留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桥梁长寿命设计理论综述

刘永健 刘江 周绪红 王壮 孟俊苗 赵鑫东 YANGJian GHOSNMichel

刘永健, 刘江, 周绪红, 王壮, 孟俊苗, 赵鑫东, YANGJian, GHOSNMichel. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001
引用本文: 刘永健, 刘江, 周绪红, 王壮, 孟俊苗, 赵鑫东, YANGJian, GHOSNMichel. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001
LIU Yong-jian, LIU Jiang, ZHOU Xu-hong, WANG Zhuang, MENG Jun-miao, ZHAO Xin-dong, YANG Jian, GHOSN Michel. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001
Citation: LIU Yong-jian, LIU Jiang, ZHOU Xu-hong, WANG Zhuang, MENG Jun-miao, ZHAO Xin-dong, YANG Jian, GHOSN Michel. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001

桥梁长寿命设计理论综述

doi: 10.19818/j.cnki.1671-1637.2024.03.001
基金项目: 

国家自然科学基金项目 52108111

国家自然科学基金项目 51978061

青海省科技计划项目 2023-SF-100

详细信息
    作者简介:

    刘永健(1966-),男,江西玉山人,长安大学教授,工学博士,从事钢与组合结构桥梁、桥梁长寿命理论研究

    通讯作者:

    刘江(1991-),男,陕西西安人,长安大学副教授,工学博士

  • 中图分类号: U442.51

Review on long-life design theory for bridges

Funds: 

National Natural Science Foundation of China 52108111

National Natural Science Foundation of China 51978061

Science and Technology Planning Project of Qinghai Province 2023-SF-100

More Information
  • 摘要: 为促进桥梁长寿命设计理论的发展,从桥梁服役寿命及其影响机理出发,总结了现有桥梁长寿命设计的研究现状和面临的主要问题,探讨了未来研究重点和方向。研究结果表明:现行各国规范根据桥梁重要性及其所在公路等级进行桥梁设计寿命的规定,多采用变寿命的设计思路,赋予不同功能、重要程度、更换难度的桥梁构、部件不同的设计寿命;桥梁的寿命取决于其在真实服役环境下的长期性能,包含环境侵蚀作用下的耐久性能、反复荷载作用下的疲劳性能和持续荷载作用下的徐变性能,受服役环境、养护干预和施工过程的影响显著;新建桥梁长寿命技术主要从设计方法和高性能材料展开研究,现有服役寿命和耐久性设计方法主要围绕环境作用、劣化机理、材料性能、施工控制和检查管理等方面,达到了“看似满足”的设计目标,尚未能实现概率水平提升和设计寿命量化,全寿命设计则还停留在理念层面,UHPC、耐候钢、FRP等高性能材料的应用是提升桥梁设计寿命的有效方式;未来应以“明确结构定位,完善性能指标体系,优化结构初始状态,改善服役微环境,控制劣化传递路径”为长寿命设计的基本框架,围绕桥梁结构的长寿基因识别与调控、桥梁微环境全寿命周期演化规律、桥梁服役寿命的全概率量化设计方法等基础理论开展研究,以建立系统的桥梁长寿命设计理论体系。

     

