留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在役水泥路面劣化行为与延寿技术综述

李盛 张海涛 孙煜 刘雅儒 余时清 王渺 张宗帅

李盛, 张海涛, 孙煜, 刘雅儒, 余时清, 王渺, 张宗帅. 在役水泥路面劣化行为与延寿技术综述[J]. 交通运输工程学报, 2024, 24(3): 25-47. doi: 10.19818/j.cnki.1671-1637.2024.03.002
引用本文: 李盛, 张海涛, 孙煜, 刘雅儒, 余时清, 王渺, 张宗帅. 在役水泥路面劣化行为与延寿技术综述[J]. 交通运输工程学报, 2024, 24(3): 25-47. doi: 10.19818/j.cnki.1671-1637.2024.03.002
LI Sheng, ZHANG Hai-tao, SUN Yu, LIU Ya-ru, YU Shi-qing, WANG Miao, ZHANG Zong-shuai. Review on deterioration behavior and life extension technologies of cement pavement in service[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 25-47. doi: 10.19818/j.cnki.1671-1637.2024.03.002
Citation: LI Sheng, ZHANG Hai-tao, SUN Yu, LIU Ya-ru, YU Shi-qing, WANG Miao, ZHANG Zong-shuai. Review on deterioration behavior and life extension technologies of cement pavement in service[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 25-47. doi: 10.19818/j.cnki.1671-1637.2024.03.002

在役水泥路面劣化行为与延寿技术综述

doi: 10.19818/j.cnki.1671-1637.2024.03.002
基金项目: 

国家重点研发计划 2021YFB2601004

国家自然科学基金项目 52208422

国家自然科学基金项目 52378436

湖南省自然科学基金项目 2022JJ30598

湖南省交通运输厅科技进步与创新计划项目 202235

详细信息
    作者简介:

    李盛(1980-),男,内蒙古集宁人,长沙理工大学教授,工学博士,从事耐久性路面结构与材料研究

  • 中图分类号: U414

Review on deterioration behavior and life extension technologies of cement pavement in service

Funds: 

National Key Research and Development Program of China 2021YFB2601004

National Natural Science Foundation of China 52208422

National Natural Science Foundation of China 52378436

National Science Foundation of Hunan Province 2022JJ30598

Science and Technology Progress and Innovation Plan Project of Hunan Provincial Department of Transportation 202235

More Information
  • 摘要: 为提升在役水泥路面的耐久性与服役寿命,围绕国内外水泥路面延寿修复技术研究现状,梳理了水泥路面结构的力学响应和疲劳损伤演化行为,分析了水泥路面主要病害形成机理、劣化行为和特征,总结了不同劣化行为控制技术的研究进展;基于充分利用旧水泥路面板剩余承载力的思想和旧水泥路面延寿加铺结构力学行为研究,提出了严酷环境下分离式加铺连续配筋混凝土(CRC)面板的典型加铺结构,总结了水泥路面结构服役行为的智能感知技术。研究结果表明:建立准确反映水泥路面服役行为的力学模型可为其合理设计和寿命精准预测提供科学的理论依据;在水泥路面破坏形成初期及时对其技术状况进行评价并修复,可在一定程度上延长其使用寿命;接缝传荷能力和板底脱空是影响水泥路面耐久性的显著因素,在旧水泥路面修复过程中应重点关注;旧水泥路面加铺沥青混凝土和水泥混凝土是其延寿的有效措施,从全寿命周期来看,重载交通在役水泥路面加铺CRC面板是其延寿的有效技术手段;未来应建立考虑在役水泥路面劣化行为、剩余强度等的寿命预估理论,开发高性能、易兼容和绿色环保的水泥路面延寿修复材料,借助服役性能多源异构大数据的感知与处理技术,完善在役水泥路面加铺结构设计的理论技术与行业规范,全面提升在役水泥路面的服役水平和使用寿命。

     

  • 图  1  水泥路面板的水分分布

    Figure  1.  Water distributions in cement pavement slabs

    图  2  TiO2/SMPU的化学结构与热力学循环

    Figure  2.  Chemical structure and thermodynamic cycle of TiO2/SMPU

    图  3  水泥路面板脱空

    Figure  3.  Cement pavement slab emptying

    图  4  陶瓷刀具仿形造纹技术与普通锯片刻槽技术对比

    Figure  4.  Comparison between ceramic cutting tool copying technology and common saw blade notching technology

