Analysis of vehicle vibration transfer characteristics based on flexible vehicle system and OTPA method
-
摘要: 为了准确分析轨道车辆在较宽频域范围内的振动特性及传递规律,提出了一种基于弹性车辆系统动力学仿真模型的工况传递路径分析(OTPA)方法;建立了包含柔性轮对、构架和车体的弹性车辆系统动力学模型和与之结构参数完全相同的刚体模型,从时域的角度研究了轮对、构架和车体的振动特性,并将仿真结果与实测数据进行了对比,探究了弹性处理方式对车辆振动的影响,得出了振动能量的衰减规律;从频域的角度研究了在实测钢轨垂向不平顺的激励下,弹性车辆系统的振动特性;运用OTPA方法仿真分析了钢轨垂向不平顺结合车轮多边形的复杂工况下,车辆系统从轮对到构架至车体这一自下而上的振动传递过程当中垂向振动的主要传递路径。研究结果表明:车辆系统的弹性处理方式对整车振动有重要影响,弹性模型的轮对、构架和车体的振动加速度相比于刚体模型在中低频范围内更接近实测值,轴箱、构架和车体的最大振动幅值分别为250~450、30~40、3~4 m·s-2,由轮对至构架到车体,振动幅值呈一个数量级衰减;弹性模型的平稳性指标大于刚体模型,并且速度越大趋势越明显,车辆的弹性振动对运行性能的影响随着速度的提高而增大;车辆系统在复杂工况下,振动主要通过一系钢弹簧传递至构架,再通过空气弹簧和牵引拉杆传递至车内地板。Abstract: In order to accurately analyze the vibration characteristics and transfer rules of rail vehicles in the wide frequency domain, a scheme for operational transfer path analysis (OTPA) based on a dynamics simulation model of a flexible vehicle system was proposed. A dynamics model of a flexible vehicle system including flexible wheelsets, frame, and vehicle body, as well as a rigid body model with identical structural parameters was established. The vibration characteristics of the wheelset, frame, and vehicle body were studied from the perspective of time domain. The simulation results were compared with the measured data to explore the effect of flexible treatment on vehicle vibration. The attenuation law of vibration energy was obtained. Meanwhile, the vibration characteristics of the flexible vehicle system under the excitation of measured vertical irregularities of steel rails were investigated from the perspective of the frequency domain. The OTPA method was used to simulate and analyze the main transfer path of vertical vibration in the bottom-up vibration transfer process of the vehicle system from wheelset to frame and vehicle body under complex condition of vertical irregularities of steel rails combined with wheel polygon. Research results indicate that the flexible treatment method of the vehicle system has a significant impact on vehicle vibration. Compared with the rigid body model, the vibration accelerations of wheelsets, frame, and vehicle body in the flexible vehicle system model are closer to measured values in the mid-to-low frequency range. The maximum vibration amplitudes of axle box, frame, and vehicle body are 250-450, 30-40, and 3-4 m·s-2, respectively. The vibration amplitude attenuates by an order of magnitude from the wheelsets to the frame and vehicle body. The sperling index of the flexible vehicle system model is greater than that of the rigid body model, and the trend becomes more obvious as the speed increases. The impact of a vehicle's flexible vibration on the operational performance increases with the increase in speed. Under complex working conditions, the vibration of the vehicle system is mainly transferred to the frame through a series of steel springs, and then transferred to the interior floor through air springs and traction rods.
