留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢轨擦伤形成机理、检测与防治综述

侯博文 乔林川 高亮 秦家栋 刘秀波 马超智

侯博文, 乔林川, 高亮, 秦家栋, 刘秀波, 马超智. 钢轨擦伤形成机理、检测与防治综述[J]. 交通运输工程学报, 2024, 24(2): 65-84. doi: 10.19818/j.cnki.1671-1637.2024.02.004
引用本文: 侯博文, 乔林川, 高亮, 秦家栋, 刘秀波, 马超智. 钢轨擦伤形成机理、检测与防治综述[J]. 交通运输工程学报, 2024, 24(2): 65-84. doi: 10.19818/j.cnki.1671-1637.2024.02.004
HOU Bo-wen, QIAO Lin-chuan, GAO Liang, QIN Jia-dong, LIU Xiu-bo, MA Chao-zhi. Review on formation mechanism, detection and prevention of rail squat[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 65-84. doi: 10.19818/j.cnki.1671-1637.2024.02.004
Citation: HOU Bo-wen, QIAO Lin-chuan, GAO Liang, QIN Jia-dong, LIU Xiu-bo, MA Chao-zhi. Review on formation mechanism, detection and prevention of rail squat[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 65-84. doi: 10.19818/j.cnki.1671-1637.2024.02.004

钢轨擦伤形成机理、检测与防治综述

doi: 10.19818/j.cnki.1671-1637.2024.02.004
基金项目: 

国家自然科学基金项目 52378428

国家铁路局课题 KF2023-027

中国国家铁路集团有限公司科技研究开发计划 N2023G078

详细信息
    作者简介:

    侯博文(1985-),男,辽宁沈阳人,北京交通大学副教授,工学博士,从事轨道工程与工务管理研究

    通讯作者:

    高亮(1968-),男,山东滕州人,北京交通大学教授,工学博士

  • 中图分类号: U216.4

Review on formation mechanism, detection and prevention of rail squat

Funds: 

National Natural Science Foundation of China 52378428

Project of National Railway Administration KF2023-027

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. N2023G078

More Information
  • 摘要: 针对铁路运营过程中存在的钢轨擦伤问题,从擦伤的深度、裂纹扩展角度、尺寸等方面总结了擦伤的具体形态特征,论述了钢轨擦伤的扩展过程;系统分析了钢轨擦伤的形成机理,从塑性变形和热致相变2个成因角度分析了轮轨接触压力、接触区应力应变、接触区温度变化在擦伤形成过程中的作用机制;从机车车辆性能、线路参数、轨道类型等方面明确了影响钢轨擦伤发展的主要因素;调研了基于轴箱加速度等不同方式的钢轨擦伤现场检测方法,对比分析了各种方法在擦伤检测方面的适用性;结合擦伤的形成机理与影响因素,从车辆牵引/制动控制、钢轨打磨等角度分析了擦伤防治的有效措施与策略。研究结果表明:目前对于钢轨擦伤形成机理及发展过程的研究主要采用现场调研、样本试验模拟和数值仿真等手段;由轮轨之间的大蠕滑、滑动状态所引起的钢轨母材极限变形、热致相变是钢轨擦伤形成的主要原因,列车运行状态、线路平纵断面参数和线下基础类型等因素会影响轮轨之间的接触状态,从而诱发擦伤的形成和发展;按照钢轨擦伤的检测方式划分,目前主要可采用轴箱加速度响应法、频响函数法与涡流探测法等,但各类检测方法的精度对于不同程度的擦伤有一定差别;针对钢轨擦伤的防治方面,在擦伤形成之前,控制列车牵引/制动过程中的轮轨黏着超限对于预防擦伤较为有效,在擦伤形成后,根据擦伤的不同程度可通过分级打磨或换轨等方式来降低安全隐患。

     

  • 图  1  常见钢轨伤损类型

    Figure  1.  Common types of rail defect

    图  2  典型擦伤形态

    Figure  2.  Typical squat form

    图  3  车轮经过时,擦伤区域2种不同受力状态

    Figure  3.  Two different stress states in squat area when wheel passes by

    图  4  凹陷区域光滑和粗糙部分对比

    Figure  4.  Comparison of smooth and rough parts in depression area

    图  5  钢轨擦伤不同阶段的特征

    Figure  5.  Characteristics of different stages of rail squat

    图  6  轮轨接触有限元模型

    Figure  6.  Finite element model of wheel-rail contact

    图  7  轮轨接触力-热耦合模型

    Figure  7.  Force-thermal coupling model of wheel-rail contact

    图  8  典型的焊缝处擦伤

    Figure  8.  Typical squats at welds

    图  9  塑性变形较为严重的区域产生裂纹

    Figure  9.  Cracks in areas with severe plastic deformation

    图  10  钢轨在剪切变形下形成的白层

    Figure  10.  WEL of rail formed under shear deformation

    图  11  计算摩擦热温升的轮轨接触模型

    Figure  11.  Wheel-rail contact model for calculating temperature rise due to frictional heat

