11. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.001
    [3] KODUR V K, GIL A. Fire hazard in concrete bridges: review, assessment and mitigation strategies[J]. Structure and Infrastructure Engineering, 2022, DOI: 10.1080/15732479.2022.2152465.
    [4] 郑文忠, 侯晓萌, 王英. 混凝土及预应力混凝土结构抗火研究现状与展望[J]. 哈尔滨工业大学学报, 2016, 48(12): 1-18.

    ZHENG Wen-zhong, HOU Xiao-meng, WANG Ying. Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 1-18. (in Chinese)
    [5] 吴波, 唐贵和. 近年来混凝土结构抗火研究进展[J]. 建筑结构学报, 2010, 31(6): 110-121.

    WU Bo, TANG Gui-he. State-of-the-art of fire-resistance study on concrete structures in recent years[J]. Journal of Building Structures, 2010, 31(6): 110-121. (in Chinese)
    [6] 张岗, 贺拴海, 侯炜, 等. 预应力混凝土桥梁抗火研究综述[J]. 长安大学学报(自然科学版), 2018, 38(6): 1-10.

    ZHANG Gang, HE Shuan-hai, HOU Wei, et al. Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 1-10. (in Chinese)
    [7] SONG Chao-jie, ZHANG Gang, LI Xu-yang, et al. Experimental and numerical study on failure mechanism of steel-concrete composite bridge girders under fuel fire exposure[J]. Engineering Structures, 2021, 247: 113230. doi: 10.1016/j.engstruct.2021.113230
    [8] SONG Chao-jie, ZHANG Gang, KODUR V K, et al. Fire response of horizontally curved continuous composite bridge girders[J]. Journal of Constructional Steel Research, 2021, 182: 106671. doi: 10.1016/j.jcsr.2021.106671
    [9] ZHANG Gang, KODUR V K, SONG Cao-jie, et al. A numerical model for evaluating fire performance of composite box bridge girders[J]. Journal of Constructional Steel Research, 2020, 165: 105823. doi: 10.1016/j.jcsr.2019.105823
    [10] 张岗, 宋超杰, 李徐阳, 等. 燃油火灾下预应力混凝土梁耐火试验研究[J]. 中国公路学报, 2022, 35(1): 210-221. doi: 10.3969/j.issn.1001-7372.2022.01.019

    ZHANG Gang, SONG Chao-jie, LI Xu-yang, et al. Experimental study on fire resistance of prestressed concrete girders under fuel fire exposure[J]. China Journal of Highway and Transport, 2022, 35(1): 210-221. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.019
    [11] 李徐阳, 张岗, 宋超杰, 等. 复杂环境下连续弯钢箱梁耐火性能提升方法[J]. 中国公路学报, 2022, 35(6): 192-204.

    LI Xu-yang, ZHANG Gang, SONG Chao-jie, et al. Methods for improving fire resistance of continuous curved steel box bridge girders exposed to complex environments[J]. China Journal of Highway and Transport, 2022, 35(6): 192-204. (in Chinese)
    [12] 宋超杰, 张岗, 贺拴海, 等. 钢-混凝土组合连续弯箱梁抗火性能设计方法[J]. 交通运输工程学报, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010

    SONG Chao-jie, ZHANG Gang, HE Shuan-hai, et al. Fire resistance performance and design method of steel-concrete composite continuous curved box girders[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 139-149. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.010
    [13] 张岗, 宋超杰, 李徐阳, 等. 碳氢火灾下钢-混组合梁破坏试验研究[J]. 中国公路学报, 2022, 35(6): 135-146.

    ZHANG Gang, SONG Chao-jie, LI Xu-yang, et al. Experimental study on failure of steel-concrete composite bridge girders under hydrocarbon fire exposure conditions[J]. China Journal of Highway and Transport, 2022, 35(6): 135-146. (in Chinese)
    [14] 李国强, 许炎彬, ASIF U. 油罐车火灾下钢-混凝土组合梁桥结构响应研究[J]. 防灾减灾工程学报, 2016, 36(3): 444-452.

