留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环条件下盐渍化风积沙力学特性

包卫星 李伟 毛雪松 陈锐 秦川 刘亚伦

包卫星, 李伟, 毛雪松, 陈锐, 秦川, 刘亚伦. 冻融循环条件下盐渍化风积沙力学特性[J]. 交通运输工程学报, 2023, 23(6): 114-124. doi: 10.19818/j.cnki.1671-1637.2023.06.005
引用本文: 包卫星, 李伟, 毛雪松, 陈锐, 秦川, 刘亚伦. 冻融循环条件下盐渍化风积沙力学特性[J]. 交通运输工程学报, 2023, 23(6): 114-124. doi: 10.19818/j.cnki.1671-1637.2023.06.005
BAO Wei-xing, LI Wei, MAO Xue-song, CHEN Rui, QIN Chuan, LIU Ya-lun. Mechanical properties of salinized aeolian sand under freeze-thaw cycles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 114-124. doi: 10.19818/j.cnki.1671-1637.2023.06.005
Citation: BAO Wei-xing, LI Wei, MAO Xue-song, CHEN Rui, QIN Chuan, LIU Ya-lun. Mechanical properties of salinized aeolian sand under freeze-thaw cycles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 114-124. doi: 10.19818/j.cnki.1671-1637.2023.06.005

冻融循环条件下盐渍化风积沙力学特性

doi: 10.19818/j.cnki.1671-1637.2023.06.005
基金项目: 

国家自然科学基金项目 51878064

新疆维吾尔自治区重大科技专项项目 2020A03003-7

陕西省自然科学基础研究计划项目 2021JM-180

中央高校基本科研业务费专项资金项目 300102211302

详细信息
    作者简介:

    包卫星(1979-), 男,新疆乌鲁木齐人,长安大学教授,工学博士,从事特殊土路基工程性质、灾变机理与处治研究

  • 中图分类号: U416.1

Mechanical properties of salinized aeolian sand under freeze-thaw cycles

Funds: 

National Natural Science Foundation of China 51878064

Major Science and Technology Projects in Xinjiang Uygur Autonomous Region 2020A03003-7

Shaanxi Provincial Natural Science Basic Research Project 2021JM-180

Fundamental Research Funds for the Central Universities 300102211302

More Information
  • 摘要: 为研究季冻区沙漠边缘盐渍化风积沙力学特性,在冻融循环条件下对不同含盐量风积沙开展了三轴不固结不排水剪切试验,为研究冻融循环后不同含盐量风积沙应力-应变关系曲线与抗剪强度的劣化规律,提出了一种考虑围压与冻融循环次数条件下修正的邓肯-张模型,并引入抗剪强度劣化度描述风积沙强度衰减速度,提出了冻融循环次数与含盐量对风积沙抗剪强度的耦合作用计算公式。研究结果表明:不同冻融循环次数、含盐量与围压下风积沙应力-应变曲线均表现为应变软化型,冻融循环状态下的盐渍化风积沙受到温度与盐分的耦合作用,随着冻融循环次数与含盐量的增加,风积沙应变软化速率显著降低;修正的邓肯-张模型可以较好地描述风积沙应变软化特征,不同冻融循环次数下风积沙初始回弹模量随围压增大而增大,随冻融循环次数增加先减小后缓慢增加;在冻融条件下,无盐风积沙抗剪强度劣化速率较慢,而对于含盐风积沙,土中的盐分与水分相变加快了风积沙抗剪强度的劣化速率,使得风积沙抗剪强度迅速降低;对于不同围压下的风积沙,其强度变化规律相似,即在经历初次冻融循环后抗剪强度显著下降,并随着冻融循环次数的增加,强度劣化速率逐渐趋于稳定,风积沙抗剪强度劣化度随冻融循环次数增加呈双曲线递增,随含盐量的增大呈线性递增趋势。

     

  • 图  1  颗粒粒径级配曲线与扫描电镜

    Figure  1.  Particle size grading curve and scanning electron microscopy

    图  2  不同冻融循环次数风积沙应力-应变曲线

    Figure  2.  Stress-strain curves of aeolian sand with different numbers of freeze-thaw cycles