    图  5  路面结构层间接触模型

    Figure  5.  Interlayer contact model of pavement structure

    图  6  水泥路面智能感知技术

    Figure  6.  Perceptive technology for cement pavement

    图  7  面板翘曲形状示意

    Figure  7.  Panel warped shape indicates

    图  8  重载交通水泥路面延寿加铺结构

    Figure  8.  Longevity extension and overlay structures of heavy-duty traffic cement pavements

    表  1  水泥路面早期裂缝形成机理与特征

    Table  1.   Mechanisms and characteristics of early crack formation in cement pavement

    裂缝名称 裂缝描述 形成机理 裂缝特征
    沉降收缩裂缝 混凝土硬化阶段形成,为表面裂缝 混凝土离析,粗集料分离或水泥浆淌出,表面浆体水灰比大,泌水等使其收缩大,表面收缩受到内部混凝土约束 非结构性裂缝,对荷载传递无影响,裂缝可扩展,为稳定扩展裂缝
    塑性收缩裂缝 混凝土凝结过程中形成,为表面裂缝 混凝土表面蒸发率大于泌水率,混合料温度高,风速大 非结构性裂缝,对荷载传递无影响,深度达3 cm以上时可扩展,形成断板,为稳定裂缝或稳定扩展裂缝
    干缩裂缝 高温、刮风、低温条件下施工,混合料蒸发量大时产生 混凝土干燥收缩受到基层约束,约束应力超过混凝土强度;水灰比、水泥用量大,初期养护不好 结构性裂缝,裂缝表面具有分形性质,易引起二次开裂,为活动缝
    温缩裂缝 为横向或纵向裂缝,混凝土硬化初期遇降温或切缝不及时产生 混凝土受到基层约束,约束应力大于混凝土强度而开裂;切缝不及时,板长过长 结构性裂缝,裂缝表面具有分形性质,易引起二次开裂,为活动缝
    翘曲裂缝 为横向贯穿裂缝 温度和荷载组合应力超过设计允许应力 结构性裂缝,易引起二次开裂,为活动缝
    下载: 导出CSV

    表  2  疲劳累积损伤理论

    Table  2.   Fatigue cumulative damage theory

    疲劳累积损伤理论 疲劳损伤模型 特征 优点 不足
    线性疲劳累积损伤理论 Palmgren-Miner理论[60] $D_i=\sum\limits_{i=1}^k \frac{n_i}{N_i} $ 不同应力水平下发生的单次疲劳损伤进行线性求和,使得失效时的损伤不大于1 简单方便 未考虑加载顺序以及持久荷载对裂纹形成和扩展的影响
    修正Palmgren-Miner理论[61] $ D_i=\sum\limits_{i=1}^k \frac{n_i a}{N_i}$ 取消临界损伤为1的假设,由试验或经验确定临界损伤 简单方便,对临界损伤进行了修正 理论的假设不能较好地预测水泥路面的疲劳寿命
    双线性疲劳累积损伤理论 Manson理论 $\begin{array}{c} N_\text{z}=N_0+\Delta N=N_0+14 N_\text{z}^{0.6} \\ \text { 当 } N_\text{z}>730 \text { 时, } N_0=N_\text{z}-14 N_\text{z}^{0.6} \text {; } \\ \text { 当 } N_\text{z} \leqslant 730 \text { 时, } N_0=0 \end{array} $ 对裂纹形成和裂纹扩展的描述不准确 考虑了荷载的顺序效应和初始缺陷的影响 裂纹形成和裂纹扩展的分界点难以确定,不能直接用于工程实际
    非线性疲劳累积损伤理论 Marco-Starkey理论[62] $D=\sum\limits_{i=1}^k\left(\frac{n_i}{N_i}\right)^{x_i} \quad x_i>1 $ 模型存在较大不确定因素,无法计算实际的疲劳寿命 解释了两级荷载作用下的顺序效应 未把损伤形成和扩展的两阶段分开,只能定性分析疲劳寿命
    Carten-Dolan理论 $ N_{\mathrm{z}}=\frac{N_{\mathrm{a}}}{\sum\limits_{i=1}^k \alpha_i\left(\sigma_i / \sigma_{\mathrm{a}}\right)^d}$ 由d计算的疲劳寿命存在较大误差 考虑了损伤发展的非线性,能反映小荷载产生的损伤荷载之间的相互影响 未考虑损伤数量与应力作用次数的关系;未考虑d与应力状态的关系
    改进Carten-Dolan理论[63] $N_{\mathrm{z}}=N_{\mathrm{a}} / \sum\limits_{i=1}^k \alpha_i\left(\frac{\sigma_i}{\sigma_{\mathrm{a}}}\right)^{\exp \left[\lambda\left(\frac{1}{A_i}-1\right)\right]} $ 引入强度退化系数,模型预测疲劳寿命结果误差控制1.5倍以内 考虑了加载后由剩余强度退化对后续损伤累积的影响,更接近实际损伤累积过程
    概率疲劳累积损伤理论 概率Miner理论[64] $D_m=D_{\mathrm{a}} \vee D_{\mathrm{b}}$ 通过统计分析得到每一级载荷下对应任意破坏概率的寿命,对Miner理论的拓宽和完善 寿命、单级荷载自身的损伤度和轴载谱循环时的累积损伤度是破坏概率函数,而不是一个定值 每一级荷载需通过多个同样试件的试验,得到一系列统计值
    疲劳累积损伤动态统计模型[65] $D_m=F\left(D_0, D_{\mathrm{a}}, D_{\mathrm{b}}\right) $ 临界损伤是一个随机变量,均值为1,且变异系数与疲劳寿命的变异系数近似相等 预测等幅、随机谱寿命时具有较好的精度和可靠度 仍未解决瞬时疲劳损伤的分布和临界损伤特性的问题
    下载: 导出CSV