    LI Guo-qiang, XU Yan-bin, ASIF U. Study on structures responses of steel-concrete composite highway bridge under fuel tanker fire[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(3): 444-452. (in Chinese)
    [15] KODUR V K, NASER M Z. Designing steel bridges for fire safety[J]. Journal of Constructional Steel Research, 2019, 156: 46-53. doi: 10.1016/j.jcsr.2019.01.020
    [16] GARLOCK M, PAYA-ZAFORTEZA I, KODUR V K, et al. Fire hazard in bridges: review, assessment and repair strategies[J]. Engineering Structures, 2012, 35(1): 89-98.
    [17] GONG Xu. Behavior of bridges during fire[D]. New York: The City College of New York, 2015.
    [18] KODUR V K, AZIZ E, DWAIKAT M. Evaluating fire resistance of steel girders in bridges[J]. Journal of Bridge Engineering, 2013, 18(7): 633-643. doi: 10.1061/(ASCE)BE.1943-5592.0000412
    [19] NASER M Z, KODUR V K. A probabilistic assessment for classification of bridges against fire hazard[J]. Fire Safety Journal, 2015, 76: 65-73. doi: 10.1016/j.firesaf.2015.06.001
    [20] KODUR V K, NASER M Z. Importance factor for design of bridges against fire hazard[J]. Engineering Structures, 2013, 54: 207-220. doi: 10.1016/j.engstruct.2013.03.048
    [21] KODUR V K, NASER M Z. Fire hazard in transportation infrastructure: review, assessment, and mitigation strategies[J]. Frontiers of Structural and Civil Engineering: 2021, 15(1): 46-60. doi: 10.1007/s11709-020-0676-6
    [22] WARDHANA K, HADIPRIONO F C. Analysis of recent bridge failures in the United States[J]. Journal of Performance of Constructed Facilities, 2003, 17(3): 144-150. doi: 10.1061/(ASCE)0887-3828(2003)17:3(144)
    [23] KODUR V K, BANERJI S, SOLHMIRZAEI R. Effect of temperature on thermal properties of ultrahigh-performance concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(8): 04020210. doi: 10.1061/(ASCE)MT.1943-5533.0003286
    [24] 张岗, 朱美春, 贺拴海, 等. 火灾下预应力混凝土T形截面梁破坏模式研究[J]. 中国公路学报, 2017, 30(2): 77-85.

    ZHANG Gang, ZHU Mei-chun, HE Shuan-hai, et al. Failure model analysis of prestressed concrete T girder exposed to fire[J]. China Journal of Highway and Transport, 2017, 30(2): 77-85. (in Chinese)
    [25] 张岗, 侯章伟, 宋超杰, 等. 油罐车火灾下考虑混凝土高温爆裂的PC箱梁承载能力[J]. 长安大学学报(自然科学版), 2018, 38(6): 79-88.

    ZHANG Gang, HOU Zhang-wei, SONG Chao-jie, et al. Bearing capacity of PC box girder based on concrete spalling under fuel tanker fire exposure[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 79-88. (in Chinese)
    [26] 许肇峰, 陈映贞, 饶瑞. 火灾下混凝土空心板温度场及损伤规律研究[J]. 中国公路学报, 2019, 32(1): 87-98.

    XU Zhao-feng, CHEN Ying-zhen, RAO Rui. Temperature fields and damage pattern of hollow-core concrete slab exposed to fire[J]. China Journal of Highway and Transport, 2019, 32(1): 87-98. (in Chinese)
    [27] ZHANG Gang, KODUR V K, SONG Cao-jie, et al. A numerical method for evaluating fire performance of prestressed concrete T bridge girders[J]. Computers and Concrete, 2020, 25(6): 497-507.
    [28] SONG Chao-jie, ZHANG Gang, HOU Wei, et al. Performance of prestressed concrete box bridge girders under hydrocarbon fire exposure conditions[J]. Advances in Structural Engineering, 2020, 23(8): 1521-1533. doi: 10.1177/1369433219898102
    [29] 张岗, 贺拴海. 焰流效应下混凝土空心薄壁墩热力耦合形差与层剥分析[J]. 中国公路学报, 2014, 27(11): 46-54. doi: 10.3969/j.issn.1001-7372.2014.11.007