  • 图  1  规范中的设计使用年限

    Figure  1.  Design service life in specifications

    图  2  桥梁寿命与部件寿命

    Figure  2.  Bridge life and component life

    图  3  桥梁环境侵蚀机理

    Figure  3.  Environmental erosion mechanism of bridges

    图  4  桥梁服役的宏观环境

    Figure  4.  Macro environment of bridge operation

    图  5  海洋结构的腐蚀差异

    Figure  5.  Corrosion difference of marine structures

    图  6  桥梁各部位劣化差异

    Figure  6.  Difference of deterioration in different bridge components

    图  7  桥梁的真实服役环境——微环境

    Figure  7.  Real service environment of bridges—micro environment

    图  8  AASHTO规范中的桥梁微环境

    Figure  8.  Bridge micro environment in AASHTO

    图  9  跨线桥的微环境

    Figure  9.  Micro environment of overpass bridge

    图  10  微环境的初步评估

    Figure  10.  Preliminary evaluation of micro environment

    图  11  钢桥疲劳

    Figure  11.  Fatigue of steel bridge

    图  12  疲劳S-N曲线

    Figure  12.  Fatigue S-N curve

    图  13  科罗尔巴岛桥下挠和倒塌

    Figure  13.  Deflection and collapse of Koror-Babeldaob Bridge

    图  14  全寿命周期桥梁性能发展路径

    Figure  14.  Development path of bridge performance in life cycle

    图  15  不利于桥梁长寿的设计因素

    Figure  15.  Adverse design factors for bridge longevity

    图  16  桥梁服役寿命设计流程

    Figure  16.  Design process of bridge service life

    图  17  混凝土桥梁全寿命耐久性设计

    Figure  17.  Life cycle durability design of concrete bridges

    图  18  全寿命设计对结构性能和成本的影响

    Figure  18.  Influence of life cycle design on structural performance and cost

    图  19  基于系统可靠性的灾害韧性三标准

    Figure  19.  Three criteria of disaster resilience based on system reliability

    图  20  瑞士R-UHPC复合结构

    Figure  20.  R-UHPC composite structure in Swiss

    图  21  钢桥面STC铺装

    Figure  21.  STC pavement on steel bridge deck

    图  22  耐候钢耐锈蚀机理

    Figure  22.  Corrosion mechanism of weathering steel

    图  23  耐候钢和普通碳素钢的锈蚀损失曲线

    Figure  23.  Corrosion loss curves of weathering steel and ordinary carbon steel

    图  24  马里兰州耐候钢桥锈蚀

    Figure  24.  Corrosion of weathering steel bridge in Maryland

    图  25  日本耐候钢锈蚀

    Figure  25.  Corrosion of weathering steel bridge in Japan

    图  26  FRP材料

    Figure  26.  FRP materials

    图  27  FRP桥梁封护系统(泰国)

    Figure  27.  FRP enclosure system of bridge (Thailand)

    图  28  长寿命设计的理论框架

    Figure  28.  Theoretical framework of long-life design

    表  1  ACI 365.1R中结构寿命的细分

    Table  1.   Subdivision of structure life in ACI 365.1R

    序号 结构使用寿命 寿命终止状态 描述
    1 技术性使用寿命 不安全 强度、刚度、稳定等技术指标不合格且无法修复
    2 功能性使用寿命 不适用 通行、景观、生态等使用功能不满足要求
    3 经济性使用寿命 不经济 维修费用超过拆除新建
    下载: 导出CSV

    表  2  钢拱桥微环境评估

    Table  2.   Micro environment evaluation of steel arch bridge

    编号 微环境分区 构、部件 描述
    1 埋入区 基础钢套管、钢桩 永久埋在土体内
    2 大气区 拱肋上部、吊杆上部、拱肋横联、桥面系钢梁、横梁、桥面系混凝土板底部、墩柱、墩帽 不暴露于土壤、水或除冰盐中
    3 除冰盐间接接触区 盖梁、墩柱顶部、拱肋拱脚处、吊杆下部、桥面系纵梁端部和端横梁、伸缩缝下主梁、横梁、钢系梁 由于水流、伸缩缝失效和汽车飞溅等原因,间接接触到了除冰盐
    4 除冰盐直接接触区 桥面板顶面、护栏、桥面板两侧至滴水槽以上 除冰盐直接使用的区域
    5 水位变动区 承台、桩帽 承受水位变动带来的干湿循环
    6 水下区 基础钢套管 永久在水位以下
    下载: 导出CSV

    表  3  代表性桥梁长期下挠

    Table  3.   Long-term deflection of typical bridges

    序号 桥名 桥址 建成年份 观测时已使用年数 主跨跨径/m 最大下挠/cm
    1 科罗尔·巴岛桥 帕劳共和国 1977 18 241.0 -139.0
    2 Grand-mere桥 加拿大 1977 9 181.4 -30.0
    3 Parrots渡桥 美国 1979 12 195.0 -63.5
    4 三门峡黄河公路大桥 中国 1992 10 140.0 -22.0
    5 Stovset桥 挪威 1993 8 220.0 -20.0
    6 广东南海金江大桥 中国 1994 6 120.0 -22.0
    7 黄石长江大桥 中国 1995 7 245.0 -30.5
    8 虎门大桥辅航道桥 中国 1997 6 270.0 -22.2
    9 江津长江大桥 中国 1997 10 240.0 -31.7
    10 Stolma桥 挪威 1998 3 301.0 -9.2
    11 广州东圃大桥 中国 1999 10 160.0 -23.0
    12 广东丫髻沙大桥副桥 中国 2000 9 160.0 -23.0
    下载: 导出CSV

    表  4  不同阶段桥梁寿命的影响因素

    Table  4.   Influencing factors of bridge life in different stages

    阶段 影响因素
    设计阶段 构造设计(疲劳细节、耐久性构造);可达、可检、可养、可施工设计;功能性构件设计
    施工阶段 施工质量(焊接、水化热等);初始内力状态;初始几何状态;初始微环境状态
    运营阶段 服役环境、汽车荷载;养护干预;维修加固
    下载: 导出CSV

    表  5  桥梁混凝土碳化(或氯盐侵蚀)的设计策略

    Table  5.   Design strategies of bridge concrete carbonization (or chloride corrosion)

