-
摘要: 总结了近几年国内外轨道交通列车车轮多边形的研究成果,分析了导致车轮形成多边形的主要因素与发生机理以及动车组与地铁车辆多发的高阶车轮多边形不同的原因,探讨了车轮多边形的抑制措施,概括了车辆-轨道耦合动力学模型的产生与发展,总结了车辆-轨道耦合动力学仿真分析的主要成果,提出了考虑车轮多边形等轮轨周期性磨耗下的车辆-轨道系统零部件的疲劳损伤这一新研究方向。分析结果表明:车轮初始缺陷、轮轨摩擦自激振动、轮轨黏滑振动、轮轨系统P2共振、轮对固有模态振动、车轮直径与转向架组成部件引起的共振等会造成车轮多边形的发生;地铁车辆发生的车轮多边形主要是由轮轨系统P2共振所致,而高速动车组多发的高阶车轮多边形一般不是由P2共振直接引起的;提高车轮镟修质量、增加研磨子、提高车轮踏面硬度、增大扣件阻尼、变速运行等措施可以抑制车轮多边形的发展,但从车轮多边形的形成机理可知,车轮初始缺陷是起源,控制车轮初始缺陷是抑制车轮多边形形成与发展的根本,从可行性角度而言,增加研磨子是最理想的措施;当车轮存在高阶多边形后,轮轨激励频率会显著增大且范围分布更广,当激励频率与车辆某些部件的固有振动频率接近时,易引发共振,导致其动应力显著增大,影响其疲劳寿命,故分析车辆-轨道系统主要承载部件的疲劳损伤时,应考虑随机轨道不平顺以及轮轨周期性磨耗等不利因素。可见,现有研究成果基本揭示了车轮多边形的形成机理,并提出了可行的抑制措施,但考虑到列车运行环境的不确定性以及车辆-轨道耦合系统关联因素众多,分析过程难免与实际有差异,故仍需进一步深入研究。Abstract: The research results of wheel polygon of rail transit trains in China and abroad in recent years were summarized, the main factors and mechanisms leading to the formation of wheel polygon were analyzed, the reasons for the difference in high-order wheel polygons between electric multiple units (EMUs) and metro vehicles were investigated, the main causes of the difference were summarized. The suppression measures for wheel polygon were discussed, and the generation and development of vehicle-track coupling dynamics model were summarized. At the same time, the main results of the simulation analysis of vehicle-track coupling dynamics were presented, and a new research direction was proposed, which considered the fatigue damage of vehicle-track system components under the periodic wear of wheel-rail such as wheel polygon. Analysis results show that the initial defect of wheel, self-excitation vibration of wheel-rail friction, stick-slip vibration of wheel-rail, P2 resonance of wheel-rail system, inherent mode vibration of wheelset, wheel diameter, and resonance caused by bogie components can cause wheel polygon. The wheel polygons of metro vehicles are mainly caused by the P2 resonance of the wheel-rail system, while the multiple high-order wheel polygons of high-speed EMUs are generally not directly caused by the P2 resonance. Improving the quality of wheel turning, increasing the abrasive block, enhancing the hardness of wheel tread, strengthening the damping of fastener, and applying variable speed running can restrain the development of wheel polygon. However, according to the formation mechanism of wheel polygon, the initial defect of wheel is the origin, and controlling the initial defect of wheel can fundamentally inhibits the formation and development of wheel polygon. From the perspective of feasibility, installing the abrasive block is the most ideal measure. When the wheel has a high-order polygon, the wheel-rail excitation frequency will increase significantly, and the range distribution is wider. When the excitation frequencies are close to the inherent vibration frequencies of some parts of vehicle, the resonance is easily triggered, which will lead to a significant increase in its dynamic stress and affect its fatigue life. Therefore, when the fatigue damage of the main bearing parts of vehicle-track system is analyzed, adverse factors such as random track irregularities and periodic wear of wheel-rail should be considered. It can be seen that the existing research results basically reveal the formation mechanism of wheel polygon, and feasible suppression measures are proposed. However, since the train operation environment is uncertain, there are many related factors in the vehicle-track coupling system, and the analysis process is inevitably different from the actual situation. Therefore, further in-depth research is still needed.