    表  3  水泥路面结构智能感知技术研究

    Table  3.   Research on perceptive technologies of cement pavement structure

    传感器类型 测试类型 有线/无线传输 目的 特点 机理
    FBG传感器[68] 现场测试 有线 检测车辆的轴数和道路结构中引起的应变变化 嵌入50 cm的位置使平均检测到的应变降低了2.06×10-5,在470~1 170 kPa的高应力接收应变为1.03×10-5~2.30×10-5;在冬季1.0 ℃~1.5 ℃时,接收到的平均相对应变比夏季24.8 ℃~25.1 ℃时的平均相对应变高2.5倍 经过FBG传感器的车辆产生应变偏移,光学传感器信号接收装置监测由应变引起的反射光学传感器的波长或频率变化
    分布式光纤传感器[69] 实验室测试 有线 估算水泥路面材料梁弯曲应变的可靠性和准确性 室内四点弯曲试验中可测量水泥混凝土梁中的应变和监测其应变分布的演变,最大感应长度为10 m,最大数据采集率为100 Hz,应变和温度分辨率分别为1.0×10-6和0.1 ℃ 通过将光波发送到光纤中来发挥作用并测量从整个光纤反射的反向散射光,反向散射是由于光纤沿线的缺陷而发生的,通过将分布式光纤传感器黏合到主结构表面或集成到主结构中来实现应变监测
    应变传感器、温度传感器和检波器[70] 现场测试 无线 长期监测再生路面不同结构层的模量、应力、应变和温度随时间的演变 检波器测量垂直位移速度非常灵敏,具有较高的鲁棒性和较低的成本,当振幅超过触发阈值时信号被记录,每天记录100个重型车辆信号,并将信号整合以获得垂直位移
    离散应变传感器[71] 实验室测试 有线 定位和监测水泥路面内部裂缝的形成和扩展 需要2个以上的离散应变传感器定位,测量精度较高,实验室测试的平均测量精度可达82.4%,可用于验证、控制、评估和明确水泥路面内部裂缝的扩展行为 当离散应变传感器被放置在水泥路面内时,它们会监测路面内应变场的变化,根据传感器测量值之间的实时测量来估计裂缝位置和估计裂缝位置
    智能传感器网络[72] 现场测试 无线 传感器网络和传感器功能设计分开,从而实现互换性、互操作性和可扩展性 网络架构基于探地雷达通信的星型网络,适应路面结构温度的测量环境 利用互联网和GPRS公网资源,实现人机交互与管理信息系统网络,这是由浏览器用户和数据查询网站组成的星型网络,用户可以通过浏览器连接到网络,通过网络服务发起对网站的访问,实现路面结构温度的信息查询和管理
    无线传感网络[73] 现场测试 无线 设计一套用于测量路面结构内部温度的监测系统 传感器的温度输入范围为-55 ℃~125 ℃,数据采集精度为0.5 ℃,数据分析精度的可编程分辨率为9~12位(0.500 0 ℃~0.062 5 ℃),传感器设计成模块化设备, 安装简单,成本低,耗能小 探头可以连续测量多个深度的路面温度和湿度,路面行驶的检测车辆上安装的通信设备可以收集附近的探头信息,探头传输最新的测量值或一组记录的数据
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001

    Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.001
    [2] 张娟, 叶莉, 李伟. 水泥混凝土路面错台自动检测方法[J]. 交通运输工程学报, 2016, 16(4): 26-36. doi: 10.19818/j.cnki.1671-1637.2016.04.003

    ZHANG Juan, YE Li, LI Wei. Automatic detecting method of cement concrete pavement fault[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 26-36. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.003
    [3] YEO S H, MO K H, HOSEN M A, et al. Properties of cementitious repair materials for concrete pavement[J]. Advances in Materials Science and Engineering, 2022, 2022: 3057801.
    [4] 吴国雄, 王晨, 向阳开, 等. 缺陷水泥混凝土路面裂缝扩展机理研究[J]. 重庆交通大学学报(自然科学版), 2008, 27(3): 400-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200803017.htm

    WU Guo-xiong, WANG Chen, XIANG Yang-kai, et al. Research on mechanism of crack expanding of blemish cement concrete pavement[J]. Journal of Chongqing Jiaotong University (Natural Science), 2008, 27(3): 400-404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200803017.htm
    [5] 申爱琴. 水泥混凝土路面裂缝修补材料研究: 聚合物改性水泥灌浆材料研究[D]. 西安: 长安大学, 2005.

    SHEN Ai-qin. Study on the crack mending materials of cement concrete pavement: study on the grouting materials of polymer modified cement[D]. Xi'an: Chang'an University, 2005. (in Chinese)
    [6] 张健. 减缩型聚羧酸减水剂对水泥基材料收缩开裂的影响及作用机制[D]. 南京: 东南大学, 2022.

    ZHANG Jian. Effect of shrinkage-reducing polycarboxylate superplasticizer on shrinkage cracking of cement-based materials and its mechanism[D]. Nanjing: Southeast University, 2022. (in Chinese)
    [7] 马一平, 余少同, 游璐, 等. 纤维参数对水泥基材料减裂效果的影响[J]. 建筑材料学报, 2018, 21(5): 797-802. doi: 10.3969/j.issn.1007-9629.2018.05.016

    MA Yi-ping, YU Shao-tong, YOU Lu, et al. Effect of fiber parameters on crack reduction of cement based materials[J]. Journal of Building Materials, 2018, 21(5): 797-802. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.05.016
    [8] 马一平, 刘静静, 朱蓓蓉, 等. 密实度对水泥基材料收缩开裂性能的影响[J]. 建筑材料学报, 2014, 17(1): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201401024.htm

    MA Yi-ping, LIU Jing-jing, ZHU Bei-rong, et al. Effect of compactness on shrinkage cracking of cement-based materials[J]. Journal of Building Materials, 2014, 17(1): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201401024.htm
    [9] WEI Ya, LIANG Si-ming, GAO Xiang. Numerical evaluation of moisture warping and stress in concrete pavement slabs with different water-to-cement ratio and thickness[J]. Journal of Engineering Mechanics, 2017, 143(2): 04016111. doi: 10.1061/(ASCE)EM.1943-7889.0001180
    [10] JOSHAGHANI A, ZOLLINGER D G. Assessment of concrete pavement set gradient based on analysis of slab behavior and field test data[J]. Transportation Research Record, 2019, 2673(6): 512-523. doi: 10.1177/0361198119849900
    [11] YANG Jing-yu, GUO Yin-chuan, SHEN Ai-qin, et al. Research on drying shrinkage deformation and cracking risk of pavement concrete internally cured by SAPs[J]. Construction and Building Materials, 2019, 227: 116705. doi: 10.1016/j.conbuildmat.2019.116705
    [12] QIN Xiao, SHEN Ai-qin, LYU Zheng-hua, et al. Research on water transport behaviors and hydration characteristics of internal curing pavement concrete[J]. Construction and Building Materials, 2020, 248: 118714. doi: 10.1016/j.conbuildmat.2020.118714
    [13] GUNATILAKE M D, MARKANDEYA A, SEDAGHAT A, et al. Effect of different cracking mitigation measures on high early-strength concrete performance[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021205. doi: 10.1061/(ASCE)MT.1943-5533.0003852
    [14] 周正峰, 罗君豪, 康玉峰. 水泥路面接缝传力杆周围混凝土损伤塑性分析[J]. 交通运输工程学报, 2022, 22(4): 117-127. doi: 10.19818/j.cnki.1671-1637.2022.04.008