    设计策略 设计准则
    策略A:抵抗劣化 全概率设计 p[axc(tSL) < 0] < p0
    分项系数设计 adxc, d(tSL)≥0
    看似满足设计 amin
    策略B:防止劣化 环氧钢筋/不锈钢筋
    下载: 导出CSV

    表  6  服役寿命(耐久性)设计规范对比

    Table  6.   Comparison of service life (durability) design specifications

    序号 规范名称 设计方法 全寿命阶段 影响机理 桥梁形式 设计尺度 全寿命周期成本
    避免劣化 全概率 分项系数 看似满足 设计 施工 管养 环境侵蚀 疲劳 持续荷载 混凝土桥 钢桥 无缝桥 材料 构件 结构
    1 FIB规范Model Code for Service Life Design / / / /
    2 AASHTO规范Guide Specification for Service Life of Highway Bridges /
    3 SHRP Ⅱ指南Design Guide for Bridges for Service Life / / /
    4 GB/T 50476—2019 / / / / / /
    5 JTG/T 3310—2019 / / / / /
    6 TB 10005—2010 / / / / / / /
    注:●为详细描述;○为简单涉及;/为不涉及。
    下载: 导出CSV

    表  7  UHPC与NC关键性能[73]

    Table  7.   Key properties of UHPC and NC[73]

    类别 抗压强度/MPa 抗折性能/MPa 弹性模量/GPa 氯离子扩散系数/(10-12 m2·s-1) 冻融剥落系数/(g·cm-2) 磨耗系数
    NC 20~50 2~5 30~40 1.10 >1 000 4.0
    UHPC 120~230 30~60 40~60 0.02 7 1.3
    下载: 导出CSV
  • [1] 中华人民共和国交通运输部. 2022年交通运输行业发展统计公报[EB/OL]. 2023, https://xxgk.mot.gov.cn/2020/jigou/zhghs/202306/t20230615_3847023.html.

    Ministry of Transport of the People's Republic of China. Statistical Bulletin on the Development of Highway and Transportation Industry in 2022[EB/OL]. 2023, https://xxgk.mot.gov.cn/2020/jigou/zhghs/202306/t20230615_3847023.html. (in Chinese)
    [2] 杜彦良, 孙宝臣, 吴智深, 等. 关于建立健全交通基础设施长寿命安全保障体系的战略思考[J]. 中国工程科学, 2017, 19(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706002.htm

    DU Yan-liang, SUN Bao-chen, WU Zhi-shen, et al. Strategies for establishing and perfecting long-life security strategy of transportation infrastructure[J]. Strategic Study of CAE, 2017, 19(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706002.htm
    [3] 冯正霖. 我国桥梁技术发展战略的思考[J]. 中国公路, 2015(11): 38-41. doi: 10.3969/j.issn.1006-3897.2015.11.003

    FENG Zheng-lin. Thoughts on the development strategy of bridge technology in China[J]. China Highway, 2015(11): 38-41. (in Chinese) doi: 10.3969/j.issn.1006-3897.2015.11.003
    [4] 周建庭, 郑丹. 保障我国桥梁安全的战略思考[J]. 中国工程科学, 2017, 19(6): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706006.htm

    ZHOU Jian-ting, ZHENG Dan. Safety of highway bridges in China[J]. Strategic Study of CAE, 2017, 19(6): 27-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706006.htm
    [5] ZHANG G J, LIU Y J, LIU J, et al. Causes and statistical characteristics of bridge failures: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 388-406. doi: 10.1016/j.jtte.2021.12.003
    [6] 贾渝. 美国公路战略研究计划二期(SHRP2)项目简介[J]. 中外公路, 2007, 27(6): 20-23. doi: 10.3969/j.issn.1671-2579.2007.06.007

    JIA Yu. Brief introduction of the second phase of the American highway strategic research program (SHRP2)[J]. Journal of China and Foreign Highway, 2007, 27(6): 20-23. (in Chinese) doi: 10.3969/j.issn.1671-2579.2007.06.007
    [7] 李亚东, 王崇交. 中外桥梁长寿命化研究进展及其思考[J]. 桥梁建设, 2019, 49(2): 17-23. doi: 10.3969/j.issn.1003-4722.2019.02.004

    Li Ya-dong, WANG Chong-jiao. Research advances in long-life of worldwide bridges and corresponding reflections[J]. Bridge Construction, 2019, 49(2): 17-23. (in Chinese) doi: 10.3969/j.issn.1003-4722.2019.02.004
    [8] AZIZINAMINI A, POWER E H, MYERS G F, et al. Bridges for service life beyond 100 years: innovative systems, subsystems, and components[R]. Washington DC: Transportation Research Board, 2013.
    [9] National Academies of Sciences, Engineering, and Medicine. Bridges for service life beyond 100 years: service limit state design[M]. Washington DC: The National Academies Press, 2014.
    [10] 韩依璇, 张宇峰. 美国桥梁长期性能研究计划进展及其思考[J]. 现代交通技术, 2014, 11(3): 30-32, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ201403013.htm

