New calculation method for anti-skid efficiency based on deceleration envelope correction
-
摘要: 为解决现有防滑效率计算方法准确性低、评价效果差等问题,在深入分析列车制动防滑过程中轮轨黏着系数变化规律及特点的基础上,修正了列车制动防滑过程减速度峰值包络线,使其接近理想减速度曲线,进而提出一种新型防滑效率计算方法;结合列车制动防滑系统实际工作原理,搭建了列车制动防滑效率仿真验证平台,在仿真层面验证了减速度包络线修正的正确性和新型防滑效率计算方法的准确性;在不同仿真工况下对比分析了6种防滑效率计算方法的合理性和防滑性能评价效果,并基于实车防滑试验验证了新方法的实用性。研究结果表明:搭建的列车制动防滑效率仿真验证平台所得列车制动时间、制动距离等计算结果与相同工况下实车防滑试验结果的相对误差不超过5%,可用来验证和分析防滑效率计算方法与防滑性能评价效果;修正后的减速度峰值包络线与理想减速度曲线的相对误差不超过4.5%;当防滑控制策略不变时,新型防滑效率计算方法对列车在不同制动级位和黏着水平下的仿真结果相差不超过1.1%,试验结果相差不超过3.5%,且防滑效率均小于100%,稳定性良好;采用不同防滑控制策略时,新型防滑效率计算方法的仿真结果存在明显差异,且不同控制策略对应的防滑效率与其防滑性能正相关,能体现出不同防滑系统间的性能差异;新型防滑效率计算方法能通过实车防滑试验计算防滑效率,为实车提供了一种新的防滑性能评价手段。Abstract: To solve the problems of low accuracy and poor evaluation effect of existing anti-skid efficiency calculation methods, based on the in-depth analysis of change rules and characteristics of wheel-rail adhesion coefficient during the train braking anti-skid process, the peak deceleration envelope in the train braking anti-skid process was corrected to make it close to the ideal deceleration curve. Then, a new anti-skid efficiency calculation method was proposed. Combined with the actual working principles of train braking anti-skid systems, a simulation verification platform for the train braking anti-skid efficiency was built. The correctness of the deceleration envelope correction and the accuracy of the new anti-skid efficiency calculation method were verified at the simulation level. The rationalities and the anti-skid performance evaluation effects of six anti-skid efficiency calculation methods were compared and analyzed under different simulation conditions, and the practical applicability of the new method was verified based on the real vehicle anti-skid test. Research results show that the relative errors of braking time and braking distance between the simulation verification platform for train braking anti-skid efficiency and the actual vehicle anti-skid test results are less than 5% under the same condition. Therefore, the platform can be used to verify and analyze the anti-skid efficiency calculation method and the anti-skid performance evaluation effect. The relative error between the corrected peak deceleration envelope and the ideal deceleration curve does not exceed 4.5%. When the anti-skid control strategy remains unchanged, the simulation results of the new anti-skid efficiency calculation method for trains differ by less than 1.1% under different braking levels and adhesion levels. The test results differ by less than 3.5% under the above conditions. The anti-skid efficiencies are all less than 100%. The above results demonstrate good stability of the method. When different anti-skid control strategies are adopted, the simulation results have obvious differences based on the new anti-skid efficiency calculation method, and the corresponding anti-skid efficiencies of different control strategies are positively correlated with their anti-skid performance. The performance differences among different anti-skid systems can be reflected. The new anti-skid efficiency calculation method can calculate the anti-skid efficiency through real vehicle anti-skid tests, providing a new evaluation means of the anti-skid performance for real vehicles.