    图  12  受损钢轨样品的横截面微观结构

    Figure  12.  Cross sectional microstructure of damaged rail sample

    图  13  擦伤在不同区间的分布

    Figure  13.  Distributions of squats in different intervals

    图  14  曲线线路上的擦伤数量统计

    Figure  14.  Statistics on numbers of squat on curve lines

    图  15  不同坡度下的擦伤频率分布

    Figure  15.  Distributions of squat frequency under different slopes

    图  16  擦伤在轨枕上和轨枕之间的数量分布

    Figure  16.  Distributions of numbers of squats on and between sleepers

    图  17  擦伤在混凝土枕和木枕上的数量分布

    Figure  17.  Distributions of numbers of squats on concrete sleepers and wooden sleepers

    图  18  擦伤调研的现场照片

    Figure  18.  Site photos of squat investigation

    图  19  ABA原理

    Figure  19.  Principle of ABA

    图  20  锤击试验装置

    Figure  20.  Hammer impact test device

    图  21  基于列车的涡流检测系统

    Figure  21.  Train based eddy current detection system

    表  1  擦伤距离分布

    Table  1.   Distributions of squat distances

    编号 钢轨位置 擦伤距离/m 擦伤个数
    1 35 km +28号 1.8 2
    2 41 km +14号右轨上行 1.8 2
    3 74 km +31号右轨上行 1.8×2 3
    4 74 km +31号左轨上行 1.8×2 3
    5 91 km +5号右轨下行 1.8×2 3
    6 91 km +14号左轨下行 1.8 2
    7 104 km +9号上行 1.8 2
    8 未知里程1 1.8 2
    9 未知里程2 1.8 2
    10 未知里程3 1
    下载: 导出CSV

    表  2  各类型机车参数

    Table  2.   Parameters of various types of locomotives

    机车类型 轴重/t 转向架轴距/mm 轴距/mm
    SS8 22 2 900 2 900
    DF4D 23 3 600 1 800
    DF11 23 4 000 2 000
    DF11C 23 4 000 2 000
    HXD3C 25 2 250+2 000 2 250/2 000
    CRH2 ≤14 2 500 2 500
    CRH5 ≤17 2 700 2 700
    下载: 导出CSV

    表  3  不同坡度的擦伤频数

    Table  3.   Squat frequencies of different slopes

    参数 0‰ 8‰~9‰ 其他 总计
    坡度擦伤频数 11.0 30.0 28.0 69.0
    擦伤频数百分比/% 15.9 43.4 40.7 100.0
    坡长/m 10 999.5 46 009.8 179 842.7 236 852.0
    坡长百分比/% 4.6 19.4 76.0 100.0
    下载: 导出CSV
  • [1] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001
    [2] 李闯, 张银花, 田常海, 等. 高速铁路钢轨服役状态及病害整治研究[J]. 铁道建筑, 2020, 60(8): 126-129, 142. doi: 10.3969/j.issn.1003-1995.2020.08.29

    LI Chuang, ZHANG Yin-hua, TIAN Chang-hai, et al. Study on rail service status and disease treatment of rail for high-speed railway[J]. Railway Engineering, 2020, 60(8): 126-129, 142. (in Chinese) doi: 10.3969/j.issn.1003-1995.2020.08.29
    [3] ZHOU Liang, BAI Wei, HAN Zhen-yu, et al. Comparison of the damage and microstructure evolution of eutectoid and hypereutectoid rail steels under a rolling-sliding contact[J]. Wear, 2022, 492/493: 204233. doi: 10.1016/j.wear.2021.204233
    [4] XU Jing-mang, WANG Kai, LIANG Xin-yuan, et al. Investigation on wear and damage characteristics of high-speed rail steel with plasma selective quenching[J]. Wear, 2021, 486/487: 204100. doi: 10.1016/j.wear.2021.204100
    [5] 闫斌, 闫晗, 黄杰, 等. 高速铁路大跨斜拉桥上无砟轨道系统疲劳特性[J]. 铁道工程学报, 2020, 37(11): 43-48, 55. doi: 10.3969/j.issn.1006-2106.2020.11.009