-
Key words:
- vehicle engineering /
- dynamics performance /
- wheel polygon /
- wear mechanism /
- suppression measure /
- dynamics model /
- fatigue damage
-
表 1 构架模态分析结果
Table 1. Frame modal analysis results
模态 阶数 频率/Hz 振型 整体模态 7 32.95 侧梁绕横轴竖直方向的扭转 11 77.58 两侧梁在水平面内的同向剪切 12 84.28 两侧梁在竖直方向的1阶弯曲 20 224.88 侧梁和横梁的2阶弯曲 局部模态 21 237.35 轴箱弹簧套筒变形 34 428.85 轴箱弹簧套筒和转臂座变形 51 567.19 轴箱弹簧套筒和转臂座变形 52 596.50 轴箱弹簧套筒和转臂座变形 -
[1] 敬霖, 刘凯. 车轮踏面缺陷引起的轮轨动态响应综述[J]. 交通运输工程学报, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.014 [2] KAPER H P. Wheel corrugation on Netherlands railways(NS): origin and effects of "polygonization" in particular[J]. Journal of Sound and Vibration, 1988, 120 (2): 267-274. doi: 10.1016/0022-460X(88)90434-8 [3] KALOUSEK J, JOHNSON K L. An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1992, 206(2): 127-135. doi: 10.1243/PIME_PROC_1992_206_226_02 [4] MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. doi: 10.1006/jsvi.1999.2055 [5] DEKKER H. Vibrational resonances of nonrigid vehicles: polygonization and ripple patterns[J]. Applied Mathematical Modelling, 2009, 33(3): 1349-1355. doi: 10.1016/j.apm.2008.01.025 [6] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649 [7] JOHANSSON A. Out-of-round railway wheels—assessment of wheel tread irregularities in train traffic[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 795-806. [8] NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351 [9] KANG M H, CHOI B W, KOH K C, et al. Experimental study of a vehicle detector with an AMR sensor[J]. Sensors and Actuators A: Physical, 2005, 118(2): 278-284. doi: 10.1016/j.sna.2004.09.002 [10] BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219(3): 151-175. doi: 10.1243/095440905X8853 [11] 金学松, 吴越, 梁树林, 等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htmJIN Xue-song, WU Yue, LIANG Shu-lin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm [12] 金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htmJIN Xue-song, WU Yue, LIANG Shu-lin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm [13] 李彦夫, 门天立. 列车车轮多边形磨损及其噪音研究综述[J]. 振动、测试与诊断, 2019, 39(6): 1143-1152, 1355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201906005.htmLI Yan-fu, MEN Tian-li. An overview of polygonal wear and generated noise of train wheels[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(6): 1143-1152, 1355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201906005.htm [14] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. doi: 10.19818/j.cnki.1671-1637.2020.01.008ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.008 [15] 陶功权, 温泽峰, 金学松. 铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展[J]. 机械工程学报, 2021, 57(6): 106-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202106011.htmTAO Gong-quan, WEN Ze-feng, JIN Xue-song. Advances in formation mechanism and mitigation measures of out-of-round railway vehicle wheels[J]. Journal of Mechanical Engineering, 2021, 57(6): 106-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202106011.htm [16] TAO Gong-quan, WEN Ze-feng, JIN Xue-song, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(4): 317-345. doi: 10.1007/s40534-020-00222-x [17] STAŚKIEWICZ T, FIRLIK B. Out-of-round tram wheels-current state and measurements[J]. Archives of Transport, 2018, 45(1): 93-103. [18] 丁军君, 杨九河, 胡静涛, 等. 高速列车车轮多边形磨耗演变行为[J]. 机械工程学报, 2020, 56(22): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202022021.htmDING Jun-jun, YANG Jiu-he, HU Jing-tao, et al. Evolution of the polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(22): 184-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202022021.htm [19] CUI Da-bin, AN Bo-yang, ALLEN P, et al. Effect of the turning characteristics of underfloor wheel lathes on the evolution of wheel polygonisation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(5): 479-488. doi: 10.1177/0954409718795760 [20] 崔大宾, 梁树林, 宋春元, 等. 