    HAN Yi-xuan, ZHANG Yu-feng. Research progress and thinking of long-term bridge performance program of U.S. A[J]. Modern Transportation Technology, 2014, 11(3): 30-32, 47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ201403013.htm
    [11] 朱从明, 张宇峰, 戴云峰. 美国桥梁长期性能研究计划及其启示[J]. 现代交通技术, 2012, 9(2): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ201202007.htm

    ZHU Cong-ming, ZHANG Yu-feng, DAI Yun-feng. Long term bridge program of U.S.A. and inspirations thereof[J]. Modern Transportation Technology, 2012, 9(2): 18-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ201202007.htm
    [12] OLOFSSON I, ELFGREN L, BELL B, et al. Assessment of European railway bridges for future traffic demands and longer lives—EC project "Sustainable Bridges"[J]. Structure and Infrastructure Engineering, 2005, 1(2): 93-100. doi: 10.1080/15732470412331289396
    [13] 陈开利. 日本桥梁长寿命研究新进展[J]. 世界桥梁, 2019, 47(2): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201902011.htm

    CHEN Kai-li. New progress in research on long-life of bridges in Japan[J]. World Bridges, 2019, 47(2): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201902011.htm
    [14] YOON H, CHIN W J, KIM H S, et al. Conceptual design of hybrid cable-stayed bridge with central span of 1 000 m using UHPC[J]. Engineering, 2013, 5: 744-750. doi: 10.4236/eng.2013.59089
    [15] 黄卿维, 沈秀将, 陈宝春, 等. 韩国超高性能混凝土桥梁研究与应用[J]. 中外公路, 2016, 36(2): 222-225. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201602050.htm

    HUANG Qing-wei, SHEN Xiu-jiang, CHEN Bao-chun, et al. Research and application of ultra-high performance concrete bridges in Korea[J]. Journal of China and Foreign Highway, 2016, 36(2): 222-225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201602050.htm
    [16] SOMERVILLE G. The Design Life of Structures[M]. London: CRC Press, 1991.
    [17] 李杰, 赵洋, 孙磊, 等. 可持续桥梁设计理念探讨[J]. 公路, 2014(4): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201404026.htm

    LI Jie, ZHAO Yang, SUN Lei, et al. Discussion on sustainable bridge design concept[J]. Highway, 2014(4): 111-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201404026.htm
    [18] 郑健龙. 基于结构层寿命递增的耐久性沥青路面设计新思想[J]. 中国公路学报, 2014, 27(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201401002.htm

    ZHENG Jian-long. New structure design of durable asphalt pavement based on life increment[J]. China Journal of Highway and Transport, 2014, 27(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201401002.htm
    [19] 陈艾荣, 王玉倩, 吴海军, 等. 桥梁结构构件设计使用寿命的确定[J]. 同济大学学报(自然科学版), 2010, 38(3): 317-322. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201003003.htm

    CHEN Ai-rong, WANG Yu-qian, WU Hai-jun, et al. Design service life determination for bridge structural elements[J]. Journal of Tongji University (Natural Science Edition), 2010, 38(3): 317-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201003003.htm
    [20] 金伟良, 张大伟, 吴柯娴, 等. 混凝土结构长期性能的若干基本问题探讨[J]. 建筑结构, 2020, 50(13): 1-6, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG202013002.htm

    JIN Wei-liang, ZHANG Da-wei, WU Ke-xian, et al. Discussion on fundamental problems on long-term performance of concrete structures[J]. Building Structure, 2020, 50(13): 1-6, 29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG202013002.htm
    [21] 周建庭, 苏欣, 辛景舟, 等. 锈蚀钢筋混凝土结构抗力衰变综述(Ⅰ): 材料层次[J]. 江苏大学学报(自然科学版), 2019, 40(4): 458-464, 471. https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201906016.htm

    ZHOU Jian-ting, SU Xin, XIN Jing-zhou, et al. Review of resistance decay of corroded reinforced concrete structures(Ⅰ): material level[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(4): 458-464, 471. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201906016.htm
    [22] 辛景舟, 苏欣, 周建庭, 等. 锈蚀钢筋混凝土结构抗力衰变综述(Ⅱ): 构件层次[J]. 江苏大学学报(自然科学版), 2019, 40(6): 719-726. https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201906016.htm

    XIN Jing-zhou, SU Xin, ZHOU Jian-ting, et al. Review of resistance decay of corroded reinforced concrete structures(Ⅱ): component level[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(6): 719-726. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201906016.htm
    [23] 李东亮. 高湿热沿海工业大气中桥梁钢的腐蚀行为与耐蚀机理研究[D]. 沈阳: 东北大学, 2018.