    YAN Bin, YAN Han, HUANG Jie, et al. Fatigue characteristics of ballastless track system on the long-span cable-stayed bridge of high-speed railway[J]. Journal of Railway Engineering Society, 2020, 37(11): 43-48, 55. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.11.009
    [6] 王平, 郭强, 陈嘉胤, 等. 轮轨润滑对高速道岔曲尖轨磨耗的影响研究[J]. 铁道工程学报, 2019, 36(9): 17-22. doi: 10.3969/j.issn.1006-2106.2019.09.004

    WANG Ping, GUO Qiang, CHEN Jia-yin, et al. Research on the effect of wheel-rail lubrication on curved switch rail wear in high-speed turnout[J]. Journal of Railway Engineering Society, 2019, 36(9): 17-22. (in Chinese) doi: 10.3969/j.issn.1006-2106.2019.09.004
    [7] 刘丰收. 基于磨耗的高速铁路轮轨接触关系研究[J]. 中国铁道科学, 2019, 40(3): 38-43. doi: 10.3969/j.issn.1001-4632.2019.03.06

    LIU Feng-shou. Study on wheel-rail contact relationship of high-speed railway based on wear[J]. China Railway Science, 2019, 40(3): 38-43. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.03.06
    [8] GRASSIE S L. Studs and squats: the evolving story[J]. Wear, 2016, 366/367: 194-199. doi: 10.1016/j.wear.2016.03.021
    [9] 卢超, 涂占宽, 程建军, 等. 高速铁路钢轨RCF伤损特征及NDT研究进展[J]. 失效分析与预防, 2009, 4(1): 51-57. doi: 10.3969/j.issn.1673-6214.2009.01.011

    LU Chao, TU Zhan-kuan, CHENG Jian-jun, et al. RCF damage characteristics of high-speed railway rail and research development of NDT techniques[J]. Failure Analysis and Prevention, 2009, 4(1): 51-57. (in Chinese) doi: 10.3969/j.issn.1673-6214.2009.01.011
    [10] 徐凯, 李芾, 吴文逸, 等. 高速铁路小半径曲线钢轨侧磨研究[J]. 铁道学报, 2021, 43(2): 45-51. doi: 10.3969/j.issn.1001-8360.2021.02.006

    XU Kai, LI Fu, WU Wen-yi, et al. Research on side wear of rails on small radius curves on high-speed railway[J]. Journal of the China Railway Society, 2021, 43(2): 45-51. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.02.006
    [11] 刘丰收, 李闯, 田常海. 我国高速铁路钢轨早期伤损研究[J]. 铁道建筑, 2018, 58(1): 138-140. doi: 10.3969/j.issn.1003-1995.2018.01.35

    LIU Feng-shou, LI Chuang, TIAN Chang-hai. Study on early damage of rail in high-speed railway in China[J]. Railway Engineering, 2018, 58(1): 138-140. (in Chinese) doi: 10.3969/j.issn.1003-1995.2018.01.35
    [12] LI Zi-li, ZHAO Xin, ESVELD C, et al. An investigation into the causes of squats—correlation analysis and numerical modeling[J]. Wear, 2008, 265(9): 1349-1355.
    [13] 魏堂建, 刘林芽, 李纪阳, 等. 客运专线钢轨擦伤原因分析[J]. 铁道科学与工程学报, 2015(3): 489-495. doi: 10.3969/j.issn.1672-7029.2015.03.006

    WEI Tang-jian, LIU Lin-ya, LI Ji-yang, et al. Analysis the reason of passenger line's rail scratch[J]. Journal of Railway Science and Engineering, 2015(3): 489-495. (in Chinese) doi: 10.3969/j.issn.1672-7029.2015.03.006
    [14] SMULDERS J. Management and research tackle rolling contact fatigue[J]. Railway Gazette International, 2003, 158(7): 433-436.
    [15] GRASSIE S L. Studs: a squat-type defect in rails[J]. Journal of Rail and Rapid Transit, 2012, 226(3): 243-256. doi: 10.1177/0954409711421462
    [16] BAUMANN G, FECHT H J, LIEBELT S. Formation of white-etching layers on rail treads[J]. Wear, 1996, 191(1): 133-140.
    [17] PAL S, DANIEL W, FARJOO M. Early stages of rail squat formation and the role of a white etching layer[J]. International Journal of Fatigue, 2013, 52: 144-156. doi: 10.1016/j.ijfatigue.2013.02.016
    [18] LI Zi-li, ZHAO Xin, DOLLEVOET R, et al. Differential wear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects[J]. Vehicle System Dynamics, 2008, 46(S1): 237-246.
    [19] 温静. 地铁轨道曲线段轮轨滚动接触疲劳分析[D]. 成都: 西南交通大学, 2020.