高速车轮非圆化现象及其对轮轨行为的影响[J]. 机械工程学报, 2013, 49(18): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htmCUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out of round high-speed wheel and its influence on wheel/rail behavior[J]. Journal of Mechanical Engineering, 2013, 49(18): 8-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm [21] 任德祥, 陶功权, 刘欢, 等. 机车多边形磨耗车轮镟修异常原因分析及改进措施[J]. 中南大学学报(自然科学版), 2019, 50(9): 2317-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909029.htmREN De-xiang, TAO Gong-quan, LIU Huan, et al. Analysis of abnormal turning repair for locomotive wheels with polygonal wear and improvement measures[J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2317-2326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909029.htm [22] 苏建, 李立, 崔大宾. 不落轮旋修工艺对初始车轮多边形的影响研究[J]. 铁道学报, 2017, 39(5): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201705008.htmSU Jian, LI Li, CUI Da-bin. Study on influence of turning repair operations on wheels with initial polygonal state[J]. Journal of the China Railway Society, 2017, 39(5): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201705008.htm [23] NIELSEN J C O, LUNDÉN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics, 2003, 40(1/2/3): 3-54. [24] 陈光雄, 金学松, 邬平波, 等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报, 2011, 33(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101006.htmCHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101006.htm [25] 陈光雄, 崔晓璐, 王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报, 2016, 51(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602005.htmCHEN Guang-xiong, CUI Xiao-lu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 244-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602005.htm [26] 赵晓男, 陈光雄, 康熙, 等. 兰新客运专线动车组车轮多边形磨耗的机理[J]. 西南交通大学学报, 2020, 55(2): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htmZHAO Xiao-nan, CHEN Guang-xiong, KANG Xi, et al. Mechanism of polygonal wear on wheels of electric multiple units on Lanzhou-Xinjiang passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htm [27] 黄彩虹, 曾京, 魏来. 铁道车辆蛇行稳定性主动控制综述[J]. 交通运输工程学报, 2021, 21(1): 267-284. doi: 10.19818/j.cnki.1671-1637.2021.01.013HUANG Cai-hong, ZENG Jing, WEI Lai. Review on active control of hunting stability for railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 267-284. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.013 [28] KURZECK B, HECHT M. Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results[J]. Vehicle System Dynamics, 2010, 48(S1): 121-138. [29] ZHAO X N, CHEN G X, LYU J Z, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827. doi: 10.1016/j.wear.2019.01.020 [30] 吴丹, 丁旺才. 含干摩擦碰撞系统的簇发振荡及稳定性分析[J]. 华中科技大学学报(自然科学版), 2020, 48(3): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202003009.htmWU Dan, DING Wang-cai. Bursting oscillations and stability analysis of dry friction-impact vibration system[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(3): 46-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202003009.htm [31] JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces[J]. Railway Engineering Journal, 1974, 3(1): 2-16. [32] RADFORD R W. Wheel/rail vertical forces in high-speed railway operation[J]. Journal of Engineering for Industry, 1977, 99(4): 849-858. doi: 10.1115/1.3439361 [33] 关庆华, 周业明, 李伟, 等. 车辆轨道系统的P2共振频率研究[J]. 