-
摘要:
为研究钢管混凝土KK(CFST-KK)型节点疲劳性能,开展了CFST-KK型节点模型疲劳试验,分析了CFST-KK型节点热点应力分布规律和疲劳性能演化过程;建立了CFST-KK型节点实体有限元模型,结合试验和有限元结果,分析了CFST-KK型节点与钢管混凝土K(CFST-K)型节点疲劳性能的差异性;研究了不同参数对KK型节点疲劳性能影响,探讨了适用于CFST-KK型节点疲劳寿命的评价方法。研究结果表明:采用二次外推方式计算的CFST-KK型节点,最大热点应力位于受拉支管相贯焊缝的主管侧冠点偏外鞍点15°处;计算CFST-KK型节点应力集中系数时,支管名义应力可仅考虑轴力和面内弯矩的影响而不考虑面外弯矩的影响,其应力集中系数为6.36,比CFST-K型节点大80.2%;CFST-KK型节点的疲劳裂纹萌生于最大热点应力处,在反复加载过程中裂纹沿焊趾根部向两侧与主管壁厚方向延伸,裂纹向外鞍点扩展的速度要略快于向内鞍点扩展的速度,停止反复加载后裂纹并未贯穿主管管壁;受支管面外弯矩与支管间空间效应的影响,CFST-KK型节点的抗疲劳性能与CFST-K型节点有明显差异;主管内填混凝土能提升CFST-KK型节点径向刚度,缓解应力集中情况;支管面外夹角增大会增大支管间空间效应的影响;考虑钢管内混凝土影响的CFST-K型节点的热力应力与疲劳寿命曲线在评价CFST-KK型节点疲劳寿命时具有良好的精度。
Abstract:In order to study the fatigue performance of concrete-filled steel tubular-KK (CFST-KK) joint, a fatigue test on CFST-KK joint models was conducted, and the stress distribution pattern and fatigue performance evolution of CFST-KK joints were analyzed. A solid finite element (FE) model of CFST-KK joint was established. In combination with the results of the test and FE models, the difference in the fatigue performance between the CFST-KK joint and the concrete-filled steel tubular-K (CFST-K) joint was revealed, the influences of different parameters on the fatigue performance of KK joint were analyzed, and an appropriate fatigue life evaluation method for the CFST-KK joint was discussed. Research results show that the maximum hot spot stress of CFST-KK joint calculated by the quadratic extrapolation method is located 15° away from the crown point on the chord side of tension brace to the chord intersecting weld towards the outer saddle point. In calculating the stress concentration factor (SCF) of CFST-KK joint, the nominal stress of the brace only takes into account the influence of axial force and in-plane bending moment regardless of the impact of out-of-plane bending moment, and the SCF of CFST-KK joint is 6.36, 80.2% higher than that of CFST-K joint. The fatigue crack in the CFST-K joint originates at the location with the highest stress concentration, extends towards the two sides and wall thickness of the chord along the weld toe root during repeated loading, and expands slightly faster towards the outer saddle point than the inner saddle point. However, it does not penetrate the chord wall after stopping the repeated loading. The fatigue resistance of CFST-KK joint differs significantly from that of CFST-K joint, primarily due to the presence of out-of-plane bending moment in the brace and the spatial interaction between the braces. Filling the tube with concrete can enhance the radial stiffness of CFST-KK joint and reduce the stress concentration. Augmenting the angle beyond the branch face can enhance the spatial interaction between the braces. Taking into account the impact of filled concrete, the hot spot stress and fatigue life curve of CFST-K joint has high precision in assessing the fatigue life of CFST-KK joint.