    WEN Jing. Analysis of wheel-rail rolling contact fatigue in metro track curve[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [20] 温士明. 地铁线路小半径曲线钢轨打磨廓形研究[D]. 成都: 西南交通大学, 2018.

    WEN Shi-ming. Study on rail grinding profile for small radius curved track of metro line[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [21] STEENBERGEN M. Squat formation and rolling contact fatigue in curved rail track[J]. Engineering Fracture Mechanics, 2015, 143: 80-96. doi: 10.1016/j.engfracmech.2015.05.060
    [22] CARROLL R I, BEYNON J H. Rolling contact fatigue of white etching layer: Part 1. Crack morphology[J]. Wear, 2007, 262(9/10): 1253-1266.
    [23] NAEIMI M, LI Zi-li, DOLLEVOET R. Nucleation of squat cracks in rail, calculation of crack initiation angles in three dimensions[J]. Journal of Physics: Conference Series, 2015, 628: 012043. doi: 10.1088/1742-6596/628/1/012043
    [24] MUHAMEDSALIH Y, HAWKSBEE S, TUCKER G, et al. Squats on the Great Britain rail network: possible root causes and research recommendations[J]. International Journal of Fatigue, 2021, 149(9/10): 106267.
    [25] 王栋. 钢轨擦伤及其派生病害的分析与整治[J]. 山西科技, 2006, 21(2): 113-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SXKJ200602050.htm

    WANG Dong. An analysis of rail scratch and its derivative harms and the renovation[J]. Shanxi Science and Technology, 2006, 21(2): 113-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXKJ200602050.htm
    [26] FARJOO M, DANIEL W, BELLETTE P, et al. Field statistical and finite element analysis of rail squats[J]. Engineering Fracture Mechanics, 2013, 109: 117-129. doi: 10.1016/j.engfracmech.2013.05.004
    [27] 宁国平. 高速铁路钢轨擦伤原因分析及处理措施[J]. 上海铁道科技, 2017(2): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201702020.htm

    NING Guo-ping. Cause analysis and treatment measures of rail squat in high-speed railway[J]. Shanghai Railway Science and Technology, 2017(2): 46-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201702020.htm
    [28] MOLODOVA M, LI Zi-li, NUNEZ A, et al. Automatic detection of squats in railway infrastructure[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 1980-1990. doi: 10.1109/TITS.2014.2307955
    [29] OREGUI M, LI Zi-li, DOLLEVOET R. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements[J]. Mechanical Systems and Signal Processing, 2015, 54/55: 224-242. doi: 10.1016/j.ymssp.2014.08.024
    [30] THOMAS H, HECKEL T, HANSPACH G. Advantage of a combined ultrasonic and eddy current examination for railway inspection trains[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2007, 49(6): 341-344. doi: 10.1784/insi.2007.49.6.341
    [31] LI Zi-li, DOLLEVOET R, MOLODOVA M, et al. Squat growth—some observations and the validation of numerical predictions[J]. Wear, 2011, 271(1): 148-157.
    [32] NAEIMI M, LI Zi-li, DOLLEVOET R. Determining the angles of squat cracks via CT scanning and metallographic observations[J]. Engineering Fracture Mechanics, 2020, 230: 107016. doi: 10.1016/j.engfracmech.2020.107016
    [33] STEENBERGEN M, DOLLEVOET R. On the mechanism of squat formation on train rails—Part Ⅰ: origination[J]. International Journal of Fatigue, 2013, 47: 361-372. doi: 10.1016/j.ijfatigue.2012.04.023
    [34] CANNON D F, PRADIER H. Rail rolling contact fatigue research by the European rail research institute[J]. Wear, 1996, 191(1): 1-13.
    [35] DENG Xiang-yun, QIAN Zhi-wei, LI Zi-li, et al. Investigation of the formation of corrugation-induced rail squats based on extensive field monitoring[J]. International Journal of Fatigue, 2018, 112: 94-105. doi: 10.1016/j.ijfatigue.2018.03.002
    [36] 金学松, 张继业, 温泽峰, 等. 轮轨滚动接触疲劳现象分析[J]. 机械强度, 2002, 24(2): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200202023.htm