    ZHOU Zheng-feng, LUO Jun-hao, KANG Yu-feng. Damaged plastic analysis of concrete around dowel bars at joint in cement pavement[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 117-127. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.008
    [15] ZHANG Jia-ke, ZHANG Gao-wang, WANG Yu-xiang, et al. Mechanical behavior of doweled joints in concrete pavements: a review[J]. Journal of Transportation Engineering, Part B: Pavements, 2022, 148(4): 03122002. doi: 10.1061/JPEODX.0000399
    [16] BUENO M, ARRAIGADA M, PARTL M N. Induction heating technology for improving compaction of asphalt joints[J]. International Journal of Pavement Engineering, 2018, 21(12): 1532-1540.
    [17] 杨宁, 白二雷, 许金余, 等. VAE乳胶粉掺量对苯丙乳液水泥基路面填缝料拉伸性能的影响[J]. 空军工程大学学报(自然科学版), 2018, 19(4): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201804018.htm

    YANG Ning, BAI Er-lei, XU Jin-yu, et al. Effects of VAE re-dispersible emulsion powder content on tensile properties of styrene-acrylic emulsion based cement compound joint sealant[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(4): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201804018.htm
    [18] 刘绍敏, 吴培关, 张东长. 水泥混凝土路面新型填缝料的施工工艺研究[J]. 科学技术与工程, 2012, 12(1): 227-229, 233. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201201057.htm

    LIU Shao-min, WU Pei-guan, ZHANG Dong-chang. Research on construction technology of joint fillers for cement concrete pavement[J]. Science Technology and Engineering, 2012, 12(1): 227-229, 233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201201057.htm
    [19] LU Lu, ZHAO De-ying, FAN Ji-zhou, et al. A brief review of sealants for cement concrete pavement joints and cracks[J]. Road Materials and Pavement Design, 2021, 23(7): 1467-1491.
    [20] SHI Shuang, MA Tao, GU Lin-hao, et al. Thermal behaviors, interfacial microstructure and molecular orientation of shape memory polyurethane/SiO2 based sealant for concrete pavement[J]. Polymers, 2022, 14(16): 3336.
    [21] XU Hui-yu, HU Zhi-hui, XU Tao. Effects of healing agent on shape memory, mechanical and self-healing properties of joint filler on cement concrete pavement[J]. Construction and Building Materials, 2021, 304: 124592.
    [22] 时爽. 具有形状记忆效应的水泥路面嵌缝料研发及自修复机理研究[D]. 南京: 南京林业大学, 2019.

    SHI Shuang. Development and self-healing mechanism of joint sealant with shape memory effect in cement concrete pavement[D]. Nanjing: Nanjing Forestry University, 2019. (in Chinese)
    [23] 薛彦卿, 黄晓明, 石小武, 等. 含脱空水泥混凝土路面交通荷载下的疲劳损伤机理[J]. 东南大学学报(自然科学版), 2014, 44(1): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201401037.htm

    XUE Yan-qing, HUANG Xiao-ming, SHI Xiao-wu, et al. Fatigue damage mechanism of cement concrete pavement with void under traffic load[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(1): 199-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201401037.htm
    [24] 童申家, 叶丛, 王乾, 等. 板底脱空水泥路面疲劳寿命预估方程研究[J]. 广西大学学报(自然科学版), 2018, 43(1): 304-313. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201801035.htm