    ZHANG Gang, HE Shuan-hai. Thermo-dynamic coupled deformation difference and layering stripping analysis for concrete hollow thin-walled pier affected by flame fluid[J]. China Journal of Highway and Transport, 2014, 27(11): 46-54. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.11.007
    [30] KODUR V K, BANERJI S. Modeling the fire-induced spalling in concrete structures incorporating hydro-thermo-mechanical stresses[J]. Cement and Concrete Composites, 2021, 117: 103902. doi: 10.1016/j.cemconcomp.2020.103902
    [31] MA Qian-min, GUO Rong-xin, ZHAO Zhi-man, et al. Mechanical properties of concrete at high temperature—a review[J]. Construction and Building Materials, 2015, 93: 371-383. doi: 10.1016/j.conbuildmat.2015.05.131
    [32] MINDEGUIA J C, PIMIENTA P, NOUMOWE A, et al. Temperature, pore pressure and mass variation of concrete subjected to high temperature—experimental and numerical discussion on spalling risk[J]. Cement and Concrete Research, 2010, 40(3): 477-487. doi: 10.1016/j.cemconres.2009.10.011
    [33] LIU Jin-cheng, TAN Kang-hai, YAO Yao. A new perspective on nature of fire-induced spalling in concrete[J]. Construction and Building Materials, 2018, 184: 581-590. doi: 10.1016/j.conbuildmat.2018.06.204
    [34] ALOS-MOYA J, PAYA-ZAFORTEZA I, GARLOCK M, et al. Analysis of a bridge failure due to fire using computational fluid dynamics and finite element models[J]. Engineering Structures, 2014, 68: 96-110. doi: 10.1016/j.engstruct.2014.02.022
    [35] PEČENKO R, HOZJAN T, PLANINC I, et al. A computational model for prestressed concrete hollow-core slab under natural fire[J]. International Journal of Concrete Structures and Materials, 2019, 13(1): 60. doi: 10.1186/s40069-019-0373-9
    [36] SHAKYA A M, KODUR V K. Response of precast prestressed concrete hollowcore slabs under fire conditions[J]. Engineering Structures, 2015, 87: 126-138. doi: 10.1016/j.engstruct.2015.01.018
    [37] MALUK C, TERRASI G P, BISBY L, et al. Fire resistance tests on thin CFRP prestressed concrete slabs[J]. Construction and building materials, 2015, 101: 558-571. doi: 10.1016/j.conbuildmat.2015.10.031
    [38] 闫凯, 蔡浩, 张耀, 等. 预应力活性粉末混凝土梁抗火性能试验研究[J]. 建筑结构学报, 2020, 41(9): 105-115.

    YAN Kai, CAI Hao, ZHANG Yao, et al. Experimental study on fire resistance of prestressed reactive powder concrete beams[J]. Journal of Building Structures, 2020, 41(9): 105-115. (in Chinese)
    [39] YAN Kai, YANG Jia-cheng, DOH J H, et al. Factors governing the fire response of prestressed reactive powder concrete beams[J]. Structural Concrete, 2021, 22(2): 607-622. doi: 10.1002/suco.201900359
    [40] 金浏, 张仁波, 杜修力, 等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报, 2021, 54(3): 1-18.

    JIN Liu, ZHANG Ren-bo, DU Xiu-li, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures[J]. China Civil Engineering Journal, 2021, 54(3): 1-18. (in Chinese)
    [41] 吴耀鹏, 姜磊, 张旭, 等. 大掺量粉煤灰再生混凝土高温后的抗冲击性能与抗渗性研究[J]. 建筑结构学报, 2022, 43(4): 124-133.

    WU Yao-peng, JIANG Lei, ZHANG Xu, et al. Study on impact resistance and impermeability of high-volume fly ash recycled aggregate concrete after exposure to high temperature[J]. Journal of Building Structures, 2022, 43(4): 124-133. (in Chinese)
    [42] 白卫峰, 韩浩田, 管俊峰, 等. 考虑高温劣化效应的混凝土统计损伤本构模型研究[J]. 应用基础与工程科学学报, 2020, 28(6): 1397-1409.

    BAl Wei-feng, HAN Hao-tian, GUAN Jun-feng, et al. Statistical damage model of concrete considering the effect of high temperature degradation[J]. Journal of Basic Science and Engineering, 2020, 28(6): 1397-1409. (in Chinese)
    [43] 吴波, 傅翼飞. 内置高强角钢的方钢管再生块体混凝土柱轴压及耐火性能试验研究[J]. 建筑结构学报, 2020, 41(5): 85-95.

    WU Bo, FU Yi-fei. Test on compressive behavior and fire performance of square steel tubular columns filled with recycled lump concrete and high-strength steel angles[J]. Journal of Building Structures, 2020, 41(5): 85-95. (in Chinese)
    [44] 刘才玮, 闫良泰, 巴光忠, 等. 锈蚀钢筋与混凝土高温后黏结性能试验研究[J]. 建筑结构学报, 2023, 44(3): 257-267.