    JIN Xue-song, ZHANG Ji-ye, WEN Ze-feng, et al. Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24(2): 250-257. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200202023.htm
    [37] 肖乾, 方骏. 铁道车辆轮轨滚动接触疲劳裂纹研究综述[J]. 华东交通大学学报, 2015, 32(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201501003.htm

    XIAO Qian, FANG Jun. Research review on wheel-rail rolling contact fatigue crack of railway vehicles[J]. Journal of East China Jiaotong University, 2015, 32(1): 16-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201501003.htm
    [38] 赵鑫, 温泽峰, 王衡禹, 等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21(1): 1-35. doi: 10.19818/j.cnki.1671-1637.2021.01.001

    ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.001
    [39] 史密斯. 钢轨滚动接触疲劳的进一步研究[J]. 中国铁道科学, 2002, 23(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200203001.htm

    SMITH R A. Rolling contact fatigue of rails: what remains to be done?[J]. China Railway Science, 2002, 23(3): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200203001.htm
    [40] 金学松, 沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报, 2001, 23(2): 92-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200102023.htm

    JIN Xue-song, SHEN Zhi-yun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 23(2): 92-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200102023.htm
    [41] STOCK R, PIPPAN R. RCF and wear in theory and practice—the influence of rail grade on wear and RCF[J]. Wear, 2011, 271(1/2): 125-133.
    [42] AL-JUBOORI A, WEXLER D, LI H, et al. Squat formation and the occurrence of two distinct classes of white etching layer on the surface of rail steel[J]. International Journal of Fatigue, 2017, 104: 52-60.
    [43] LIAN Qing-lin, DENG Guan-yu, AL-JUBOORI A, et al. Crack propagation behavior in white etching layer on rail steel surface[J]. Engineering Failure Analysis, 2019, 104: 816-829.
    [44] RASMUSSEN C J, FÆSTER S, DHAR S, et al. Surface crack formation on rails at grinding induced martensite white etching layers[J]. Wear, 2017, 384/385: 8-14.
    [45] STEENBERGEN M. On the genesis of squat-type defects on rails—toward a unified explanation[J]. Wear, 2021, 478/479: 203906.
    [46] PAL S, VALENTE C, DANIEL W, et al. Metallurgical and physical understanding of rail squat initiation and propagation[J]. Wear, 2012, 284/285: 30-42.
    [47] LI Zi-li, MOLODOVA M, ZHAO Xin, et al. Squat treatment by way of minimum action based on early detection to reduce life cycle costs[C]//ASME. Proceedings of the 2010 Joint Rail Conference. Reston: ASME, 2010: 1-7.
    [48] BOLD P E, BROWN M W, ALLEN R J. Shear mode crack growth and rolling contact fatigue[J]. Wear, 1991, 144(1): 307-317.
    [49] DATSYSHYN O P, MARCHENKO H P, GLAZOV A Y. On the special angle of surface cracks propagation in the railway rail heads[J]. Engineering Fracture Mechanics, 2019, 206: 452-462.
    [50] 潘睿, 任瑞铭, 陈春焕, 等. 钢轨踏面马氏体白层组织分析[J]. 材料热处理学报, 2016, 37(7): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201607027.htm

    PAN Rui, REN Rui-ming, CHEN Chun-huan, et al. Microstructure analysis of martensite white etching layers on rails[J]. Transactions of Materials and Heat Treatment, 2016, 37(7): 167-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201607027.htm
    [51] 邓勇, 邓建辉. 某高速铁路钢轨伤损原因分析[J]. 理化检验(物理分册), 2013, 49(11): 766-769. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201311018.htm

    DENG Yong, DENG Jian-hui. Reason analysis on defects in high-speed railway rail[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2013, 49(11): 766-769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201311018.htm
    [52] 连青林. 钢轨马氏体白蚀层相变及疲劳特性研究[D]. 北京: 北京交通大学, 2019.