机械工程学报, 2019, 55(8): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201908017.htmGUAN Qing-hua, ZHOU Ye-ming, LI Wei, et al. Study on the P2 resonance frequency of vehicle track system[J]. Journal of Mechanical Engineering, 2019, 55(8): 118-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201908017.htm [34] TAO Gong-quan, WEN Ze-feng, LIANG Xi-ren, et al. An investigation into the mechanism of the out-of-round wheels of metro train and its mitigation measures[J]. Vehicle System Dynamics, 2019, 57(1): 1-16. doi: 10.1080/00423114.2018.1445269 [35] 刘丙林, 李忠山, 陈磊, 等. 地铁车辆轮对不圆度规律及成因分析[J]. 现代城市轨道交通, 2019(7): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201907006.htmLIU Bing-lin, LI Zhong-shan, CHEN Lei, et al. Analysis on the wheel roundness of metro vehicle and causes of its irregularities[J]. Modern Urban Transit, 2019(7): 22-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201907006.htm [36] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264 [37] JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834. doi: 10.1080/00423114.2012.695022 [38] 李伟, 李言义, 张雄飞, 等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报, 2013, 49(18): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318003.htmLI Wei, LI Yan-yi, ZHANG Xiong-fei, et al. Mechanism of the polygonal wear of metro train wheels[J]. Journal of Mechanical Engineering, 2013, 49(18): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318003.htm [39] TAO Gong-quan, WANG Lin-feng, WEN Ze-feng, et al. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels[J]. Vehicle System Dynamics, 2018, 56(6): 883-899. doi: 10.1080/00423114.2017.1399210 [40] 刘欢, 陶功权, 蔡晶, 等. 车轮多边形态下机车轮轨动态响应研究[J]. 振动与冲击, 2020, 39(16): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htmLIU Huan, TAO Gong-quan, CAI Jing, et al. Influence of wheel polygon on locomotive wheel-rail dynamic response[J]. Journal of Vibration and Shock, 2020, 39(16): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm [41] FRÖHLING R, SPANGENBERG U, REITMANN E. Root cause analysis of locomotive wheel tread polygonisation[J]. Wear, 2019, 432/433: 102911. doi: 10.1016/j.wear.2019.05.026 [42] SPANGENBERG U. Variable frequency drive harmonics and interharmonics exciting axle torsional vibration resulting in railway wheel polygonisation[J]. Vehicle System Dynamics, 2020, 58(3): 404-424. doi: 10.1080/00423114.2019.1581235 [43] 吴丹, 丁旺才, 郭富强, 等. 车轮谐波磨耗对轮轨蠕滑特性的影响分析[J]. 振动与冲击, 2021, 40(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202104001.htmWU Dan, DING Wang-cai, GUO Fu-qiang, et al. Effects of harmonic wear of wheels on creep characteristics of a wheel-rail system[J]. Journal of Vibration and Shock, 2021, 40(4): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202104001.htm [44] 胡晓依, 任海星, 成棣, 等. 动车组车轮多边形磨耗形成与发展过程仿真研究[J]. 中国铁道科学, 2021, 42(2): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102012.htmHU Xiao-yi, REN Hai-xing, CHENG Di, et al. Numerical simulation on the formation and development of polygonal wear of EMU wheels[J]. China Railway Science, 2021, 42(2): 107-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102012.htm [45] 吴越, 韩健, 左齐宇, 等. 钢轨波磨对高速列车车轮多边形磨耗产生与发展的影响[J]. 机械工程学报, 2020, 56(17): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017021.htmWU Yue, HAN Jian, ZUO Qi-yu, et al. Effect of rail corrugation on initiation and development of polygonal wear on high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(17): 198-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017021.htm [46] 高阳, 于子良, 齐洪峰, 等. 轮对声振特性及多边形发展与轮辋厚度相关性研究[J]. 噪声与振动控制, 2020, 40(4): 132-136, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202004025.htmGAO Yang, YU Zi-liang, QI Hong-feng, et al. The correlation study between rim thickness and vib-acoustic characteristics and polygon development of wheelset[J]. Noise and Vibration Control, 2020, 40(4): 132-136, 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202004025.htm [47] 赵新利, 吴越, 郭涛, 等. 