    LIU Cai-wei, YAN Liang-tai, BA Guang-zhong, et al. Experimental investigation on bond performance of corroded reinforced concrete after exposure to high temperature[J]. Journal of Building Structures, 2023, 44(3): 257-267. (in Chinese)
    [45] 文波, 高洁, 张路, 等. 足尺震损钢筋混凝土柱耐火性能试验研究[J]. 建筑结构学报, 2020, 41(11): 1-15.

    WEN Bo, GAO Jie, ZHANG Lu, et al. Experimental study on fire resistance of full-scale earthquake damaged reinforced concrete columns[J]. Journal of Building Structures, 2020, 41(11): 1-15. (in Chinese)
    [46] 孟二从, 余亚琳, 袁军, 等. 温度对全再生混凝土三轴受压性能及破坏准则影响[J]. 应用基础与工程科学学报, 2019, 27(6): 1370-1380.

    MENG Er-cong, YU Ya-lin, YUAN Jun, et al. Influence of temperature on the triaxial compressive behavior and failure criterion of recycled aggregate concrete[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1370-1380. (in Chinese)
    [47] WU Xi-qiang, HUANG Ting, AU F T K, et al. Posttensioned concrete bridge beams exposed to hydrocarbon fire[J]. Journal of Structural Engineering, 2020, 146(10): 04020210.
    [48] GALES J, BISBY L A, GILLIE M. Unbonded post tensioned concrete in fire: a review of data from furnace tests and real fires[J]. Fire Safety Journal, 2011, 46: 151-163.
    [49] BENEBERU E, YAZDANI N. Performance of CFRP-strengthened concrete bridge girders under combined live load and hydrocarbon fire[J]. Journal of Bridge Engineering, 2018, 23(7): 04018042.
    [50] NGUYEN H T N, TAN Kang-hai. Shear response of deep precast/prestressed concrete hollow core slabs subjected to fire[J]. Engineering Structures, 2021, 227: 111398.
    [51] KODUR V K, SHAKYA A M. Factors governing the shear response of prestressed concrete hollowcore slabs under fire conditions[J]. Fire Safety Journal, 2017, 88: 67-88.
    [52] AGRAWAL A, KODUR V K. A novel experimental approach for evaluating residual capacity of fire damaged concrete members[J]. Fire Technology, 2020, 56: 715-735.
    [53] GHAFFARY A, MOUSTAFA M A. Synthesis of repair materials and methods for reinforced concrete and prestressed bridge girders[J]. Materials, 2020, 13(18): 4079.
    [54] GUERRIERI M, FRAGOMENI S. Mechanisms of spalling of concrete panels of different geometry in hydrocarbon fire[J]. Journal of Materials in Civil Engineering, 2016, 28(12): 04016164.
    [55] 陈明阳, 侯晓萌, 郑文忠, 等. 混凝土高温爆裂临界温度和防爆裂纤维掺量研究综述与分析[J]. 建筑结构学报, 2017, 38(1): 161-170.

    CHEN Ming-yang, HOU Xiao-meng, ZHENG Wen-zhong, et al. Review and analysis on spalling critical temperature of concrete and fibers dosage to prevent spalling at elevated temperatures[J]. Journal of Building Structures, 2017, 38(1): 161-170. (in Chinese)
    [56] KODUR V K, BHATT PP, NASER M Z. High temperature properties of fiber reinforced polymers and fire insulation for fire resistance modeling of strengthened concrete structures[J]. Composites Part B: Engineering, 2019, 175: 107104.
    [57] ZHANG Gang, KODUR V K, HOU Wei, et al. Evaluating fire resistance of prestressed concrete bridge girders[J]. Structural Engineering and Mechanics, 2017, 62(6): 663-674.
    [58] LI Guo-qiang, LYU Hui-bao, ZHANG Chao. Post-fire mechanical properties of high strength Q690 structural steel[J]. Journal of Constructional Steel Research, 2017, 132: 108-116.
    [59] WANG Wei-yong, LIU Tian-zi, LIU Jie-peng. Experimental study on post-fire mechanical properties of high strength Q460 steel[J]. Journal of Constructional Steel Research, 2015, 114: 100-109.
    [60] 王文达, 陈润亭. 方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析[J]. 工程力学, 2021, 38(3): 73-85.