    LIAN Qing-lin. Study on phase transformation and fatigue properties of martensite white etching layer of railway rail[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [53] NAEIMI M, LI Shao-guang, LI Zi-li, et al. Thermomechanical analysis of the wheel-rail contact using a coupled modelling procedure[J]. Tribology International, 2018, 117: 250-260.
    [54] DENG Xiang-yun, LI Zi-li, QIAN Zhi-wei, et al. Pre-cracking development of weld-induced squats due to plastic deformation: five-year field monitoring and numerical analysis[J]. International Journal of Fatigue, 2019, 127: 431-444.
    [55] BERNSTEINER C, MEIERHOFER A, TRUMMER G, et al. Simulation and experiment based investigations of squat formation mechanisms[J]. Wear, 2019, 440/441: 203093.
    [56] CLAYTON P. Tribological aspects of wheel-rail contact: a review of recent experimental research[J]. Wear, 1996, 191(1): 170-183.
    [57] LOJKOWSKI W, DJAHANBAKHSH M, BVRKLE G, et al. Nanostructure formation on the surface of railway tracks[J]. Materials Science and Engineering: A, 2001, 303(1): 197-208.
    [58] AL-JUBOORI A, ZHU H, WEXLER D, et al. Evolution of rail surface degradation in the tunnel: the role of water on squat growth under service conditions[J]. Engineering Fracture Mechanics, 2019, 209: 32-47.
    [59] 周琰. 高速轮轨材料滚动摩擦损伤及白层形成机理研究[D]. 成都: 西南交通大学, 2017.

    ZHOU Yan. Research on rolling contact friction damage and the formation mechanism of white etching layer of high-speed rail-wheel material[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [60] ZHU H, LI H, AL-JUBOORI A, et al. Understanding and treatment of squat defects in a railway network[J]. Wear, 2020, 442/443: 203139.
    [61] 刘晓婷. 钢的马氏体相变[J]. 西安航空技术高等专科学校学报, 2002, 20(3): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XHGZ200203021.htm

    LIU Xiao-ting. Mar's phase alternation of steel[J]. Journal of Xi'an Aerotechnical College, 2002, 20(3): 57-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XHGZ200203021.htm
    [62] FISCHER F D, DAVES W, WERNER E A. On the temperature in the wheel-rail rolling contact[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 999-1006.
    [63] KNOTHE K, LIEBELT S. Determination of temperatures for sliding contact with applications for wheel-rail systems[J]. Wear, 1995, 189(1): 91-99.
    [64] TANVIR M A. Temperature rise due to slip between wheel and rail—an analytical solution for Hertzian contact[J]. Wear, 1980, 61(2): 295-308.
    [65] LIU Y, XIE Z L, HANNINEN H, et al. Isothermal martensitic transformation as an internal-stress-increasing process[J]. Journal De Physique Ⅳ, 1995, 5: 179-184.
    [66] WU Jun, PETROV R H, NAEIMI M, et al. Laboratory simulation of martensite formation of white etching layer in rail steel[J]. International Journal of Fatigue, 2016, 91: 11-20.
    [67] GRASSIE S L. Short wavelength rail corrugation: field trials and measuring technology[J]. Wear, 1996, 191(1): 149-160.
    [68] BAUMANN G, KNOTHE K, FECHT H J. Surface modification, corrugation and nano-structure formation of high-speed railway tracks[J]. Nanostructured Materials, 1997, 9: 751-754.
    [69] ZHANG Hong-wang, OHSAKI S, MITAO S, et al. Microstructural investigation of white etching layer on pearlite steel rail[J]. Materials Science and Engineering: A, 2006, 421(1): 191-199.
    [70] JIRÁSKOVÁ Y, SVOBODA J, SCHNEEWEISS O, et al. Microscopic investigation of surface layers on rails[J]. Applied Surface Science, 2005, 239(2): 132-141.
    [71] ÖSTERLE W, ROOCH H, PYZALLA A, et al. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction[J]. Materials Science and Engineering: A, 2001, 303(1): 150-157.
    [72] CHOU Y K, EVANS C J. White layers and thermal modeling of hard turned surfaces[J]. International Journal of Machine Tools and Manufacture, 1999, 39(12): 1863-1881.
    [73] NEWCOMB S B, STOBBS W M. A transmission electron microscopy study of the white-etching layer on a rail head[J]. Materials Science and Engineering, 1984, 66(2): 195-204.
    [74] BEDOYA-ZAPATA Á D, ROJAS-PARRA S, DÍAZ-MAZO J H, et al. Case study: understanding the formation of squat-type defects in a metropolitan railway[J]. Engineering Failure Analysis, 2021, 123: 105325.
    [75] AL-JUBOORI A, ZHU H, WEXLER D, et al. Characterisation of white etching layers formed on rails subjected to different traffic conditions[J]. Wear, 2019, 436/437: 202998.
    [76] CARROLL R I, BEYNON J H. Rolling contact fatigue of white etching layer: Part 2. Numerical results[J]. Wear, 2007, 262(9/10): 1267-1273.
    [77] KUMAR A, AGARWAL G, PETROV R, et al. Microstructural evolution of white and brown etching layers in pearlitic rail steels[J]. Acta Materialia, 2019, 171: 48-64.
    [78] LI S, WU J, PETROV R H, et al. "Brown etching layer": a possible new insight into the crack initiation of rolling contact fatigue in rail steels?[J]. Engineering Failure Analysis, 2016, 66: 8-18.
    [79] VILOTIJEVIĆ M, BRAJOVIĆ L, PUSTOVGAR A P. Methodology for statistical analysis of squat rail defects[C]//Faculty of Mechanical Engineering. XVIII International Scientific-expert Conference On Railways-RAILCON. Serbia Niš: Faculty of Mechanical Engineering, 2018: 157-160.
    [80] SIMON S, SAULOT A, DAYOT C, et al. Tribological characterization of rail squat defects[J]. Wear, 2013, 297(1): 926-942.
    [81] 韩钊, 沈志军. 浅谈高速动车组的制动方式及特点[J]. 铁道标准设计, 2004, 48(3): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200403036.htm