-
表 1 钢材材性试验结果
Table 1. Test results of steel material properties
钢材类型 弹性模量/GPa 屈服强度/MPa 极限强度/MPa 泊松比 主管 205 368 512 0.3 支管 206 361 501 0.3 表 2 混凝土材性试验结果
Table 2. Test results of concrete material properties
混凝土标号 立方体抗压强度/MPa 棱柱体抗压强度/MPa 弹性模量/ GPa C40 42.8 38.1 34.5 -
[1] 钟新谷, 杨胜, 石卫华. K型钢管混凝土节点疲劳性能试验研究[J]. 中国工程科学, 2011, 13(9): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201109014.htmZHONG Xin-gu, YANG Sheng, SHI Wei-hua. Experiment study on fatigue property of concrete filled steel pipe K-joints[J]. China Engineering Science, 2011, 13(9): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201109014.htm [2] XU Fei, CHEN Ju, JIN Wei-liang. Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading[J]. Thin-Walled Structures, 2015, 93: 149-157. doi: 10.1016/j.tws.2015.03.019 [3] 吴庆雄, 郑樵风, 陈康明, 等. 阵列式布设内栓钉的钢管混凝土K型节点足尺模型疲劳性能研究[J]. 土木工程学报, 2022, 55(2): 31-49, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202202004.htmWU Qing-xiong, ZHENG Qiao-feng, CHEN Kang-ming, et al. Study on fatigue performance of full-scale model of concrete- filled steel tubular K-joints with array-aligned internal studs[J]. China Civil Engineering Journal, 2022, 55(2): 31-49, 72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202202004.htm [4] LEE C, CHIEW S, LIE S, et al. Fatigue study of partially overlapped circular hollow section K-joints[J]. Engineering Fracture Mechanics, 2009, 76(16): 2445-2463. doi: 10.1016/j.engfracmech.2009.08.006 [5] 邵永波, LIE S T. K节点应力集中系数的试验和数值研究方法[J]. 工程力学, 2006, 23(增1): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2006S1015.htmSHAO Yong-bo, LIE S T. Experimental and numerical studies of the stress concentration factor (SCF) of tubular K-joints[J]. Engineering Mechanics, 2006, 23(S1): 79-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2006S1015.htm [6] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管K形节点足尺模型疲劳性能试验研究[J]. 建筑结构学报, 2020, 41(5): 157-167.WU Qing-xiong, HUANG Han-hui, CHEN Kang-ming, et al. Experimental study on fatigue performance of full-scalecircular hollow section K-joint[J]. Journal of Building Structures, 2020, 41(5): 157-167. (in Chinese) [7] 吴庆雄, 黄汉辉, 陈康明, 等. 钢管混凝土K形节点足尺模型疲劳性能试验[J]. 建筑结构学报, 2020, 41(10): 102-111.WU Qing-xiong, HUANG Han-hui, CHEN Kang-ming, et al. Fatigue performance experiment of full-scale model of concrete-filled steel tubular K-joint[J]. Journal of Building Structures, 2020, 41(10): 102-111. (in Chinese) [8] 陈康明, 黄汉辉, 吴庆雄, 等. 钢管混凝土K形节点应力集中系数计算方法[J]. 土木工程学报, 2022, 55(12): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202212009.htmCHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, et al. Calculation method of stress concentration factor for CFST K-joint[J]. China Civil Engineering Journal, 2022, 55(12): 94-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202212009.htm [9] LOTFOLLAHI-YAGHIN M A, AHMADI H. Effect of geometrical parameters on SCF distribution along the weld toe of tubular KT-joints under balanced axial loads[J]. International Journal of Fatigue, 2010, 32(4): 703-719. doi: 10.1016/j.ijfatigue.2009.10.008 [10] 张宝峰, 曲淑英, 邵永波, 等. 海洋平台K型管节点的疲劳裂纹扩展分析Ⅰ: 试验测试[J]. 计算力学学报, 2007, 24(5): 643-647.ZHANG Bao-feng, QU Shu-ying, SHAO Yong-bo, et al. Fatigue crack propagation analysis of tubular K-joints Ⅰ: experimental test[J]. Chinese Journal of Computational Mechanics, 2007, 24(5): 643-647. (in Chinese) [11] 曲淑英, 邵永波, 张宝峰, 等. 海洋平台K型管节点的疲劳裂纹扩展分析Ⅱ: 数值分析[J]. 计算力学学报, 2007, 24(6): 800-805.QU Shu-ying, SHAO Yong-bo, ZHANG Bao-feng, et al. Fatigue crack propagation analysis of tubular K-joints Ⅱ: numerical[J]. Chinese Journal of Computational Mechanics, 2007, 24(6): 800-805. (in Chinese) [12] HUANG Han-hui, CHEN Kang-ming, WU Qing-xiong, et al. Calculation method for flexural bearing capacity of composite girders with CFST truss chords[J]. Journal of Bridge Engineering, 2023, 28(5): 04023019. doi: 10.1061/JBENF2.BEENG-5943 [13] 宋沙沙, 陈驹, 徐菲, 等. K形、KK形钢管混凝土相贯节点力学性能研究[J]. 建筑结构学报, 2021, 42(增2): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S2016.htmSONG Sha-sha, CHEN Ju, XU Fei, et al. Mechanical behavior of concrete-filled K- and KK-type CHS connections[J]. Journal of Building Structures, 2021, 42(S2): 133-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S2016.htm [14] 崔国勇, 陈烁朴. KK型间隙方管节点静力性能的研究[J]. 