    图  3  风积沙三轴剪切试验破坏试样

    Figure  3.  Failure samples of aeolian sand after triaxial shear test

    图  4  不同冻融循环次数下风积沙SEM

    Figure  4.  SEMs of aeolian sand under different numbers of freeze-thaw cycles

    图  5  3%含盐风积沙应力-应变转换曲线

    Figure  5.  Stress-strain transition curves for 3% salinized aeolian sand

    图  6  风积沙抗剪强度与冻融循环次数的关系

    Figure  6.  Relationship between shear strength and number of freeze-thaw cycles for aeolian sand

    图  7  抗剪强度劣化路径

    Figure  7.  Shear strength deterioration paths

    图  8  冻融循环次数与劣化度的关系

    Figure  8.  Relationship between number of freeze-thaw cycles and deterioration degree

    图  9  含盐量与劣化度的关系

    Figure  9.  Relationship between salt content and deterioration degree

    图  10  抗剪强度拟合曲面

    Figure  10.  Shear strength fitted surface

    表  1  风积沙基本物理性质

    Table  1.   Basic physical properties of aeolian sand

    不均匀系数 曲率系数 最大干密度/ (g·cm-3) 最优含水率/ % 土粒比重
    2.50 0.90 1.72 11.80 2.60
    下载: 导出CSV

    表  2  三轴剪切试验方案

    Table  2.   Program of triaxial shear test

    冻结温度/℃ 围压/kPa 含盐量/% 冻融循环次数
    -20 50、100、150 0 0、1、3、6、9
    -20 50、100、150 3 0、1、3、6、9
    -20 50、100、150 5 0、1、3、6、9
    下载: 导出CSV

    表  3  3%含盐风积沙应力-应变拟合参数

    Table  3.   Stress-strain fitting parameters for 3% salinized aeolian sand

    冻融循环次数 围压/kPa a/10-2 b c/10-2 E0/kPa R2
    0 50 6.27 -19.35 -6.03 417.04 0.995
    0 100 3.17 -24.58 -2.98 520.00 0.999
    0 150 3.55 -20.17 -3.41 729.44 0.953
    1 50 4.60 -23.80 -4.30 340.17 0.999
    1 100 9.16 -25.08 -8.95 471.89 0.997
    1 150 2.47 -19.38 -2.26 476.56 0.999
    3 50 7.99 -24.91 -7.59 249.54 0.999
    3 100 8.56 -40.83 -8.36 507.18 0.999
    3 150 2.46 -19.91 -2.27 509.65 0.998
    6 50 9.93 -28.88 -9.57 279.50 0.999
    6 100 4.66 -24.30 -4.49 575.97 0.999
    6 150 2.46 -18.14 -2.28 576.32 0.997
    9 50 1.43 -33.22 -1.40 337.09 0.999
    9 100 7.02 -31.01 -6.85 574.77 0.999
    9 150 2.33 -17.77 -2.16 575.33 0.997
    下载: 导出CSV
  • [1] 邴慧, 何平. 不同冻结方式下盐渍土水盐重分布规律的试验研究[J]. 岩土力学, 2011, 32(8): 2307-2312. doi: 10.3969/j.issn.1000-7598.2011.08.010

    BING Hui, HE Ping. Experimental study of water and salt redistributions of saline soil with different freezing modes[J]. Rock and Soil Mechanics, 2011, 32(8): 2307-2312. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.08.010
    [2] 肖泽岸, 赖远明, 尤哲敏. 冻融循环作用下含盐量对Na2SO4土体变形特性影响的试验研究[J]. 岩土工程学报, 2017, 39(5): 953-960.

    XIAO Ze-an, LAI Yuan-ming, YOU Zhe-min. Experimental study on impact of salt content on deformation characteristics of sodium sulfate soil under freeze-thaw conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 953-960. (in Chinese)
    [3] 杨晓华, 刘伟, 张莎莎, 等. 温度变化对粗粒硫酸盐渍土路基变形影响分析[J]. 中国公路学报, 2020, 33(3): 64-72.