-
表 1 轮轨黏着模型参数
Table 1. Wheel-rail adhesion model parameters
参数 Q/kg kA kS G/GPa aμ/m bμ/m c11 f0 A B 干轨 8 800 0.60 0.50 80 0.007 5 0.001 5 3.37 0.25 0.30 0.60 湿轨 0.25 0.20 0.16 0.20 0.60 低黏着 0.16 0.10 0.11 0.15 0.55 极低黏着 0.08 0.05 0.06 0.10 0.45 表 2 实车试验防滑效率计算结果
Table 2. Anti-skid efficiency calculation results of real vehicle test
% 列车制动级位 黏着条件 防滑效率 紧急制动 黏着水平1 88.50 黏着水平2 89.98 黏着水平3 90.65 常用纯空气制动 黏着水平1 88.07 黏着水平2 91.57 黏着水平3 89.87 常用80%纯空气制动 黏着水平1 91.39 黏着水平2 90.97 黏着水平3 90.28 -
[1] 徐传芳, 陈希有, 郑祥, 等. 基于动态面方法的高速列车蠕滑速度跟踪控制[J]. 铁道学报, 2020, 42(2): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002006.htmXU Chuan-fang, CHEN Xi-you, ZHENG Xiang, et al. Slip velocity tracking control of high-speed train using dynamic surface method[J]. Journal of the China Railway Society, 2020, 42(2): 41-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002006.htm [2] 邬志伟, 胡用生, 沈钢, 等. 城市轨道车辆牵引、制动与防滑系统的效率研究[J]. 城市轨道交通研究, 1998(2): 32-36. doi: 10.3969/j.issn.1007-869X.1998.02.011WU Zhi-wei, HU Yong-sheng, SHEN Gang, et al. Practical study on the efficiency of anti-slip and slide system for metro vehicle[J]. Urban Mass Transit, 1998(2): 32-36. (in Chinese) doi: 10.3969/j.issn.1007-869X.1998.02.011 [3] 陈伟, 周军, 王新海, 等. 和谐号动车组制动防滑控制理论和试验[J]. 铁道机车车辆, 2011, 31(5): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105010.htmCHEN Wei, ZHOU Jun, WANG Xin-hai, et al. Theory and test of wheel-slide-protection system in brake control of China EMU[J]. Railway Locomotive and Car, 2011, 31(5): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201105010.htm [4] 郭强, 车超, 赵扬宇, 等. 城市轨道交通车辆防滑性能评估标准浅析[J]. 现代城市轨道交通, 2018(5): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201805004.htmGUO Qiang, CHE Chao, ZHAO Yang-yu, et al. Analysis of assessment standards for transit vehicle slide protection performance[J]. Modern Urban Transit, 2018(5): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201805004.htm [5] 胡泽玮. 扭矩法在刹车防滑效率试飞的工程应用[J]. 科技资讯, 2021, 19(9): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ202109021.htmHU Ze-wei. Engineering application of torque method in flight test of brake anti-slip efficiency[J]. Science and Technology Information, 2021, 19(9): 76-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ202109021.htm [6] 严子林, 肖扬, 陆波. 民机刹车效率计算方法研究[J]. 科技视界, 2017(4): 1-3. doi: 10.3969/j.issn.2095-2457.2017.04.001YAN Zi-lin, XIAO Yang, LU Bo. Study on anti-skid system efficiency of civil aircraft[J]. Science and Technology Vision, 2017(4): 1-3. (in Chinese) doi: 10.3969/j.issn.2095-2457.2017.04.001 [7] 焦宗夏, 白宁, 刘晓超, 等. 飞机防滑刹车控制技术研究综述[J]. 航空学报, 2022, 43(10): 527384. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202210024.htmJIAO Zong-xia, BAI Ning, LIU Xiao-chao, et al. Aircraft anti-skid braking control technology: a review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202210024.htm [8] TIAN Chun, ZHAI Geng-wei, GAO Ying-qi, et al. Study on creepage control for PLS-160 wheel-rail adhesion test rig based on LADRC[J]. Sensors, 2023, 23(4): 1792. doi: 10.3390/s23041792 [9] ARIAS-CUEVAS O, LI Z, LEWIS R, et al. Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts[J]. Wear, 2010, 268(3/4): 543-551. [10] CHANG Chong-yi, CHEN Bo, CAI Yuan-wu, et al. An experimental study of high speed wheel-rail adhesion characteristics in wet condition on full scale roller rig[J]. Wear, 2019, 440/441: 203092. doi: 10.1016/j.wear.2019.203092 [11] 常崇义, 陈波, 蔡园武, 等. 基于全尺寸试验台的水介质条件下高速轮轨黏着特性试验研究[J]. 中国铁道科学, 2019, 40(2): 25-32. doi: 10.3969/j.issn.1001-4632.2019.02.04CHANG Chong-yi, CHEN Bo, CAI Yuan-wu, et al. Experimental study on adhesion property of high speed wheel and rail in wet condition by full scale roller rig[J]. China Railway Science, 2019, 40(2): 25-32. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.02.04 [12] LEWIS R, GALLARDO-HERNANDEZ E A, HILTON T, et al. Effect of oil and water mixtures on adhesion in the wheel/rail contact[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(3): 275-283. doi: 10.1243/09544097JRRT248 [13] WU Bing, WEN Ze-feng, WU Tao, et al. Analysis on thermal effect on high-speed wheel/rail adhesion under interfacial contamination using a three-dimensional model with surface roughness[J]. Wear, 2016, 366/367: 95-104. doi: 10.1016/j.wear.2016.06.002 [14] CHEN H, BAN T, ISHIDA M, et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions[J]. Wear, 2008, 265(9/10): 1504-1511. [15] TRUMMER G, BUCKLEY-JOHNSTONE L E, VOLTR P, et al. Wheel-rail creep force model for predicting water induced low adhesion phenomena[J]. Tribology International, 2017, 109: 409-415. doi: 10.1016/j.triboint.2016.12.056 [16] 左建勇, 王宗明, 吴萌岭. 