    LI Dong-liang. Study on corrosion behavior and corrosion resistance mechanism of bridge steel in high-humidity coastal industrial atmosphere[D]. Shenyang: Northeastern University, 2018. (in Chinese)
    [24] 黄永昌, 张建旗. 现代材料腐蚀与防护[M]. 上海: 上海交通大学出版社, 2012.

    HUANG Yong-chang, ZHANG Jian-qi. Modern Materials Corrosion and Protection[M]. Shanghai: Shanghai Jiao Tong University Press, 2012. (in Chinese)
    [25] HOPPER T, LANGLOIS A M, MURPHY T. Service life design reference guide[R]. Washington DC: Federal Highway Administration, 2022.
    [26] 黄桂桥. 碳钢在我国不同海域的海水腐蚀行为[J]. 腐蚀科学与防护技术, 2001, 13(2): 81-84, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200102005.htm

    HUANG Gui-qiao. Corrosion behaviour of carbon steels immersed in sea areas of China[J]. Corrosion Science and Protection Technology, 2001, 13(2): 81-84, 88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ200102005.htm
    [27] AHN J H, KIM I T, KAINUMA S, et al. Residual shear strength of steel plate girder due to web local corrosion[J]. Journal of Constructional Steel Research, 2013, 89: 198-212.
    [28] 陈琳, 屈文俊, 朱鹏, 等. 混凝土结构等耐久性设计方法[J]. 建筑科学与工程学报, 2020, 37(2): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202002011.htm

    CHEN Lin, QU Wen-jun, ZHU Peng, et al. Equal durability design method for concrete structure[J]. Journal of Architecture and Civil Engineering, 2020, 37(2): 81-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202002011.htm
    [29] ASAO N, FUJⅡ K. Remaining strength evaluations of steel girders with corrosion near supports and their reinforcements[J]. KSEC Journal of Civil Engineering, 2018, 22(10): 4047-4055.
    [30] NISHIKATA A, ZHU Q J, TADA E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method[J]. Corrosion Science, 2014, 87: 80-88.
    [31] NAGATA K, NAITO R, YAGI C, et al. Evaluation methods of dew condensation of steel girders using weather data[J]. Journal of Structural Engineering, 2016, 62A: 796-803.
    [32] TOMOMI I, YASUO H, HITOSHI S, et al. Study on soundness assessment techniques for aged transmission tower[R]. Tokyo: Central Research Institute of Electric Power Industry, 2019.
    [33] ROSTAM S. Design and construction of segmental concrete bridges for service life of 100 to 150 years[R]. COWI: Denmark, 2005.
    [34] 刘永健, 陈莎, 王壮. 钢桥大气腐蚀微环境与长寿基因[J]. 建筑科学与工程学报, 2023, 40(5): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202305001.htm

    LIU Yong-jian, CHEN Sha, WANG Zhuang. Atmospheric corrosion micro-environment and longevity genes of steel bridges[J]. Journal of Architecture and Civil Engineering, 2023, 40(5): 1-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202305001.htm
    [35] KUBZOVÁ M, KŔIVÝ V, KREISLOVA K, et al. Amount of chlorides in corrosion products of weathering steel[J]. Transportation Research Procedia, 2019, 40: 751-758.
    [36] KRIVY V, URBAN V, KREISLOVA K. Development and failures of corrosion layers on typical surfaces of weathering steel bridges[J]. Engineering Failure Analysis, 2016, 69: 147-160.
    [37] MURPHY T, HOPPER T, WASSERMAN E, et al. Guide Specification for Service Life Design of Highway Bridges[M]. Washington DC: The National Academies Press, 2020.
    [38] 姜磊, 刘永健, 王康宁. 焊接管节点结构形式发展及疲劳性能对比[J]. 建筑结构学报, 2019, 40(3): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903019.htm

    JIANG Lei, LIU Yong-jian, WANG Kang-ning. Development of welded tubular joints and comparison of fatigue behaviour[J]. Journal of Building Structures, 2019, 40(3): 180-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903019.htm
    [39] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htm

    ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htm
    [40] 黄汉辉, 陈康明, 吴庆雄, 等. 某中承式钢管混凝土桁式拱肋节点疲劳开裂分析[J]. 工程力学, 2017, 34(增): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2017S1031.htm