车轮多边形磨耗统计规律及关键影响因素分析[J]. 振动、测试与诊断, 2020, 40(1): 48-53, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001008.htmZHAO Xin-li, WU Yue, GUO Tao, et al. The statistical research and induction factor of polygonal wear of high-speed train wheels[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(1): 48-53, 202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001008.htm [48] 吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htmWU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm [49] 马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htmMA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engineering, 2012, 48(24): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm [50] 高阳, 于子良, 齐洪峰, 等. 西北复杂运行条件下车轮多边形发展规律研究[J]. 噪声与振动控制, 2020, 40(3): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202003022.htmGAO Yang, YU Zi-liang, QI Hong-feng, et al. Study on the development regulation of wheel polygon under the complex running conditions in Northwest China[J]. Noise and Vibration Control, 2020, 40(3): 118-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202003022.htm [51] 吴丹, 丁旺才, 商跃进, 等. 考虑车轮谐波磨耗的动车组车轴疲劳寿命[J]. 中国铁道科学, 2020, 41(3): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003013.htmWU Dan, DING Wang-cai, SHANG Yue-jin, et al. Fatigue life of EMU axle considering harmonic wear of wheel[J]. China Railway Science, 2020, 41(3): 111-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003013.htm [52] 张志波, 梁海啸, 侯茂锐, 等. 镟修工艺对动车组车轮多边形磨耗产生和发展的影响[J]. 中国铁路, 2021(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202101005.htmZHANG Zhi-bo, LIANG Hai-xiao, HOU Mao-rui, et al. Influence of reprofiling process on the generation and development of wheel polygon wear of EMUs[J]. China Railway, 2021(1): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202101005.htm [53] 乔青峰, 李明星, 赵晓男, 等. 研磨子抑制高速列车车轮多边形磨耗的机理研究[J]. 摩擦学学报, 2020, 40(2): 234-239. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202002012.htmQIAO Qing-feng, LI Ming-xing, ZHAO Xiao-nan, et al. Mechanism of suppression of polygonal wear of wheel on high-speed trains by abrasive block[J]. Tribology, 2020, 40(2): 234-239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202002012.htm [54] 伍安旭, 冯畅, 吴波, 等. 基于研磨子的车轮多边形抑制机理与跟踪试验[J]. 城市轨道交通研究, 2019, 22(5): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905040.htmWU An-xu, FENG Chang, WU Bo, et al. Suppression mechanism of wheel polygon and tracing test based on abrasive block[J]. Urban Mass Transit, 2019, 22(5): 143-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905040.htm [55] 常崇义, 李果, 张银花, 等. 轮轨材料硬度匹配对车轮多边形磨耗影响的试验研究[J]. 中国铁道科学, 2018, 39(2): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802012.htmCHANG Chong-yi, LI Guo, ZHANG Yin-hua, et al. Experimental study on influence of wheel-rail material hardness matching on wheel polygonal wear[J]. China Railway Science, 2018, 39(2): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802012.htm [56] 沈文林, 宋春元, 李国栋, 等. 高速动车组车轮硬度与车轮多边形形成关系及解决措施研究[J]. 铁道机车车辆, 2018, 38(4): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201804007.htmSHEN Wen-lin, SONG Chun-yuan, LI Guo-dong, et al. Research for high-speed EMU wheel hardness and polygon-form relationships with solutions[J]. Railway Locomotive and Car, 2018, 38(4): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201804007.htm [57] 赵晓男, 陈光雄, 崔晓璐, 等. 高速列车车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术, 2018, 47(8): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htmZHAO Xiao-nan, CHEN Guang-xiong, CUI Xiao-lu, et al. Formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htm [58] WU Xing-wen, RAKHEJA S, CAI Wu-bin, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099 [59] WU Yue, DU Xing, ZHANG He-ji, et al. Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train[J]. Journal of Zhejiang University: Science A, 2017, 18(8): 579-592. doi: 10.1631/jzus.A1600741 [60] 王宏谋. 某型动车组制动盘异常振动分析及缓解措施研究[J]. 铁道机车车辆, 2019, 39(4): 52-54, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201904013.htmWANG Hong-mou. Analysis and study on abnormal vibration of braking disc of EMU[J]. Railway Locomotive and Car, 2019, 39(4): 52-54, 72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201904013.htm [61] 刘韦, 马卫华, 罗世辉, 等. 考虑轮对弹性的车轮振动及车轮多边形化对轮轨力影响研究[J]. 铁道学报, 2013, 35(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306006.htmLIU Wei, MA Wei-hua, LUO Shi-hui, et al. Research on influence of wheel vibration and wheel polygonization on wheel-rail force in consideration of wheelset elasticity[J]. Journal of the China Railway Society, 2013, 35(6): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306006.htm [62] HUNG C F, HSU W L. Influence of long-wave length track irregularities on the motion of a high-speed train[J]. Vehicle System Dynamics, 2018, 56(1): 95-112. doi: 10.1080/00423114.2017.1346261 [63] KNOTHE K. Gleisdynamik[J]. Stahlbau, 2001, 70(9): 733-734. [64] CLARK R A, DEAN P A, ELKINS J A, et al. An investigation into the dynamic effects of railway vehicles running on corrugated rails[J]. Journal of Mechanical Engineering Science, 1982, 24(2): 65-76. doi: 10.1243/JMES_JOUR_1982_024_015_02 [65] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015.ZHAI Wan-ming. Vehicle-Track Coupling Dynamics[M]. Beijing: Science Press, 2015. (in Chinese) [66] BAEZA L, FAYOS J, RODA A, et al. High frequency railway vehicle-track dynamics through flexible rotating wheelsets[J]. Vehicle System Dynamics, 2008, 46(7): 647-659. doi: 10.1080/00423110701656148 [67] ZHANG Tao, CHEN Zai-gang, ZHAI Wan-ming, et al. Establishment and validation of a locomotive-track coupled spatial dynamics model considering dynamic effect of gear transmissions[J]. Mechanical Systems and Signal Processing, 2019, 119: 328-345. doi: 10.1016/j.ymssp.2018.09.032 [68] LING Liang, ZHANG Qing, XIAO Xin-biao, et al. Integration of car-body flexibility into train-track coupling system dynamics analysis[J]. Vehicle System Dynamics, 2018, 56(4): 485-505. doi: 10.1080/00423114.2017.1391397 [69] HAN Jian, ZHONG Shuo-qiao, XIAO Xin-biao, et al. High-speed wheel/rail contact determining method with rotating flexible wheelset and validation under wheel polygon excitation[J]. Vehicle System Dynamics, 2018, 56(8): 1233-1249. doi: 10.1080/00423114.2017.1408920 [70] ZHAI Wan-ming. Vehicle-Track Coupled Dynamics Models[M]. Berlin: Springer, 2020. [71] LIU Peng-fei, ZHAI Wan-ming, WANG Kai-yun. Establishment and verification of three-dimensional dynamic model for heavy-haul train-track coupled system[J]. Vehicle System Dynamics, 2016, 54(11): 1511-1537. doi: 10.1080/00423114.2016.1213862 [72] ZHAI Wan-ming, XIA He, CAI Cheng-biao, et al. High-speed train-track-bridge dynamic interactions—Part Ⅰ: theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2): 3-24. [73] XU Lei, ZHAI Wan-ming. Vehicle-track-tunnel dynamic interaction: a finite/infinite element modelling method[J]. Railway Engineering Science, 2021, 29(2): 109-126. doi: 10.1007/s40534-021-00238-x [74] LIU Xiao-yuan, ZHAI Wan-ming. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290. [75] 陈美, 翟婉明, 閤鑫, 等. 高速铁路多边形车轮通过钢轨焊接区的轮轨动力特性分析[J]. 科学通报, 2019, 64(25): 2573-2582. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925004.htmCHEN Mei, ZHAI Wan-ming, GE Xin, et al. Analysis of wheel-rail dynamic characteristics due to polygonal wheel passing through rail weld zone in high-speed railways[J]. Chinese Science Bulletin, 2019, 64(25): 2573-2582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925004.htm [76] SONG Ying, ZHANG Xue-mei, SUN Bao-chen. Influence of polygonal wear on dynamic performance of wheels on high-speed trains[J]. Tehni Ač ki Vjesnik: Technical Gazette, 2021, 28(1): 27-33. [77] 尹振坤, 吴越, 韩健. 高速列车车轮多边形磨耗对轮轨垂向力的影响[J]. 铁道学报, 2017, 39(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201710004.htmYIN Zhen-kun, WU Yue, HAN Jian. Effect of polygonal wear of high-speed train wheels on vertical force between wheel and rail[J]. Journal of the China Railway Society, 2017, 39(10): 26-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201710004.htm [78] 干锋, 戴焕云, 宋春元, 等. 车轮高阶不圆对轮对蛇行运动和等效锥度的影响[J]. 铁道学报, 2020, 42(7): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htmGAN Feng, DAI Huan-yun, SONG Chun-yuan, et al. Effect of out-of-round wheel on hunting movement and equivalent conicity of wheelset[J]. Journal of the China Railway Society, 2020, 42(7): 57-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htm [79] 彭来先, 韩健, 初东博, 等. 高速动车组垂向止挡异常振动特性及成因分析[J]. 机械工程学报, 2019, 55(12): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912014.htmPENG Lai-xian, HAN Jian, CHU Dong-bo, et al. Analysis of abnormal vibration characteristics and causes of vertical block in high-speed EMU[J]. Journal of Mechanical Engineering, 2019, 55(12): 121-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912014.htm [80] 杨润芝, 曾京. 高阶车轮多边形对轮轨系统振动影响分析[J]. 振动与冲击, 2020, 39(21): 101-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202021015.htmYANG Run-zhi, ZENG Jing. Influences of higher order wheel polygon on vibration of wheel-rail system[J]. Journal of Vibration and Shock, 2020, 39(21): 101-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202021015.htm [81] WU Xing-wen, RAKHEJA S, QU Sheng, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1817-1837. [82] 吴丹, 丁旺才, 王鹏. 考虑轮轨周期性磨耗因素的滚动接触动态特性研究[J]. 中南大学学报(自然科学版), 2021, 52(4): 1389-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202104035.htmWU Dan, DING Wang-cai, WANG Peng. Research on dynamic characteristics of rolling contact considering wheel-rail periodic wear[J]. Journal of Central South University(Science and Technology), 2021, 52(4): 1389-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202104035.htm [83] SHI Huai-long, WANG Jian-bin, WU Ping-bo, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56(8): 1187-1206. [84] 罗光兵. 高速客车车轮不圆对车辆振动影响的分析[J]. 铁路计算机应用, 2017, 26(7): 74-77, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201707021.htmLUO Guang-bing. Analysis on influence of wheel non circle of high speed passenger train for vehicle vibration[J]. Railway Computer Application, 2017, 26(7): 74-77, 83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201707021.htm [85] 王晨, 马卫华, 罗世辉, 等. 机车车辆踏面损伤机理研究[J]. 振动、测试与诊断, 2016, 36(5): 890-896, 1022-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-KXZG201723005.htmWANG Chen, MA Wei-hua, LUO Shi-hui, et al. Research on the tread damage of locomotives[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(5): 890-896, 1022-1023. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXZG201723005.htm [86] 迟胜超, 刘兵, 钱彦平, 等. 地铁列车全车车轮不圆度对比测试分析[J]. 铁道科学与工程学报, 2020, 17(8): 2093-2100. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008025.htmCHI Sheng-chao, LIU Bing, QIAN Yan-ping, et al. Comparison test and analysis of wheel out-of-roundness of metro train[J]. Journal of Railway Science and Engineering, 2020, 17(8): 2093-2100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008025.htm [87] FU De-long, WANG Wen-jing, DONG Lei. Analysis on the fatigue cracks in the bogie frame[J]. Engineering Failure Analysis, 2015, 58: 307-319. [88] WANG Bin-jie, XIE Shu-qiang, JIANG Chao-yong, et al. An investigation into the fatigue failure of metro vehicle bogie frame[J]. Engineering Failure Analysis, 2020, 118: 104922. [89] 王斌杰, 谢树强, 齐延辉, 等. 