Simulation analysis of locomotive gear wear under internal and external excitations
-
摘要: 通过Archard磨损公式和Hertz接触模型,建立了考虑动态磨损系数的机车齿轮磨损数值仿真模型,计算了理想情况下齿面磨损分布情况;利用ABAQUS二次开发UMESHMOTION子程序,结合ALE自适应网格,建立了齿轮磨损有限元模型,在仿真后通过MATLAB提取齿面磨损信息,并将有限元计算结果与数值仿真结果进行了对比;通过改变模型参数,研究了摩擦因数和中心距误差对齿面磨损的影响;基于多体动力学软件SIMPACK建模仿真得到了轮轨激励下从动齿轮垂向振动位移,并将其加载到有限元模型进行齿面磨损仿真计算。计算结果表明:2种计算方法得出的齿轮磨损分布情况较为一致,即主、从动齿轮最大磨损深度均在齿根处,节线处磨损深度为0,且节线两侧单双齿交替区域磨损深度均出现突变,磨损深度总量随摩擦因数的增大而增加,且均位于以节线为界靠近齿根处,当摩擦因数最大值取0.25时,磨损深度总量为3.104×10-6 mm,而齿顶处相反;当中心距误差为负时,随着中心距的减少,磨损深度总量呈增大趋势,最大值为3.313×10-6 mm,而当中心距误差为正时,随着中心距的增大,磨损深度总量变化甚微;轮轨外部激励会加剧齿根处磨损,影响齿轮寿命及行车安全。Abstract: Based on the Archard wear formula and Hertz contact model, the numerical simulation model of locomotive gear wear considering dynamic wear coefficient was established, and the wear distribution of tooth surface was calculated under ideal condition. The finite element model of gear wear was established by the secondary development of the UMESHMOTION subroutine in ABAQUS and ALE adaptive mesh. After simulation, the tooth surface wear information was extracted by MATLAB, and the results of finite element calculation were compared with those of numerical simulation. The effects of friction factor and center distance error on tooth surface wear were studied by changing the model parameters. Based on the multi-body dynamics software SIMPACK, the vertical vibration displacement of the driven gear under wheel-rail excitation was obtained and loaded into the finite element model for simulation and calculation of tooth surface wear. Calculation results show that the gear wear distributions obtained by the two calculation methods are consistent, or in other words, the maximum wear depths of the driving and driven gears are at the root of the tooth, and the wear depth of the pitch line is 0. The wear depths of the alternating area of single and double teeth on both sides of the pitch line are abrupt. The total wear depth increases with the increase in friction factor, and all of them are located near the root of the tooth, with the pitch line as the boundary. When the maximum friction factor is 0.25, the total wear depth is 3.104×10-6 mm, while the opposing situation is observed at the tip of the tooth. When the center distance error is negative, the total wear depth increases with the decrease in the center distance, and the maximum value is 3.313×10-6 mm. However, when the center distance error is positive, the total wear depth changes slightly with the increase in the center distance. Wheel-rail external excitation will aggravate wear at the root of the tooth, affecting gear life and driving safety.