钢结构(中英文), 2019, 34(11): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201911014.htmCUI Guo-yong, CHEN Shuo-pu. Research on the static behavior of gapped square KK-joint[J]. Steel Construction (Chinese and English), 2019, 34(11): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201911014.htm [15] 赵宪忠, 吴晓风, 陈以一, 等. 施工工艺对空间KK型圆钢管搭接节点静力性能的影响研究[J]. 建筑结构学报, 2016, 37(8): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201608015.htmZHAO Xian-zhong, WU Xiao-feng, CHEN Yi-yi, et al. Study on effect of construction process on static behavior of multiplanar overlapped CHS KK-joints[J]. Journal of Building Structures, 2016, 37(8): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201608015.htm [16] 孙建东, 童乐为, 王斌, 等. 空间KK形圆管搭接节点承载力计算公式改进研究[J]. 建筑结构学报, 2013, 34(2): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302013.htmSUN Jian-dong, TONG Le-wei, WANG Bin, et al. Improved formula for loading capacity of multiplanar overlapped CHS KK-joints[J]. Journal of Building Structures, 2013, 34(2): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302013.htm [17] 童乐为, 孙建东, 王斌, 等. 空间KK形圆管搭接节点静力性能试验研究与有限元分析[J]. 建筑结构学报, 2013, 34(2): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302012.htmTONG Le-wei, SUN Jian-dong, WANG Bin, et al. Experimental study and numerical analysis on static behaviour of multiplanar overlapped CHS KK-joints[J]. Journal of Building Structures, 2013, 34 (2): 91-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201302012.htm [18] 于国友, 付艳霞, 王殿萍. KK型管节点应力集中系数问题研究[J]. 中国海洋平台, 2007(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHY200701004.htmYU Guo-you, FU Yan-xia, WANG Dian-ping. Research on stress concentration factor for complex KK-joints[J]. China Offshore Platform, 2007(1): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHY200701004.htm [19] 甘进, 乐京霞, 吴卫国, 等. 海洋平台KK型管节点的疲劳性能试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(5): 980-983. doi: 10.3963/j.issn.1006-2823.2011.05.026GAN Jin, YUE Jing-xia, WU Wei-guo, et al. Experimental study on fatigue properties of tubular KK-joints of offshore platform[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2011, 35(5): 980-983. (in Chinese) doi: 10.3963/j.issn.1006-2823.2011.05.026 [20] 郭成佺. 自升式海洋平台空间KK型管节点疲劳特性研究[D]. 武汉: 武汉理工大学, 2012.GUO Cheng-quan. Study on fatigue characteristics of KK tubular joints in jack-up offshore platform space[D]. Wuhan: Wuhan University of Technology, 2012. (in Chinese) [21] 林海花, 孙承猛, 石强. KK型管节点应力集中系数几何敏感性分析[J]. 海洋工程, 2020, 38(6): 142-150. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202006016.htmLIN Hai-hua, SUN Cheng-meng, SHI Qiang. Geometric sensitivity analysis of stress concentration factor of KK-type tube tubular joints[J]. The Ocean Engineering, 2020, 38(6): 142-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202006016.htm [22] 张毅, 黄小平, 崔维成, 等. 对接接头焊趾应力集中有限元分析[J]. 船舶力学, 2004(5): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200405011.htmZHANG Yi, HUANG Xiao-ping, CUI Wei-cheng, et al. Finite element analysis on stress concentration at weld toe of butt-welded joints[J]. Journal of Ship Mechanics, 2004(5): 91-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200405011.htm [23] Japan Steel Structure Association. Fatigue Design Guidelines for Steel Structures and Commentary[M]. Tokyo: Maruzen Publishing Division, 2012. [24] 黄汉辉. 钢管混凝土K型节点疲劳性能研究[D]. 福州: 福州大学, 2020.HUANG Han-hui. Research on the fatigue performance of concrete-filled steel tubular K-joint[D]. Fuzhou: Fuzhou University, 2020. (in Chinese) [25] 姜磊. 矩形钢管混凝土桁梁桥节点疲劳性能和计算方法研究[D]. 西安: 长安大学, 2019.JIANG Lei. Research on fatigue behaviour and calculation method of joints in concrete-filled rectangular hollow section truss bridge[D]. Xi'an: Chang'an University, 2019. (in Chinese) [26] 朱俊. 圆钢管混凝土T型焊接节点疲劳性能研究[D]. 上海: 同济大学, 2007.ZHU Jun. Fatigue behaviour of welded T-joints of concrete filled circular hollow sections[D]. Shanghai: Tongji University, 2007. (in Chinese) [27] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533. doi: 10.1115/1.3656900