    HUANG Han-hui, CHEN Kang-ming, WU Qing-xiong, et al. Study on fatigue cracking of joint in a half-through CFST truss arch rib joint[J]. Engineering Mechanics, 2017, 34(S): 167-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2017S1031.htm
    [41] 李富民, 邓天慈, 王江浩, 等. 预应力混凝土结构耐久性研究综述[J]. 建筑科学与工程学报, 2015, 32(2): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201502002.htm

    LI Fu-min, DENG Tian-ci, WANG Jiang-hao, et al. Review of research on durability of prestressed concrete structures[J]. Journal of Architecture and Civil Engineering, 2015, 32(2): 1-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201502002.htm
    [42] 石雪飞, 杨琪, 阮欣. 已建大跨径PC梁桥过量下挠及开裂处治技术[M]. 北京: 人民交通出版社股份有限公司, 2010.

    SHI Xue-fei, YANG Qi, RUAN Xin. Treatment Technology for Excessive Deflection and Cracking of PC Beam Bridges with Long Span[M]. Beijing: China Communications Press Co., Ltd., 2010. (in Chinese)
    [43] 邓文中. 科罗尔大桥的故事[M]. 北京: 人民交通出版社股份有限公司, 2019.

    DENG Wen-zhong. The Story of Korol Bridge[M]. Beijing: China Communications Press Co., Ltd., 2019. (in Chinese)
    [44] Federal Highway Administration. Steel bridge design handbook: corrosion protection of steel bridges[R]. Washington DC: Federal Highway Administration, 2012.
    [45] BLASKO P D, BORZOK M J, KULICKI J M. Evaluating suspension bridge cables on north America's busiest international crossing[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2050: 49-58.
    [46] COCKSEDGE C, HUDSON T, URBANS B, et al. M48 Severn bridge-main cable inspection and rehabilitation[J]. Proceedings of the Institution of Civil Engineers—Bridge Engineering, 2010, 163(4): 181-195.
    [47] 沈平. 英国M48塞文桥主缆检查与修复[J]. 世界桥梁, 2011, 39(5): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201105018.htm

    SHEN Ping. Inspection and repair of main cables of M48 severn bridge in England[J]. World Bridges, 2011, 39(5): 70-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201105018.htm
    [48] 陈小雨, 沈锐利, 唐茂林. 悬索桥主缆检测及承载力评估现状与发展[J]. 重庆交通大学学报(自然科学版), 2013, 32(增1): 760-763, 831. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2013S1009.htm

    CHEN Xiao-yu, SHEN Rui-li, TANG Mao-lin. Current situation and development for detection and bearing capacity evaluation of main cable of suspension bridge[J]. Journal of Chongqing Jiaotong University (Natural Science), 2013, 32(S1): 760-763, 831. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2013S1009.htm
    [49] EDVARDSEN C, MIJINSBERGEN J P G. General guidelines for durability design and redesign[R]. Lyngby: COWI, 2000.
    [50] 李克非, 廉慧珍, 邸小坛. 混凝土结构耐久性设计原则、方法与标准[J]. 土木工程学报, 2021, 54(10): 64-71, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202110008.htm

    LI Ke-fei, LIAN Hui-zhen, DI Xiao-tan. Durability design of concrete structures: principle, method and standard[J]. China Civil Engineering Journal, 2021, 54(10): 64-71, 96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202110008.htm
    [51] 金伟良. 工程结构全寿命设计方法[M]. 北京: 科学出版社, 2020.

    JIN Wei-liang. Life-Cycle Design on Engineering Structures[M]. Beijing: Science Press, 2020. (in Chinese)
    [52] FRANGOPOL D M, KONG J S, GHARAIBEH E S. Reliability-based life-cycle management of highway bridges[J]. Journal of Computing in Civil Engineering, 2001, 15(1): 27-34.
    [53] FRANGOPOL D M, LIN K Y, ESTES A C. Life-cycle cost design of deteriorating structures[J]. Journal of Structural Engineering, 1997, 123(10): 1390-1401.
    [54] 金伟良, 牛荻涛. 工程结构耐久性与全寿命设计理论[J]. 工程力学, 2011, 28(增2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S2008.htm

    JIN Wei-liang, NIU Di-tao. Durability and life-cycle design theory of engineering structures[J]. Engineering Mechanics, 2011, 28 (S2): 31-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S2008.htm
    [55] 孟凡超, 徐国平, 刘高, 等. 桥梁工程全寿命设计方法及工程实践[M]. 北京: 人民交通出版社股份有限公司, 2012.

    MENG Fan-chao, XU Guo-ping, LIU Gao, et al. Life-Cycle Design Method and Engineering Practice of Bridge Engineering[M]. Beijing: China Communications Press Co., Ltd., 2012. (in Chinese)
    [56] 陈艾荣. 基于给定结构寿命的桥梁设计过程[M]. 北京: 人民交通出版社股份有限公司, 2009.