-
Key words:
- rail transit /
- flexible vehicle system /
- OPTA /
- vertical irregularity of steel rail /
- wheel polygon /
- rigid body model /
- transfer path
-
表 1 模态对比
Table 1. Comparison of modals
部件 阶次 频率/Hz 误差率/% 自由模态 正则化后模态 车体 1 8.000 8.130 1.60 2 8.345 8.669 3.74 3 9.687 9.863 1.78 构架 1 42.070 42.636 1.33 2 68.943 69.863 1.32 3 86.183 87.215 1.18 轮对 1 97.190 97.837 0.66 2 102.380 102.353 0.03 3 102.380 102.353 0.03 表 2 振动加速度对比
Table 2. Comparison of vibration accelerations
m·s-2 振动加速度 刚体模型 弹性模型 实测值 均方根值 最大值 均方根值 最大值 均方根值 最大值 轮对横向 2.08 14.05 1.72 12.87 2.17 13.17 轮对垂向 4.29 32.54 5.66 69.85 7.19 69.51 构架横向 1.32 5.48 1.98 14.86 1.85 12.76 构架垂向 2.32 8.99 2.84 26.15 3.15 19.26 车体横向 0.11 0.43 0.21 0.82 0.13 0.43 车体垂向 0.23 0.82 0.35 1.33 0.37 1.31 表 3 OTPA仿真工况
Table 3. OTPA simulation conditions
轨道激励 车轮多边形阶数 磨耗深度/mm 时间/s 德国低干扰谱 0 2.0 1、3、5 0.10 6.0 7、9、11、13 0.05 8.0 15、17、19 0.03 6.0 21、23、25 0.01 6.0 钢轨垂向不平顺 0 0.8 1、3、5 0.10 2.4 7、9、11、13 0.05 3.2 15、17、19 0.03 2.4 21、23、25 0.01 2.4 表 4 车体垂向振动不同峰值频率下的贡献量
Table 4. Vertical vibration contribution amounts of vehicle body at different peak frequencies
dB 位置 贡献量 2.63 Hz 28.69 Hz 48.54 Hz 80.58 Hz 钢簧帽垂向 89.88 86.08 73.76 77.33 钢簧帽横向 99.73 92.07 83.40 90.36 抗蛇行减振器构架端垂向 119.91 101.77 82.67 96.07 抗蛇行减振器构架端横向 117.34 112.36 93.95 98.28 空簧座垂向 122.84 103.91 94.61 91.21 空簧座横向 126.72 105.83 89.11 104.14 牵引拉杆构架端横向 112.59 95.38 93.54 84.79 牵引拉杆构架端垂向 126.51 110.28 94.40 82.94 -
[1] CHAAR N, BERG M. Vehicle-track dynamic simulations of a locomotive considering wheelset structural flexibility and comparison with measurements[J]. Journal of Rail and Rapid Transit, 2005, 219(4): 225-238. doi: 10.1243/095440905X8907 [2] 任尊松, 刘志明. 高速动车组振动传递及频率分布规律[J]. 机械工程学报, 2013, 49(16): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htmREN Zun-song, LIU Zhi-ming. Vibration and frequency domain characteristics of high speed EMU[J]. Journal of Mechanical Engineering, 2013, 49(16): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm [3] FROHLING R D. Low frequency dynamic vehicle/track interaction: modelling and simulation[J]. Vehicle System Dynamics, 1998, 29(S1): 30-46. [4] SZOLC T. Medium frequency dynamic investigation of the railway wheelset-track system using a discrete-continuous model[J]. Archive of Applied Mechanics, 1998, 68(1): 30-45. doi: 10.1007/s004190050144 [5] POPP K, KRUSE H, KAISER I. Vehicle-track dynamics in the mid-frequency range[J]. Vehicle System Dynamics, 1999, 31(5/6): 423-464. [6] NAKAGAWA C, SHIMAMUNE R, WATANABE K, et al. Fundamental study on the effect of high-frequency vibration in the vertical and lateral directions on ride comfort[J]. Quarterly Report of RTRI, 2010, 51(2): 101-104. doi: 10.2219/rtriqr.51.101 [7] 包学海, 池茂儒, 卢耀辉, 等. 基于子结构法的车辆系统刚柔混合动力学建模方法研究[J]. 铁道机车车辆, 2009, 29(3): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200903002.htmBAO Xue-hai, CHI Mao-ru, LU Yao-hui, et al. Research on vehicle system dynamics model of rigid-flexible mixture based on substructure method[J]. Railway Locomotive and Car, 2009, 29(3): 8-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200903002.htm [8] CARVALHO V N, RENDE B F R, SILVA A D G, et al. Robust balancing approach for rotating machines based on fuzzy logic[J]. Journal of Vibration and Acoustics, 2018, 140(5): 1-9. [9] BAEZA L, FAYOS J, RODA A, et al. High frequency railway vehicle-track dynamics through flexible rotating wheelsets[J]. Vehicle System Dynamics, 2008, 46(7): 647-659. doi: 10.1080/00423110701656148 [10] 魏伟, 赵兴钢. 轮对振动和噪声的分析[J]. 噪声与振动控制, 2007, 27(4): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200704029.htmWEI Wei, ZHAO Xing-gang. Analysis on vibration and noise of vehicle wheel[J]. Noise and Vibration Control, 2007, 27(4): 99-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200704029.htm [11] 刘玉涛, 李成辉, 亓伟, 等. 