地铁列车空气制动系统仿真模型[J]. 交通运输工程学报, 2013, 13(2): 42-47. doi: 10.3969/j.issn.1671-1637.2013.02.006ZUO Jian-yong, WANG Zong-ming, WU Meng-ling. Simulation model of air braking system for subway train[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 42-47. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.02.006 [17] 朱文良, 吴萌岭, 田春, 等. 基于多学科协同分析的轨道车辆制动系统集成化仿真平台[J]. 交通运输工程学报, 2017, 17(3): 99-110. doi: 10.3969/j.issn.1671-1637.2017.03.011ZHU Wen-liang, WU Meng-ling, TIAN Chun, et al. Integrated simulation platform of braking system of rolling stock based on multi-discipline collaborative analysis[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 99-110. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.03.011 [18] 左建勇, 任利惠, 吴萌岭. 铁道车辆制动系统防滑控制仿真与试验研究[J]. 同济大学学报(自然科学版), 2010, 38(6): 912-916. doi: 10.3969/j.issn.0253-374x.2010.06.023ZUO Jian-yong, REN Li-hui, WU Meng-ling. Simulation and experimental research on anti-sliding control of railway vehicle braking[J]. Journal of Tongji University (Natural Science), 2010, 38(6): 912-916. (in Chinese) doi: 10.3969/j.issn.0253-374x.2010.06.023 [19] PUGI L, MALVEZZI M, ALLOTTAB, et al. A parametric library for the simulation of a Union Internationale des Chemins de Fer (UIC) pneumatic braking system[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(2): 117-132. doi: 10.1243/0954409041319632 [20] BARNA G. Simulation based design of fuzzy wheel slide protection controller for rail vehicles[C]//IEEE. 15th International Conference on Methods and Models in Automation and Robotics. New York: IEEE, 2010: 186-191. [21] KIM H Y, LEE N J, LEE D C, et al. Hardware-in-the-loop simulation for a wheel slide protection system of a railway train[J]. IFAC Proceedings Volumes, 2014, 47(3): 12134-12139. doi: 10.3182/20140824-6-ZA-1003.02106 [22] ZUO Jian-yong, CHEN Zhong-kai. Antiskid control of railway train braking based on adhesion creep behavior[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 543-549. doi: 10.3901/CJME.2012.03.543 [23] 朱文良, 周嘉俊, 孔靖森, 等. 动车组制动防滑控制建模仿真与试验研究[J]. 城市轨道交通研究, 2020, 23(12): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202012012.htmZHU Wen-liang, ZHOU Jia-jun, KONG Jing-sen, et al. Modeling simulation and testing research of anti-skid control of EMU braking[J]. Urban Mass Transit, 2020, 23(12): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202012012.htm [24] HAMON G, RUSHBY J. An operational semantics for Stateflow[J]. International Journal on Software Tools for Technology Transfer, 2007, 9(5): 447-456. [25] 陈哲明, 曾京, 罗仁. 列车空气制动防滑控制及其仿真[J]. 铁道学报, 2009, 31(4): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htmCHEN Zhe-ming, ZENG Jing, LUO Ren. Wheel-slip prevention control and simulation under train pneumatic braking[J]. Journal of the China Railway Society, 2009, 31(4): 25-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200904007.htm [26] TRAN M T, ANG K K, LUONG V H, et al. High-speed trains subject to abrupt braking[J]. Vehicle System Dynamics International Journal of Vehicle Mechanics, and Mobility, 2016, 54(12): 1715-1735. [27] 朱文良, 郑树彬, 吴娜, 等. 适用于制动工况下的轮轨低黏着改进模型[J]. 铁道学报, 2021, 43(3): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202103006.htmZHU Wen-liang, ZHENG Shu-bin, WU Na, et al. Improved model for degraded wheel-rail adhesion under braking conditions[J]. Journal of the China Railway Society, 2021, 43(3): 34-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202103006.htm [28] POLACH O. A fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 1999, 33(S1): 728-739. [29] POLACH O. Creep forces in simulations of traction vehicles running on adhesion limit[J]. Wear, 2005, 258(7/8): 992-1000. [30] SPIRYAGIN M, POLACH O, COLE C. Creep force modelling for rail traction vehicles based on the Fastsim algorithm[J]. Vehicle System Dynamics, 2013, 51(11): 1765-1783.