    YANG Xiao-hua, LIU Wei, ZHANG Sha-sha, et al. Influence of temperature change on deformation of coarse-grained sulfate saline soil subgrade[J]. China Journal of Highway and Transport, 2020, 33(3): 64-72. (in Chinese)
    [4] 胡建荣, 张宏, 张海龙, 等. 沙漠区风积沙路基水盐迁移规律[J]. 交通运输工程学报, 2017, 17(3): 36-45. https://transport.chd.edu.cn/article/id/201703004

    HU Jian-rong, ZHANG Hong, ZHANG Hai-long, et al. Water-salt migration laws of aeolian sand subgrade in desert area[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 36-45. (in Chinese) https://transport.chd.edu.cn/article/id/201703004
    [5] 张宏, 闫晓辉, 王中翰, 等. 压实风积沙土层盐分迁移规律研究[J]. 岩土工程学报, 2019, 41(4): 741-747.

    ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, et al. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741-747. (in Chinese)
    [6] 张经双, 段雪雷, 马冬冬. 氯盐和冻融耦合下水泥土的强度和破坏特征[J]. 冰川冻土, 2020, 42(2): 515-522.

    ZHANG Jing-shuang, DUAN Xue-lei, MA Dong-dong. Strength and failure characteristics of soil-cement under coupling of chloride salt and freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 515-522. (in Chinese)
    [7] 杜海民, 马巍, 张淑娟, 等. 三轴循环加卸载条件下高含冰冻结砂土变形特性试验研究[J]. 岩土力学, 2017, 38(6): 1675-1681.

    DU Hai-min, MA Wei, ZHANG Shu-juan, et al. Experimental investigation on deformation characteristics of ice-rich frozen silty sands under triaxial loading-unloading cycle[J]. Rock and Soil Mechanics, 2017, 38(6): 1675-1681. (in Chinese)
    [8] CUI Kai, WU Guo-peng, DU Yu-min, et al. The coupling effects of freeze-thaw cycles and salinization due to snowfall on the rammed earth used in historical freeze-thaw cycles relics in northwest China[J]. Cold Regions Science and Technology, 2019, 160: 288-299. doi: 10.1016/j.coldregions.2019.01.016
    [9] HAN Yan, WANG Qing, WANG Ning, et al. Effect of freeze-thaw cycles on shear strength of saline soil[J]. Cold Regions Science and Technology, 2018, 154: 42-53. doi: 10.1016/j.coldregions.2018.06.002
    [10] XU Jian, LI Yan-feng, WANG Song-he, et al. Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1523-1541. doi: 10.1007/s10064-019-01646-4
    [11] WANG Xu-sheng, LIAO Meng-ke, DU Li-qun. Experimental study on the influence of temperature on salt expansion of sodium sulfate saline soil[J]. Journal of Highway and Transportation Research and Development, 2017, 11(3): 1-7.
    [12] 郑英杰, 金青, 崔新壮, 等. 冻融循环作用下黄泛区饱和含盐粉土动力性能及细观损伤演化规律[J]. 中国公路学报, 2020, 33(9): 32-44.

    ZHENG Ying-jie, JIN Qing, CUI Xin-zhuang, et al. Dynamic behavior and meso-damage evolution of saturated saline silt from Yellow River flooded area under freeze-thaw cycle[J]. China Journal of Highway and Transport, 2020, 33(9): 32-44. (in Chinese)
    [13] 谌文武, 贾博博, 蔡韬, 等. 融雪与降雨入渗下含盐土遗址的冻融劣化研究[J]. 岩土工程学报, 2022, 44(2): 334-342.

    CHEN Wen-wu, JIA Bo-bo, CAI Tao, et al. Freeze-thaw deterioration of saline earthen sites under snowmelt or rainfall infiltration[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 334-342. (in Chinese)
    [14] 叶万军, 李长清, 杨更社, 等. 冻融环境下黄土体结构损伤的尺度效应[J]. 岩土力学, 2018, 39(7): 2336-2343, 2360.