    HAN Zhao, SHEN Zhi-jun. Braking modes of high-speed motor car unit and its characteristics[J]. Railway Standard Design, 2004, 48(3): 69-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200403036.htm
    [82] DANIEL W J, PAL S, FARJOO M. Rail squats: progress in understanding the Australian experience[J]. Journal of Rail and Rapid Transit, 2013, 227(5): 481-492.
    [83] GRASSIE S L. Traction, curving and surface damage of rails, Part 2: rail damage[J]. Journal of Rail and Rapid Transit, 2015, 229(3): 330-339.
    [84] 胡二根. 钢轨擦伤原因及其防治[J]. 铁道建筑, 2000, 41(1): 32-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200001014.htm

    HU Er-gen. Causes and prevention of rail squat[J]. Railway Engineering, 2000, 41(1): 32-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200001014.htm
    [85] 张艳良. 钢轨擦伤的调查分析及减缓措施[J]. 内蒙古煤炭经济, 2001(3): 91. https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT200103035.htm

    ZHANG Yan-liang. Investigation and analysis of rail squat and mitigation measures[J]. Inner Mongolia Coal Economy, 2001(3): 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT200103035.htm
    [86] 郑伟生, 刘会英. 关于车轮擦伤剥离的若干问题与对策[J]. 铁道车辆, 2001, 39(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200102007.htm

    ZHENG Wei-sheng, LIU Hui-ying. Several problems about wheel tyre flat, peeling and counter measures[J]. Rolling Stock, 2001, 39(2): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200102007.htm
    [87] LI Zi-li, ZHAO Xin, DOLLEVOET R. An approach to determine a critical size for rolling contact fatigue initiating from rail surface defects[J]. International Journal of Rail Transportation, 2016, 5(1): 1-22.
    [88] 张银花, 周韶博, 张关震, 等. 高速铁路轮轨硬度匹配研究及方向探讨[J]. 中国铁路, 2018(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801002.htm

    ZHANG Yin-hua, ZHOU Shao-bo, ZHANG Guan-zhen, et al. Study and discussion of high-speed wheel-rail hardness matching[J]. China Railway, 2018(1): 7-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801002.htm
    [89] 周韶博, 梁旭, 李闯, 等. 国内外高速铁路轮轨硬度匹配研究与应用综述[J]. 铁道技术监督, 2016, 44(6): 33-36, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201606012.htm

    ZHOU Shao-bo, LIANG Xu, LI Chuang, et al. Comprehensive review of study and application of wheel-rail hardness matching in domestic and foreign high-speed railways[J]. Railway Quality Control, 2016, 44(6): 33-36, 43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201606012.htm
    [90] BÖHMER A, KLIMPEL T. Plastic deformation of corrugated rails—a numerical approach using material data of rail steel[J]. Wear, 2002, 253(1): 150-161.
    [91] 冯世彪. 重载线路钢轨折损原因分析及整治[J]. 铁道建筑, 2007, 47(6): 88-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200706032.htm

    FENG Shi-biao. Cause analysis and treatment of rail breakage on heavy haul lines[J]. Railway Engineering, 2007, 47(6): 88-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200706032.htm
    [92] KONDO K, YOROIZAKA K, SATO Y. Cause, increase, diagnosis, countermeasures and elimination of Shinkansen shelling[J]. Wear, 1996, 191(1/2): 199-203.
    [93] 赵康云. 高速铁路钢轨常见表面伤损及其对策分析[J]. 中国高新科技, 2020(17): 83-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE202017034.htm