-
表 1 某型机车传动齿轮基本参数
Table 1. Basic parameters of transmission gear of a locomotive
参数 主动齿轮 从动齿轮 齿轮材料 18CrNiMo7-6 模数/mm 8 压力角/(°) 20 齿顶高系数 1 顶隙系数 0.25 0.25 变位系数 0.362 0.151 齿宽/mm 140 齿数 23 120 弹性模量/GPa 206 泊松比 0.3 表面粗糙度/μm 0.3 中心距/mm 572 黏度系数/(Pa·s) 6.5×10-3 润滑油黏压因数/(m2·N-1) 1.33×10-8 -
[1] 范士娟, 何姗, 徐玉萍, 等. 高速铁路对江西省虹吸效应的影响分析[J]. 华东交通大学学报, 2021, 38(1): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202101011.htmFAN Shi-juan, HE Shan, XU Yu-ping, et al. Analysis of the influence of high speed railway on the siphon effect in Jiangxi Province[J]. Journal of East China Jiaotong University, 2021, 38(1): 67-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202101011.htm [2] FLODIN A, ANDERSSON S. Wear simulation of spur gears[J]. Tribotest, 1999, 5(3): 225-249. doi: 10.1002/tt.3020050303 [3] FLODIN A, ANDERSSON S. A simplified model for wear prediction in helical gears[J]. Wear, 2001, 249(3/4): 285-292. [4] ZHOU Chang-jiang, XING Ming-cai, HU Bo, et al. A modified wear model considering contact temperature for spur gears in mixed elastohydrodynamic lubrication[J]. Tribology Letters, 2020, 68(4): 1-17. [5] HUANG De-quan, WANG Zhong-hou, KUBO A. Hypoid gear integrated wear model and experimental verification design and test[J]. International Journal of Mechanical Sciences, 2019, 166(11): 105228. [6] 韩致信, 石文瑞, 彭国义, 等. 齿轮系统振动加剧齿轮磨损毁坏的机理分析[J]. 机械传动, 2006, 30(2): 47-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD200602016.htmHAN Zhi-xin, SHI Wen-rui, PENG Guo-yi, et al. Mechanism research on gear abrasion failure caused by the vibration of the gear system[J]. Journal of Mechanical Transmission, 2006, 30(2): 47-49, 55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD200602016.htm [7] 周长江, 雷玉英, 汪红兵, 等. 准静态与动态载荷下斜齿轮齿面黏着磨损计算[J]. 机械工程学报, 2018, 54(23): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201823002.htmZHOU Chang-jiang, LEI Yu-ying, WANG Hong-bing, et al. Calculation of adhesion and wear of helical gears under quasi-static and dynamic loads[J]. Journal of Mechanical Engineering, 2018, 54(23): 10-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201823002.htm [8] 何荣国, 江亲瑜, 姚一富. 渐开线斜齿圆柱齿轮磨损的数值仿真[J]. 润滑与密封, 2007, 32(3): 88-91, 130. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200703026.htmHE Rong-guo, JIANG Qin-yu, YAO Yi-fu. Numerical simulation of tooth wearing for involute helical cylindrical gears [J]. Lubrication Engineering, 2007, 32(3): 88-91, 130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200703026.htm [9] 刘峰壁. 直齿圆柱齿轮磨损过程模拟[J]. 机械科学与技术, 2004, 23(1): 55-56, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200401016.htmLIU Feng-bi. Simulation of wear processin spur gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2004, 23(1): 55-56, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200401016.htm [10] 张俊, 卞世元, 鲁庆, 等. 准静态工况下渐开线直齿轮齿面磨损建模与分析[J]. 机械工程学报, 2017, 53(5): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201705017.htmZHANG Jun, BIAN Shi-yuan, LU Qing, et al. Quasi-static-model-based wear analysis of spur gears[J]. Journal of Mechanical Engineering, 2017, 53(5): 136-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201705017.htm [11] YUKSEL C, KAHRAMAN A. Dynamic tooth loads of planetary gear sets having tooth profile wear[J]. Mechanism and Machine Theory, 2004, 39(7): 695-715. [12] 宁志远, 白争锋, 蒋鑫, 等. 磨损与动力学耦合的行星传动齿轮动力学研究[J]. 力学学报, 2022, 54(4): 1125-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202204027.htmNING Zhi-yuan, BAI Zheng-feng, JIANG Xin, et al. Study on dynamics of planetary transmission gear considering wear and dynamics coupling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1125-1135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202204027.htm [13] 潘冬, 赵阳, 李娜, 等. 齿轮磨损寿命预测方法[J]. 哈尔滨工业大学学报, 2012, 44(9): 29-33, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201209007.htmPAN Dong, ZHAO Yang, LI Na, et al. The wear life prediction method of gear system[J]. Journal of Harbin Institute of Technology, 2012, 44(9): 29-33, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201209007.htm [14] WANG Hong-bing, ZHOU Chang-jiang, LEI Yu-ying, et al. An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication[J]. Wear, 2019, 426/427: 896-909. [15] 宁志远, 陈长征. 