    WANG Wen-da, CHEN Run-ting. Analysis on the fire resistance of square concrete-filled steel tubular column to composite beam with outer ring plate connections after earthquake damage[J]. Engineering Mechanics, 2021, 38(3): 73-85. (in Chinese)
    [61] 周焕廷, 伍先兴, 陈志华, 等. 波纹腹板开孔对预应力钢-混凝土组合梁抗火性能影响研究[J]. 中国公路学报, 2022, 35(6): 122-134.

    ZHOU Huan-ting, WU Xian-xing, CHEN Zhi-hua, et al. Effects of web openings on fire resistance of prestressed steel-concrete composite beams with corrugated webs[J]. China Journal of Highway and Transport, 2022, 35(6): 122-134. (in Chinese)
    [62] ZHANG Gang, ZHU Mei-chun, KODUR V K, et al. Behavior of welded connections after exposure to elevated temperature[J]. Journal of Constructional Steel Research, 2017, 130: 88-95.
    [63] ALOS-MOYA J, PAYA-ZAFORTEZA I, HOSPITALER A, et al. Valencia bridge fire tests: experimental study of a composite bridge under fire[J]. Journal of Constructional Steel Research, 2017, 138: 538-554.
    [64] PERIS-SAYOL G, PAYA-ZAFORTEZA I, ALOS-MOYA J, et al. Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios[J]. Computers and Structures, 2015, 158: 333-345.
    [65] 李俊华, 张磊, 顾炬锋, 等. 受火后型钢混凝土框架抗震性能试验研究[J]. 建筑结构学报, 2020, 41(8): 124-133.

    LI Jun-hua, ZHANG Lei, GU Ju-feng, et al. Experimental study on seismic performance of SRC frame after exposure to fire[J]. Journal of Building Structures, 2020, 41(8): 124-133. (in Chinese)
    [66] 王广勇, 孙旋, 张东明, 等. 型钢混凝土框架结构耐火性能有限元分析[J]. 建筑结构学报, 2022, 43(2): 65-75.

    WANG Guang-yong, SUN Xuan, ZHANG Dong-ming, et al. Finite element analysis of fire resistance of steel reinforced concrete frame structures[J]. Journal of Building Structures, 2022, 43(2): 65-75. (in Chinese)
    [67] 高飞, 周红, 梁鸿骏. 主管内填混凝土钢管T形节点受火后剩余承载力研究[J]. 建筑结构学报, 2017, 38(增1): 417-422.

    GAO Fei, ZHOU Hong, LIANG Hong-jun. Post-fire residual strength of steel tubular T-joint with concrete-filled chord[J]. Journal of Building Structures, 2017, 38(S1): 417-422. (in Chinese)
    [68] 徐克勤, 毛小勇. 钢箱梁桥抗火性能研究[J]. 苏州科技大学学报(工程技术版), 2018, 31(3): 13-18.

    XU Ke-qin, MAO Xiao-yong. Study on the behavior of steel box girder bridge under fire condition[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2018, 31(3): 13-18. (in Chinese)
    [69] 叶继红, 陈文文. 真实火灾下足尺冷成型钢复合剪力墙结构耐火性能试验研究[J]. 建筑结构学报, 2021, 42(6): 59-71.

    YE Ji-hong, CHEN Wen-wen. Experimental study on fire resistance of full-scale cold-formed steel composite shear wall structure under real fire conditions[J]. Journal of Building Structures, 2021, 42(6): 59-71. (in Chinese)
    [70] 许继祥, 王建军, 韩建平. 震后火灾下内置单环加强T形圆管节点受火性能分析[J]. 建筑结构学报, 2021, 42(8): 213-222.

    XU Ji-xiang, WANG Jian-jun, HAN Jian-ping. Fire resistance of tubular T-joints with internal single ring stiffener under post-earthquake fire[J]. Journal of Building Structures, 2021, 42(8): 213-222. (in Chinese)
    [71] 李佳奇, 王蕊, 赵晖, 等. 外包不锈钢中空夹层钢管混凝土柱耐火性能研究[J]. 工程力学, 2020, 37(10): 125-133.

    LI Jia-qi, WANG Rui, ZHAO Hui, et al. Study on the fire performance of concrete-filled double-skin tubular columns with external stainless steel tubes[J]. Engineering Mechanics, 2020, 37(10): 125-133. (in Chinese)
    [72] 刘艳芝, 邓集钱, 谭清华. 内嵌十字型钢的方形劲性不锈钢管混凝土柱耐火性能[J]. 建筑科学与工程学报, 2019, 36(3): 66-73.