    ZHAO Kang-yun. Analysis of common surface damage of high-speed railway rail and its countermeasures[J]. China High-Tech, 2020(17): 83-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE202017034.htm
    [94] CHO H, PARK J. Study of rail squat characteristics through analysis of train axle box acceleration frequency[J]. Applied Sciences, 2021, 11(15): 7022.
    [95] LI Zi-li, MOLODOVA M, NUNEZ A, et al. Improvements in axle box acceleration measurements for the detection of light squats in railway infrastructure[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4385-4397.
    [96] 萨殊利, 肖春燕, 朱衡君, 等. 电涡流无损检测淬火钢轨踏面硬度定量分析[J]. 铁道学报, 2001, 23(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200103006.htm

    SA Shu-li, XIAO Chun-yan, ZHU Heng-jun, et al. Quantitative analysis of quenched rail surface hardness by eddy current nondestructive testing[J]. Journal of the China Railway Society, 2001, 23(3): 33-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200103006.htm
    [97] 靳亚鹏, 萨殊利, 温伟刚. 涡流无损检测淬火钢轨踏面硬度的数值分析[J]. 北方交通大学学报, 2001, 25(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200101019.htm

    JIN Ya-peng, SA Shu-li, WEN Wei-gang. Numerical analysis of eddy nondestructive test for surface hardness of rail[J]. Journal of Beijing Jiaotong University, 2001, 25(1): 80-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200101019.htm
    [98] 欧勇辉. 轮轨黏着控制策略及经济适用性分析[J]. 电力机车与城轨车辆, 2017, 40(4): 30-33, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201704008.htm

    OU Yong-hui. Analysis of wheel rail adhesion control strategy and its economic applicability[J]. Electric Locomotives and Mass Transit Vehicles, 2017, 40(4): 30-33, 36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201704008.htm
    [99] 姜志. 铁道车辆擦轮问题优化方案探究[J]. 机车车辆工艺, 2021(5): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL202105020.htm

    JIANG Zhi. Optimum solution to the wheel scratching of railway vehicles[J]. Locomotive and Rolling Stock Technology, 2021(5): 54-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL202105020.htm
    [100] 申鹏, 王文健, 张鸿斐, 等. 撒砂对轮轨粘着特性的影响[J]. 机械工程学报, 2010, 46(16): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016014.htm

    SHEN Peng, WANG Wen-jian, ZHANG Hong-fei, et al. Effect of spraying sand on adhesion characteristic of wheel/rail[J]. Journal of Mechanical Engineering, 2010, 46(16): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016014.htm
    [101] 薛文敏. CRH1A型动车组制动异常滑行问题原因分析及对策[J]. 铁道机车车辆, 2019, 39(4): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201904023.htm

    XUE Wen-min. Cause analysis and solutions for the unnormal sliding of the braking of the CRH1A EMU[J]. Railway Locomotive and Car, 2019, 39(4): 94-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201904023.htm
    [102] 顾小山. CRH2型动车组制动系统防滑控制的优化[J]. 铁路计算机应用, 2015, 24(10): 41-43, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201510010.htm

    GU Xiao-shan. Optimization of anti-skid control method for braking system of CRH2 EMU[J]. Railway Computer Application, 2015, 24(10): 41-43, 46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201510010.htm
    [103] 孙立梅, 卢峰华, 刘军, 等. CRH3C型动车组制动系统车轮滑行保护[J]. 安全, 2012, 33(12): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ANQU201212003.htm

    SUN Li-mei, LU Feng-hua, LIU Jun, et al. Wheel sliding protection of CRH3C EMU braking system[J]. Safety and Security, 2012, 33(12): 4-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ANQU201212003.htm
    [104] 韦皓. 动车组超低黏着轨面制动防滑性能试验研究[J]. 铁道学报, 2017, 39(9): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201709010.htm

    WEI Hao. EMU anti-slide performance experimental study on ultra-low adhesion rail surface[J]. Journal of the China Railway Society, 2017, 39(9): 67-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201709010.htm
    [105] STOCK R, KUBIN W, DAVES W, et al. Advanced maintenance strategies for improved squat mitigation[J]. Wear, 2019, 436/437: 203034.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  105
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 网络出版日期:  2024-05-16
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回