    YE Wan-jun, LI Chang-qing, YANG Geng-she, et al. Scale effects of damage to loess structure under freezing and thawing conditions[J]. Rock and Soil Mechanics, 2018, 39(7): 2336-2343, 2360. (in Chinese)
    [15] 许健, 张明辉, 李彦锋, 等. Na2SO4盐渍原状黄土冻融过程劣化特性试验研究[J]. 岩土工程学报, 2020, 42(9): 1642-1650.

    XU Jian, ZHANG Ming-hui, LI Yan-feng, et al. Experimental study on deterioration behavior of saline undisturbed loess with sodium sulphate under freeze-thaw action[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1642-1650. (in Chinese)
    [16] 董晓宏, 张爱军, 连江波, 等. 反复冻融下黄土抗剪强度劣化的试验研究[J]. 冰川冻土, 2010, 32(4): 767-772.

    DONG Xiao-hong, ZHANG Ai-jun, LIAN Jiang-bo, et al. Study of shear strength deterioration of loess under repeated freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 767-772. (in Chinese)
    [17] 郑方, 邵生俊, 王松鹤. 复杂应力条件下冻融作用对黄土强度的影响[J]. 岩土工程学报, 2021, 43(增1): 224-228.

    ZHENG Fang, SHAO Sheng-jun, WANG Song-he. Influences of freeze-thaw on strength of loess under complex stress path[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 224-228. (in Chinese)
    [18] 闫超萍, 龙志林, 周益春, 等. 钙质砂剪切特性的围压效应和粒径效应研究[J]. 岩土力学, 2020, 41(2): 581-591, 634.

    YAN Chao-ping, LONG Zhi-lin, ZHOU Yi-chun, et al. Investigation on the effects of confining pressure and particle size of shear characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2020, 41(2): 581-591, 634. (in Chinese)
    [19] HENRY H. Soil freeze thaw cycle experiments: trends, methodological weaknesses and suggested improvements[J]. Soil Biology and Biochemistry, 2007, 39(5): 977-986.
    [20] RUIZ A V G, REY A R, CELORIO C, et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(7): 633-637.
    [21] LEROUEIL S, TARDIF J, ROY M, et al. Effects of frost on the mechanical behaviour of Champlain Sea Clays[J]. Canadian Geotechnical Journal, 1991, 28(5): 690-697.
    [22] 包卫星, 郭小龙, 杨万精. 干旱荒漠区天然砂砾路基填料压实特性分析[J]. 中国公路学报, 2017, 30(2): 18-24.

    BAO Wei-xing, GUO Xiao-long, YANG Wan-jing. Analysis on compaction characteristics of natural gravel for subgrade filling in arid desert region[J]. China Journal of Highway and Transport, 2017, 30(2): 18-24. (in Chinese)
    [23] 牛亚强, 赖远明, 王旭, 等. 冻结粉质黏土三轴抗压强度和变形特性试验研究[J]. 冰川冻土, 2016, 38(2): 424-430.

    NIU Ya-qiang, LAI Yuan-ming, WANG Xu, et al. Experimental study on triaxial compressive strength and deformation behaviors of frozen silty clay[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 424-430. (in Chinese)
    [24] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653.
    [25] LING X Z, ZHANG F, LI Q L, et al. Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze-thaw cycle under multi-stage cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 111-121.
    [26] 赖远明, 程红彬, 高志华, 等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 26(8): 1612-1617.

    LAI Yuan-ming, CHENG Hong-bin, GAO Zhi-hua, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612-1617. (in Chinese)
    [27] 卜建清, 王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报, 2015, 37(4): 608-614.

    BU Jian-qing, WANG Tian-liang. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. (in Chinese)
    [28] 常丹, 刘建坤, 李旭. 冻融循环下粉砂土应力-应变归一化特性研究[J]. 岩土力学, 2015, 36(12): 3500-3505, 3515.

    CHANG Dan, LIU Jian-kun, LI Xu. Normalized stress-strain behavior of silty sand under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2015, 36(12): 3500-3505, 3515. (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  57
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回