运用条件下城轨车辆转向架构架疲劳寿命研究[J]. 铁道学报, 2020, 42(8): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202008006.htmWANG Bin-jie, XIE Shu-qiang, QI Yan-hui, et al. Research on fatigue life of bogie frame of urban mass transit vehicle under operating conditions[J]. Journal of the China Railway Society, 2020, 42(8): 37-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202008006.htm [90] WU Hao, WU Ping-bo, LI Fan-song, et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis, 2019, 100: 351-364. [91] HU Wei-gang, LIU Zhi-ming, LIU De-kun, et al. Fatigue failure analysis of high speed train gearbox housings[J]. Engineering Failure Analysis, 2017, 73: 57-71. [92] 肖乾, 郑继峰, 昌超, 等. 高速列车谐波磨耗车轮滚动接触疲劳特性分析[J]. 润滑与密封, 2017, 42(1): 1-7, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201701001.htmXIAO Qian, ZHENG Ji-feng, CHANG Chao, et al. Analysis of harmonic wear wheels/rail rolling contact fatigue of high speed train[J]. Lubrication Engineering, 2017, 42(1): 1-7, 14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201701001.htm [93] 张波, 杨云帆, 凌亮, 等. 车轮多边形对重载机车轮轨相互作用及接触损伤的影响分析[J]. 西南交通大学学报, 2023, 58(6): 1339-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306015.htmZHANG Bo, YANG Yun-fan, LING Liang, et al. Wheel-rail interaction and rolling fatigue damage of heavy-haul locomotive subjected to wheel polygonal wear[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1339-1346. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306015.htm [94] YAN Rui-guo, WANG Wen-jing, GUO Yu-tong, et al. Influence of wheel out-of-roundness on the remaining life of railway wheels under mixed-mode fatigue loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45(7): 2072-2085. doi: 10.1111/ffe.13723/abstract [95] KANG Xi, CHEN Guang-xiong, ZHU Qi, et al. Effect of polygon-shaped wheels on fatigue fracture of fastener clips in high-speed railway lines[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(8): 973-985. [96] 张笃超, 赵鑫, 黄双超, 等. 车轮多边形激励下的滚动接触疲劳裂纹瞬态扩展行为研究[J]. 润滑与密封, 2022, 47(5): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202205009.htmZHANG Du-chao, ZHAO Xin, HUANG Shuang-chao, et al. A study on transient propagation behavior of rolling contact fatigue cracks in the presence of wheel polygon[J]. Lubrication Engineering, 2022, 47(5): 60-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202205009.htm [97] 肖乾, 王丹红, 陈道云, 等. 高速列车轮轨激励作用机理及其影响综述[J]. 交通运输工程学报, 2021, 21(3): 93-109. doi: 10.19818/j.cnki.1671-1637.2021.03.005XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Review on mechanism and influence of wheel-rail excitation of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 93-109. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.005 [98] PAN Rui, ZHAO Xiu-juan, LIU Peng-tao, et al. Micro-mechanism of polygonization wear on railroad wheels[J]. Wear, 2017, 392/393: 213-220. [99] 吴丹. 轮轨周期性磨耗及其引起的车轨耦合系统动力学特性研究[D]. 兰州: 兰州交通大学, 2022.WU Dan. Research on wheel-rail periodic wear anddynamic characteristics of vehicle-rail coupling system[D]. Lanzhou: Lanzhou Jiaotong University, 2022. (in Chinese) [100] 王鹏, 陶功权, 杨晓璇, 等. 中国高速列车车轮多边形磨耗特征分析[J]. 西南交通大学学报, 2023, 58(6): 1357-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306017.htmWANG Peng, TAO Gong-quan, YANG Xiao-xuan, et al. Analysis of polygonal wear characteristics of Chinese high-speed train wheels[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1357-1365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306017.htm