    LIU Yan-zhi, DENG Ji-qian, TAN Qing-hua. Fire resistance of square steel reinforced concrete-filled stainless steel tube columns embedded with cross-section steel[J]. Journal of Architecture and Civil Engineering, 2019, 36(3): 66-73. (in Chinese)
    [73] 杨成, 罗浪, 宋谦益. 火灾条件下冷弯薄壁型钢楼板体系的耐火性能[J]. 土木与环境工程学报(中英文), 2021, 43(5): 81-93.

    YANG Cheng, LUO Lang, SONG Qian-yi. Fire resistance of cold-formed light gauge steel frame floor systems under fire conditions[J]. Journal of Civil and Environmental Engineering, 2021, 43(5): 81-93. (in Chinese)
    [74] 张玉琢, 吕学涛, 王庆贺, 等. 高温下弹性约束方钢管混凝土轴压短柱局部屈曲分析[J]. 建筑结构学报, 2020, 41(增2): 304-313.

    ZHANG Yu-zhuo, LYU Xue-tao, WANG Qing-he, et al. Analysis of local thermal buckling on square concrete-filled steel tubular stub column with elastic restraint boundary under axial compression[J]. Journal of Building Structures, 2020, 41(S2): 304-313. (in Chinese)
    [75] 楼国彪, 费楚妮, 王彦博, 等. 高强度耐火钢高温下力学性能试验研究[J]. 建筑结构学报, 2022, 43(9): 128-137.

    LOU Guo-biao, FEI Chu-ni, WANG Yan-bo, et al. Experimental study on mechanical properties of high-strength fire-resistant steel at elevated temperatures[J]. Journal of Building Structures, 2022, 43(9): 128-137. (in Chinese)
    [76] 强旭红, 毋凯冬, 姜旭, 等. 高强钢S460高温力学性能研究与抗火设计建议[J]. 湖南大学学报(自然科学版), 2018, 45(11): 37-45.

    QIANG Xu-hong, WU Kai-dong, JIANG Xu, et al. Study on mechanical properties of high strength steel S460 at elevated temperatures and fire-resistance design recommendations[J]. Journal of Hunan University (Natural Sciences), 2018, 45(11): 37-45. (in Chinese)
    [77] 范圣刚, 周航, 韩云龙, 等. 常温和高温下不锈钢圆柱头栓钉抗剪性能研究[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(6): 562-570.

    FAN Sheng-gang, ZHOU Hang, HAN Yun-long, et al. Shear performance of stainless cylindral head steel stud at room and high temperatures[J]. Journal of Tianjin University (Science and Technology), 2022, 50(6): 562-570. (in Chinese)
    [78] 张建春, 张大山, 董毓利, 等. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192, 210.

    ZHANG Jian-chun, ZHANG Da-shan, DONG Yu-li, et al. Experimental study on internal force variation of steel-concrete composite beam under fire[J]. Engineering Mechanics, 2019, 36(6): 183-192, 210. (in Chinese)
    [79] 张岗, 汤陈皓, 宋超杰, 等. 钢桁-混凝土组合结构桥梁耐火性能研究[J]. 建筑结构学报, 2023, 44(9): 214-226.

    ZHANG Gang, TANG Chen-hao, SONG Chao-jie, et al. Fire resistance of steel truss-concrete composite bridge girder[J]. Journal of Building Structures, 2023, 44(9): 214-226. (in Chinese)
    [80] 张岗, 李徐阳, 汤陈皓, 等. 连续钢箱梁抗火性能试验与演变机理研究[J]. 中国公路学报, 2023, 36(6): 58-70.

    ZHANG Gang, LI Xu-yang, TANG Chen-hao, et al. Experimental and evolution mechanism for fire resistance of continuous steel box girders[J]. China Journal of Highway and Transport, 2023, 36(6): 58-70. (in Chinese)
    [81] KOTSOVINOS P, JUDGE R, WALKER G, et al. Fire performance of structural cables: current understanding, knowledge gaps, and proposed research agenda[J]. Journal of Structural Engineering, 2020, 146(8): 03120002.
    [82] GALES J, ROBERTSON L, BISBY L. Creep of prestressing steels in fire[J]. Fire and Materials, 2016, 40: 875-895.
    [83] WEI Ya, ZHANG Li, AU F T K, et al. Thermal creep and relaxation of prestressing steel[J]. Construction and Building Materials, 2016, 128: 118-127.
    [84] SHAKYA A M, KODUR V K. Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand[J]. Construction and Building Materials, 2016, 124: 74-84.
    [85] 宗钟凌, 张晋, 蒋德稳, 等. 高温下1860级钢绞线钢丝力学性能试验研究[J]. 建筑科学, 2016, 32(1): 43-47.