混合弹流润滑下内啮合直齿轮动态特性磨损退化研究[J]. 振动与冲击, 2021, 40(16): 183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116023.htmNING Zhi-yuan, CHEN Chang-zheng. A study on wear degradation of internal spur gear under hybrid elastohydrodynamic lubrication[J]. Journal of Vibration and Shock, 2021, 40(16): 183-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116023.htm [16] 张荣华, 曹莉, 周建星, 等. 行星齿轮传动的齿面动态磨损特性[J]. 西安交通大学学报, 2021, 55(8): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202108006.htmZHANG Rong-hua, CAO Li, ZHOU Jian-xing, et al. Dynamic tooth surface wear characteristics of planetary gear transmission[J]. Journal of Xi'an Jiaotong University, 2021, 55(8): 42-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202108006.htm [17] 陈魏, 雷雨龙, 李兴忠, 等. 低速工况下渐开线圆柱直齿轮齿面粘着磨损计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1628-1634. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105009.htmCHEN Wei, LEI Yu-long, LI Xing-zhong, et al. Calculation of adhesive wear of involute cylindrical spur gear under low-speed conditions[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1628-1634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105009.htm [18] ZHANG Jun, LIU Xian-zeng. Effects of misalignment on surface wear of spur gears[J]. Journal of Engineering Tribology, 2015, 229(9): 1145-1158. [19] KAHRAMAN A, SINGH R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146(1): 135-156. [20] SEKAR P R, SATHISHKUMAR R. Enhancement of wear resistance on normal contact ratio spur gear pairs through non-standard gears [J]. Wear, 2017, 380/381: 228-239. [21] BAJPAI P, KAHRAMAN A, ANDERSON N E. A surface wear prediction methodology for parallel-axis gear pairs[J]. Journal of Tribology, 2004, 126(3): 597-605. [22] 唐进元, 周炜, 陈思雨. 齿轮传动啮合接触冲击分析[J]. 机械工程学报, 2011, 47(7): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201107005.htmTANG Jin-yuan, ZHOU Wei, CHEN Si-yu. Contact-impact analysis of gear transmission system[J]. Journal of Mechanical Engineering, 2011, 47(7): 22-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201107005.htm [23] 魏东, 魏沛堂, 刘怀举, 等. 微齿轮齿面磨损行为及仿真分析[J]. 重庆大学学报, 2022, 45(4): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202204003.htmWEI Dong, WEI Pei-tang, LIU Huai-ju, et al. Wear behavior and simulation analysis of micro gear tooth surface[J]. Journal of Chongqing University, 2022, 45(4): 22-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202204003.htm [24] PRIEST M, TAYLOR C M. Automobile engine tribology-approaching the surface[J]. Wear, 2000, 241(2): 193-203. [25] DING Hua-li, KAHRAMAN A. Interactions between nonlinear spur gear dynamics and surface wear[J]. Journal of Sound and Vibration, 2007, 307(3-5): 662-679. [26] WANG Hong-bing, ZHOU Chang-jiang, LEI Yu-ying, et al. An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication[J]. Wear, 2019, 426/427: 896-909. [27] FLODIN A. Wear investigation of spur gear teeth[J]. Tribotest, 2000, 7(1): 45-60. [28] BOSE K K, PENCHALIAH R. 3-D FEM wear prediction of brass sliding against bearing steel using constant contact pressure approximation technique[J]. Tribology Online, 2019, 14(4): 194-207. [29] BRAUER J, ANDERSSON S. Simulation of wear in gears with flank interference: a mixed FE and analytical approach[J]. Wear, 2003, 254(11): 1216-1232. [30] 刘辉, 潘文斌, 艾永生, 等. 考虑摩擦的螺旋锥齿轮齿面接触应力分析[J]. 科学技术创新, 2021(19): 134-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202119058.htmLIU Hui, PAN Wen-bin, AI Yong-sheng, et al. Analysis on contact stress of spiral bevel gear by considering friction[J]. Scientific and Technological Innovation, 2021(19): 134-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202119058.htm [31] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions[J]. Journal of Sound and Vibration, 2017, 408: 220-233.