    CHEN Ai-rong. Bridge Design Process Based on Given Structural Life[M]. Beijing: China Communications Press Co., Ltd., 2009. (in Chinese)
    [57] WANG Z J, JIN W L, DONG Y, et al. Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives[J]. Engineering Structures, 2018, 157: 119-131.
    [58] 王崇交, 李亚东. 基于可靠度的桥梁全寿命设计方法[J]. 铁道建筑, 2020, 60(11): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202011001.htm

    WANG Chong-jiao, LI Ya-dong. Life cycle design method for bridge based on reliability[J]. Railway Engineering, 2020, 60(11): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202011001.htm
    [59] 鲁乃唯, 刘扬, 肖新辉. 实测车流作用下大跨桥梁荷载效应极值外推法[J]. 交通运输工程学报, 2018, 18(5): 47-55. doi: 10.19818/j.cnki.1671-1637.2018.05.005

    LU Nai-wei, LIU Yang, XIAO Xin-hui. Extrapolating method of extreme load effects on long-span bridge under actual traffic loads[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 47-55. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.05.005
    [60] 闫新凯, 刘永健, 刘江, 等. 钢板组合梁温度作用的极值统计模型[J]. 东南大学学报(自然科学版), 2022, 52(5): 856-865. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202205005.htm

    YAN Xin-kai, LIU Yong-jian, LIU Jiang, et al. Extreme value statistical model of temperature action of steel plate composite girder[J]. Journal of Southeast University (Natural Science Edition), 2022, 52 (5): 856-865. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202205005.htm
    [61] LIU J, LIU Y J, YAN X K, et al. Statistical investigation on the temperature actions of CFST truss based on long-term measurement[J]. Journal of Bridge Engineering, 2021, 26(8): 04021045.
    [62] LIU J, LIU Y J, ZHANG G J. Experimental analysis on temperature gradient patterns of concrete-filled steel tubular members[J]. Journal of Bridge Engineering, 2019, 24(11): 04019109.
    [63] 刘永健, 马志元, 刘江, 等. 陕西地区混凝土无伸缩缝桥梁的温度作用及其区划[J]. 交通运输工程学报, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004

    LIU Yong-jian, MA Zhi-yuan, LIU Jiang, et al. Temperature action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.05.004
    [64] LI C, PAN H Y, TIAN L, et al. Lifetime multi-hazard fragility analysis of transmission towers under earthquake and wind considering wind-induced fatigue effect[J]. Structural Safety, 2022, 99: 102266.
    [65] LI J, GAO R F. On the combination of nonlinear load effects of structures[J]. Structural Safety, 2021, 90: 102064.
    [66] 李杰. 论第三代结构设计理论[J]. 同济大学学报(自然科学版), 2017, 45(5): 617-624, 632. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201705002.htm

    LI Jie. On the third generation of structural design theory[J]. Journal of Tongji University (Natural Science), 2017, 45(5): 617-624, 632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201705002.htm
    [67] 林迟. 基于结构全寿命设计需求的环境作用与结构性能退化研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LIN Chi. Study on environmental actions and performance degradation of structures for the needs of structural life-cycle design[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
    [68] LIM S, KIM T, SONG J. System-reliability-based disaster resilience analysis: framework and applications to structural systems[J]. Structural Safety, 2022, 96: 102202.
    [69] 李钢, 张倪飞, 董志骞, 等. 多灾害作用下工程结构分析与设计方法研究进展[J]. 土木工程学报, 2023, 56(8): 9-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202308002.htm

    LI Gang, ZHANG Ni-fei, DONG Zhi-qian, et al. Research progress of engineering structure analysis and design methods under multiple hazards[J]. China Civil Engineering Journal, 2023, 56(8): 9-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202308002.htm
    [70] ABDAL S, MANSOUR W, AGWA I, et al. Application of ultra-high-performance concrete in bridge engineering: current status, limitations, challenges, and future prospects[J]. Buildings, 2023, 13(1): 185.
    [71] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201902003.htm

    CHEN Bao-chun, WEI Jian-gang, SU Jia-zhan, et al. State-of-the-art progress on application of ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2019, 36(2): 10-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201902003.htm
    [72] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(23): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htm

    SHAO Xu-dong, QIU Ming-hong, YAN Ban-fu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Review, 2017, 31(23): 33-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htm
    [73] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm

    SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm
    [74] ZHU Y P, ZHANG Y, HUSSEIN H H, et al. Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete (UHPC): a state of the art review[J]. Engineering Structures, 2020, 205: 110035.
    [75] BRÜHWILER E, DENARIÉ E. Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete[J]. Structural Engineering International, 2013, 23(4): 450-457.
    [76] YOO D Y, SHIN H O, YANG J M, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B: Engineering, 2014, 58: 122-133.
    [77] AALETI S, PETERSEN B, SRITHARAN S. Design guide for precast UHPC waffle deck panel system, including connections[R]. Washington DC: Federal Highway Administration, 2013.
    [78] 邵旭东, 张哲, 刘梦麟, 等. 正交异性钢-RPC组合桥面板弯拉强度的实验研究[J]. 湖南大学学报(自然科学版), 2012, 39(10): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201210003.htm

    SHAO Xu-dong, ZHANG Zhe, LIU Meng-lin, et al. Research on bending tensile strength for composite bridge deck system composed of orthotropic steel deck and thin RPC topping[J]. Journal of Hunan University (Natural Sciences), 2012, 39(10): 7-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201210003.htm
    [79] DIENG L, MARCHAND P, GOMES F, et al. Use of UHPFRC overlay to reduce stresses in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2013, 89: 30-41.
    [80] SHAO X D, QU W T, CAO J H, et al. Static and fatigue properties of the steel-UHPC lightweight composite bridge deck with large U ribs[J]. Journal of Constructional Steel Research, 2018, 148: 491-507.
    [81] 邵旭东, 吴佳佳, 刘榕, 等. 钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报, 2017, 30(3): 218-225, 245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htm

    SHAO Xu-dong, WU Jia-jia, LIU Rong, et al. Basic performance of waffle deck panel of lightweight steel-UHPC composite bridge[J]. China Journal of Highway and Transport, 2017, 30(3): 218-225, 245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htm
    [82] SHAO X D, PAN R S, ZHAN H, et al. Experimental verification of the feasibility of a novel prestressed reactive powder concrete box-girder bridge structure[J]. Journal of Bridge Engineering, 2017, 22(6): 04017015.
    [83] JANG H O, LEE H S, CHO K, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 152: 16-23.
    [84] ZHI Y J, FU D M, ZHANG D W, et al. Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach[J]. Metals, 2019, 9(3): 383-383.
    [85] 王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. doi: 10.19818/j.cnki.1671-1637.2020.01.001

    WANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, et al. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.001
    [86] 郑凯锋, 张宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm

    ZHENG Kai-feng, ZHANG Yu, HENG Jun-lin, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm
    [87] 朱劲松, 郭晓宇, 亢景付, 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019, 32(5): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm

    ZHU Jin-song, GUO Xiao-yu, KANG Jing-fu, et al. Research on corrosion behavior, mechanical property, and application of weathering steel in bridges[J]. China Journal of Highway and Transport, 2019, 32(5): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm
    [88] SHIMOZATO T, MURAKOSHI J, TAMAKI Y. Monitoring of deformation of steel bridges that collapsed due to corrosion deterioration[J]. Technical Civil Engineering Data, 2011, 53(2): 14-17.
    [89] MCCONNELL J, SHENTON H W, MERTZ D, et al. Performance of uncoated weathering steel highway bridges throughout the United States[J]. Transportation Research Record, 2014, 2406(1): 61-67.
    [90] 曾宪桃, 车惠民. 复合材料FRP在桥梁工程中的应用及其前景[J]. 桥梁建设, 2000, 30(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200002019.htm

    ZENG Xian-tao, CHE Hui-min. Application of FRP composite material to bridge works and its prospect[J]. Bridge Construction, 2000, 30(2): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200002019.htm
    [91] 陈阳, 胡翔, 吴泽媚, 等. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 83-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202318011.htm

    CHEN Yang, HU Xiang, WU Ze-mei, et al. Review on the deterioration of FRP reinforced concrete structures subjected to marine environment[J]. Materials Reports, 2023, 37(18): 83-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202318011.htm
    [92] YANG Y Q, FAHMY M F M, GUAN S J, et al. Properties and applications of FRP cable on long-span cable-supported bridges: a review[J]. Composites Part B: Engineering, 2020, 190: 107934.
    [93] SHI J Z, WANG X, WU Z S, et al. Fatigue behavior of basalt fiber-reinforced polymer tendons under a marine environment[J]. Construction and Building Materials, 2017, 137: 46-54.
    [94] MIRMIRAN A, SHAHAWY M. A new concrete-filled hollow FRP composite column[J]. Composites Part B: Engineering, 1996, 27(3/4): 263-268.
    [95] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200603003.htm

    YE Lie-ping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200603003.htm
    [96] SHEN Z L, LIU Y J, LIU J, et al. A decision-making method for bridge network maintenance based on disease transmission and NSGA-Ⅱ[J]. Sustainability, 2023, 15: 5007.
  • 加载中
图(28) / 表(7)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  90
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回