    ZONG Zhong-ling, ZHANG Jin, JIANG De-wen, et al. Experimental research on the mechanical properties of steel strand (fptk=1 860 N/mm2) wire at elevated temperature[J]. Building Science, 2016, 32(1): 43-47. (in Chinese)
    [86] 樊泽源. 高温下与高温后拉索力学性能试验研究与数值模拟[D]. 天津: 天津大学, 2018.

    FAN Ze-yuan. Experimental study and numerical simulation of mechanical properties of cables under/after high temperature[D]. Tianjin: Tianjin University, 2018. (in Chinese)
    [87] 霍静思, 周子健, 金宝, 等. 钢索燃烧特性和钢绞线高温力学性能试验研究[J]. 公路交通科技, 2017, 34(8): 91-97.

    HUO Jing-si, ZHOU Zi-jian, JIN Bao, et al. Experimental study on combustion performance of steel cable and high temperature mechanical property of steel strand[J]. Journal of Highway and Transportation Research and Development, 2017, 34(8): 91-97. (in Chinese)
    [88] CHEN Wei, SHEN Rui-li. Study of temperature field inhomogeneities in parallel wire strand sections under ISO834 fire[J]. KSCE Journal of Civil Engineering, 2021, 25(10): 3940-3952.
    [89] DU Yong, SUN Ya-kai, JIANG Jian, et al. Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire[J]. Fire Safety Journal, 2019, 104: 79-89.
    [90] 杜咏, 陆亚珍. 钢索在火灾升温历程中瞬态张力的解析计算方法[J]. 工程力学, 2013, 30(3): 159-165.

    DU Yong, LU Ya-zhen. Mathematical calculation of instantaneous tension for steel cables in fire temperature history[J]. Engineering Mechanics, 2013, 30(3): 159-165. (in Chinese)
    [91] DU Yong, PENG Jing-zhan, LIEW J Y R, et al. Mechanical properties of high tensile steel cables at elevated temperatures[J]. Construction and Building Materials, 2018, 182: 52-65.
    [92] 杜咏, 严芙蓉. 火灾下平行钢丝束温度膨胀及高温蠕变试验研究[J]. 工程力学, 2021, 38(8): 66-74.

    DU Yong, YAN Fu-rong. Experimental investigation on the creep response and thermal expansion of parallel steel wires at elevated temperatures[J]. Engineering Mechanics, 2021, 38(8): 66-74. (in Chinese)
    [93] 孙树华, 杜咏, 李国强. 基于空腔辐射效应的钢索截面温度场分析[J]. 工程力学, 2018, 35(3): 56-64.

    SUN Shu-hua, DU Yong, LI Guo-qiang. Effects of cavity radiation on the temperature distribution in steel cable sections[J]. Engineering Mechanics, 2018, 35(3): 56-64. (in Chinese)
    [94] 周焕廷, 张苏鹏, 郑志远, 等. 拉索防火涂层对预应力组合梁抗火性能的影响[J]. 建筑钢结构进展, 2021, 23(5): 29-36.

    ZHOU Huan-ting, ZHANG Su-peng, ZHENG Zhi-yuan, et al. The influence of fireproof coating on cable to the fire resistance of prestressed composite beams[J]. Progress in Steel Building Structures, 2021, 23(5): 29-36. (in Chinese)
    [95] 朱美春, 孟凡钦, 张海良, 等. 预应力拉索锚头抗火性能试验[J]. 中国公路学报, 2020, 33(1): 111-119.

    ZHU Mei-chun, MENG Fan-qin, ZHANG Hai-liang, et al. Fire tests on prestressed cable sockets[J]. China Journal of Highway and Transport, 2020, 33(1): 111-119. (in Chinese)
    [96] 崔启, 朱美春, 张海良, 等. 钢绞线锚固系统抗火性能试验研究[J]. 建筑钢结构进展, 2019, 21(6): 107-113.