轮对中高频振动仿真模型[J]. 中国铁道科学, 2016, 37(3): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201603013.htmLIU Yu-tao, LI Cheng-hui, QI Wei, et al. Simulation model for medium and high frequency vibration of wheelset[J]. China Railway Science, 2016, 37(3): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201603013.htm [12] 任尊松, 孙守光, 刘志明. 构架作弹性体处理时的客车系统动力学仿真[J]. 铁道学报, 2004, 26(4): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404007.htmREN Zun-song, SUN Shou-guang, LIU Zhi-ming. Dynamic simulation of the passenger cars with elastic bogies[J]. Journal of the China Railway Society, 2004, 26(4): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404007.htm [13] 刘键, 石广田. 弹性构架对车辆系统动力学影响研究[J]. 机械研究与应用, 2016, 29(1): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201601039.htmLIU Jian, SHI Guang-tian. Study on effects of elastic bogie stiffness on vehicle system dynamics[J]. Mechanical Research and Application, 2016, 29(1): 117-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201601039.htm [14] 肖乾, 罗佳文, 周生通, 等. 考虑弹性车体的轨道车辆转向架悬挂参数多目标优化设计[J]. 中国铁道科学, 2021, 42(2): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102014.htmXIAO Qian, LUO Jia-wen, ZHOU Sheng-tong, et al. Multiobjective optimization design for suspension parameters of rail vehicle bogie considering elastic carbody[J]. China Railway Science, 2021, 42(2): 125-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102014.htm [15] 郭林生, 文永蓬, 尚慧琳, 等. 考虑车下设备的城轨车辆弹性车体垂向振动特性研究[J]. 振动与冲击, 2019, 38(21): 97-103, 125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201921015.htmGUO Lin-sheng, WEN Yong-peng, SHANG Hui-lin, et al. Vertical vibration characteristics of urban rail elastic vehicle body with under-vehicle equipment[J]. Journal of Vibration and Shock, 2019, 38(21): 97-103, 125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201921015.htm [16] 王珊珊, 任尊松, 孙守光, 等. 某型弹性高速车辆系统振动传递特性研究[J]. 振动工程学报, 2016, 29(1): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201601019.htmWANG Shan-shan, REN Zun-song, SUN Shou-guang, et al. Vibration and transmission characteristics of one elastic high-speed vehicle system[J]. Journal of Vibration Engineering, 2016, 29(1): 148-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201601019.htm [17] 石怀龙, 屈升, 张大福, 等. 高速动车组线路动力学响应特性研究[J]. 铁道学报, 2019, 41(10): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201910007.htmSHI Huai-long, QU Sheng, ZHANG Da-fu, et al. Dynamic response performance analysis of high-speed trains on track[J]. Journal of the China Railway Society, 2019, 41(10): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201910007.htm [18] 徐宁, 任尊松, 薛蕊, 等. 不同车辆-轨道垂向动力学模型功率流传递特性研究[J]. 铁道学报, 2019, 41(5): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905007.htmXU Ning, REN Zun-song, XUE Rui, et al. Study on power flow transfer characteristics with different vehicle/track system dynamics models[J]. Journal of the China Railway Society, 2019, 41(5): 35-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905007.htm [19] DE SITTER G, DEVRIENDT C, GUILLAUME P, et al. Operational transfer path analysis[J]. Mechanical Systems and Signal Processing, 2010, 24(2): 416-431. doi: 10.1016/j.ymssp.2009.07.011 [20] DE KLERK D, OSSIPOV A. Operational transfer path analysis: theory, guidelines and tire noise application[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 1950-1962. doi: 10.1016/j.ymssp.2010.05.009 [21] 褚志刚, 熊敏, 杨洋, 等. 车内噪声时域传递路径分析[J]. 振动与冲击, 2015, 34(17): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201517028.htmCHU Zhi-gang, XIONG Min, YANG Yang, et al. Time-domain transfer path analysis of automobile interior noise[J]. Journal of Vibration and Shock, 2015, 34(17): 161-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201517028.htm [22] 郭荣, 裘剡, 房怀庆, 等. 频域传递路径分析方法(TPA)的研究进展[J]. 振动与冲击, 2013, 32(13): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201313012.htmGUO Rong, QIU Yan, FANG Huai-qing, et al. Advance in studying on transfer path analysis methods in frequency domain[J]. Journal of Vibration and Shock, 2013, 32(13): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201313012.htm [23] 伍先俊, 吕亚东, 隋富生. 工况传递路径分析法原理及其应用[J]. 噪声与振动控制, 2014, 34(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201401007.htmWU Xian-jun, LYU Ya-dong, SUI Fu-sheng. Basic theory of operational transfer path analysis and its application[J]. Noise and Vibration Control, 2014, 34(1): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201401007.htm [24] 鲜敏, 赵阳阳, 陈才慧. 基于OTPA方法的怠速噪声分析[J]. 中国汽车, 2021(1): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ202101002.htmXIAN Min, ZHAO Yang-yang, CHEN Cai-hui. Idle noise analysis based on OTPA method[J]. China Automobile, 2021(1): 4-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ202101002.htm [25] 梁锐, 顾彦. 基于工况传递路径法的室内通过噪声贡献量研究[J]. 中国汽车, 2019(11): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ201911013.htmLIANG Rui, GU Yan. Indoor passby contribution analysis research based on OTPA[J]. China Automobile, 2019(11): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ201911013.htm [26] 陈克, 姜少玮, 张晓冬. 基于工况传递路径分析方法的车内噪声源贡献量分析[J]. 沈阳工业大学学报, 2021, 43(6): 652-661. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY202106010.htmCHEN Ke, JIANG Shao-wei, ZHANG Xiao-dong. Analysis of noise source contribution in vehicle based on operational transfer path analysis method[J]. Journal of Shenyang University of Technology, 2021, 43(6): 652-661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY202106010.htm [27] 王彬星, 郑四发, 李传兵, 等. 车内噪声传递率建模及计算[J]. 振动、测试与诊断, 2014, 34(4): 693-698. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201404017.htmWANG Bin-xing, ZHENG Si-fa, LI Chuan-bing, et al. Effect of elastic framework on vibration characteristics of vehicle[J]. Vibration, Test and Diagnosis, 2014, 34(4): 693-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201404017.htm [28] 刘长利, 夏春明, 郑建荣, 等. 碰摩和油膜耦合故障转子系统周期运动分岔分析[J]. 振动与冲击, 2008, 27(5): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200805025.htmLIU Chang-li, XIA Chun-ming, ZHENG Jian-rong, et al. On the bifurcation of periodic motion of rotor system with rub-impact and oil fault[J]. Journal of Vibration and Shock, 2008, 27(5): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200805025.htm [29] RAMIREZ J P, NIJMEIJER H. The poincaré method: a powerful tool for analyzing synchronization of coupled oscillators[J]. Indagationes Mathematicae, 2015, 27(5): 1127-1146. [30] 刘明杰. 固定界面模态综合法的动力学原理[J]. 浙江大学学报, 1985(6): 189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC198506018.htmLIU Ming-jie. The dynamics principle of fixed-interface model synthesis method[J]. Journal of Zhejiang University, 1985(6): 189-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC198506018.htm [31] 安方. 固定界面模态综合法的理论分析[D]. 南京: 南京航空航天大学, 2008.AN Fang. Research on the theoretical analysis of fixed-interface modal synthesis techiniques[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese) [32] 周亚波, 池茂儒, 蔡吴斌, 等. 铁道车辆异常振动噪声的原因分析[J]. 机械工程学报, 2021, 57(4): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104017.htmZHOU Ya-bo, CHI Mao-ru, CAI Wu-bin, et al. Causes analysis of abnormal vibration and noise in railway vehicles[J]. Journal of Mechanical Engineering, 2021, 57(4): 148-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104017.htm