    CUI Qi, ZHU Mei-chun, ZHANG Hai-liang, et al. Experimental study on fire resistance performance of anchorage system for steel strand[J]. Progress in Construction Steel Building Structures, 2019, 21(6): 107-113. (in Chinese)
    [97] 刘红波, 兰健, 陈志华, 等. 高钒索端头热铸锚粘结性能研究及强度预测[J]. 建筑结构学报, 2023, 44(7): 246-254.

    LIU Hong-bo, LAN Jian, CHEN Zhi-hua, et al. Study on bonding property and strength prediction of hot casting anchor of high vanadium cables[J]. Journal of Building Structures, 2023, 44(7): 246-254. (in Chinese)
    [98] 王广勇, 孟亚丹, 刘人杰, 等. 拉索耐火性能试验研究及有限元分析[J]. 建筑结构学报, 2022, DOI: 10.14006/j.jzjgxb.2021.0563.

    WANG Guang-yong, MENG Ya-dan, LIU Ren-jie, et al. An experimental research on the fire resistance of steel cable structures and its finite element analysis[J]. Journal of Building Structure, 2022, DOI: 10.14006/j.jzjgxb.2021.0563.(inChinese)
    [99] SONG Chao-jie, ZHANG Gang, LU Ze-lei, et al. Fire resistance tests on polypropylene-fiber-reinforced prestressed concrete box bridge girders[J]. Engineering Structures, 2023, 282: 115800.
    [100] 宋超杰. 半开放环境下预应力混凝土薄腹梁抗火性能与设计方法[D]. 西安: 长安大学, 2022.

    SONG Chao-jie. Fire performance and design method of prestressed concrete thin-web girders under semi-open environment[D]. Xi'an: Chang'an University, 2022. (in Chinese)
    [101] 万豪, 张岗. 开放火灾下拉索截面温度效应计算方法[J]. 工程力学, 2023, 40(12): 113-123.

    WAN Hao, ZHANG Gang. Method for calculating the temperature effect of stay cable cross-section near open-air fire[J]. Engineering Mechanics, 2023, 40(12): 113-123. (in Chinese)
    [102] 李雪红, 杨星墀, 徐秀丽, 等. 大跨桥梁油罐车燃烧火灾模型计算方法研究[J]. 中国公路学报, 2022, 35(6): 147-157.

    LI Xue-hong, YANG Xing-chi, XU Xiu-li, et al. Research on calculation method for tank truck fire model on large span bridge[J]. China Journal of Highway and Transport, 2022, 35(6): 147-157. (in Chinese)
    [103] BALAJI A, AATHIRA M S, MADHAVAN T M, et al. Reliability studies on RC beams exposed to fire based on IS456: 2000 design methods[J]. Structures Engineering and Mechanics, 2016, 50(6): 853-866.
    [104] KODUR V K, AZIZ E M, NASER M Z. Strategies for enhancing fire performance of steel bridges[J]. Engineering Structures, 2017, 131: 446-458.
    [105] 李徐阳, 张岗, 袁卓亚, 等. 燃油火灾下钢-混组合连续箱梁破坏行为[J]. 长安大学学报(自然科学版), 2023, 43(5): 40-50.

    LI Xu-yang, ZHANG Gang, YUAN Zhuo-ya, et al. Failure behavior of continuous steel-concrete composite box bridge girders under fuel fire[J]. Journal of Chang'an University (Natural Science Edition), 2023, 43(5): 40-50. (in Chinese)
    [106] 汤陈皓, 张岗, 李徐阳, 等. 碳氢火灾下钢桁-混凝土组合梁耐火试验研究[J]. 建筑结构学报, 2022, DOI: 10.14006/j.jzjgxb.2022.0902.

    TANG Chen-hao, ZHANG Gang, LI Xu-yang, et al. Experiment study on fire resistance of steel truss-concrete composite bridge girder under HC fire conditions[J]. Journal of Building Structures, 2022, DOI: 10.14006/j.jzjgxb.2022.0902.(inChinese)
    [107] ZHANG Gang, LI Xu-yang, TANG Chen-hao. Behavior of steel box bridge girders subjected to hydrocarbon fire and bending-torsion coupled loading[J]. Engineering Structures, 2023, 296: 116906.
    [108] 李徐阳. 火灾下曲线钢箱梁耐火性能及提升方法研究[D]. 西安: 长安大学, 2023.

    LI Xu-yang. Research on fire performance and its improvement methods of curved steel box girders exposed to fire[D]. Xi'an: Chang'an University, 2023. (in Chinese)
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  140
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回