    TONG Shen-jia, YE Cong, WANG Qian, et al. Research on fatigue life prediction of cement pavement with void[J]. Journal of Guangxi University(Natural Science Edition), 2018, 43(1): 304-313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201801035.htm
    [25] LIU Bang-yi, ZHOU Yang, GU Lin-hao, et al. Finite element simulation and multi-factor stress prediction model for cement concrete pavement considering void under slab[J]. Materials, 2020, 13(22): 5294.
    [26] LI Hao, FANG Na-ren, WANG Xuan-cang, et al. Load transfer efficiency analysis and void evaluation of composite pavement cement concrete slab[J]. Advances in Materials Science and Engineering, 2022, 2022: 4490485.
    [27] 陈望平, 刘安刚, 唐钰杰, 等. 动水压力下水泥混凝土路面基层溶蚀脱空研究[J]. 混凝土, 2022(8): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202208036.htm

    CHEN Wang-ping, LIU An-gang, TANG Yu-jie, et al. Dissolution and cavitation of cement concrete pavement base under hydrodynamic pressure[J]. Concrete, 2022(8): 174-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202208036.htm
    [28] 叶丛, 王乾, 丁雅碧. 脱空耦合下水泥混凝土路面疲劳寿命影响因素分析[J]. 公路, 2018, 63(7): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201807021.htm

    YE Cong, WANG Qian, DING Ya-bi. Analysis of factors affecting fatigue life of cement concrete pavement under void coupling[J]. Highway, 2018, 63(7): 100-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201807021.htm
    [29] 陈祥, 朱洪洲, 范世平, 等. 荷载-温度-水共同作用下脱空水泥混凝土路面板力学响应分析[J]. 公路交通科技, 2022, 39(2): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202202002.htm

    CHEN Xiang, ZHU Hong-zhou, FAN Shi-ping, et al. Analysis on mechanical response of void beneath cement concrete pavement slab under load-temperature-water interaction[J]. Journal of Highway and Transportation Research and Development, 2022, 39(2): 11-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202202002.htm
    [30] 王芳, 王选仓, 刘凯. 同板动弯沉差脱空判别方法和标准[J]. 土木建筑与环境工程, 2010, 32(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201003014.htm

    WANG Fang, WANG Xuan-cang, LIU Kai. Determination method and criterion for voids by dynamic deflection difference in the same cement slab[J]. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(3): 75-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201003014.htm
    [31] 范晓燕, 冯兴亮, 台电仓. 长寿命复合路面脱空检测与评价方法研究[J]. 中外公路, 2021, 41(增2): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL2021S2023.htm

    FAN Xiao-yan, FENG Xing-liang, TAI Dian-cang. Study on detection and evaluation method of void in long-life composite pavement[J]. Journal of China and Foreign Highway, 2021, 41(S2): 106-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL2021S2023.htm
    [32] 薛忠军, 王佳妮, 张肖宁. 基于Fisher函数的水泥路面板底脱空判别方法[J]. 振动与冲击, 2013, 32(17): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201317031.htm

    XUE Zhong-jun, WANG Jia-ni, ZHANG Xiao-ning. Discrimination method for cement road slab void based on fisher function[J]. Journal of Vibration and Shock, 2013, 32(17): 155-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201317031.htm
    [33] 余秋琴, 罗婷倚, 杨哲, 等. 基于GPR信号的水泥路面脱空特征表征方法[J]. 地下空间与工程学报, 2021, 17(增2): 902-911. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2053.htm

    YU Qiu-qin, LUO Ting-yi, YANG Zhe, et al. Feature extraction method of void defect in concrete pavement from GPR signal[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 902-911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2053.htm
    [34] 罗婷倚, 杨哲, 张军, 等. 基于GPR信号和卷积核的水泥路面脱空识别算法[J]. 地球物理学进展, 2022, 37(6): 2580-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202206035.htm

    LUO Ting-yi, YANG Zhe, ZHANG Jun, et al. Cement pavement void recognition algorithm based on convolution kernel with GPR A-Scans[J]. Progress in Geophysics, 2022, 37(6): 2580-2588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202206035.htm
    [35] 郭成超, 王复明, 钟燕辉. 水泥混凝土路面脱空高聚物注浆技术研究[J]. 公路, 2008(10): 232-236. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200810054.htm

    GUO Cheng-chao, WANG Fu-ming, ZHONG Yan-hui. Research on polymer grouting technology for cement concrete pavement void[J]. Highway, 2008(10): 232-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200810054.htm
    [36] GUO Tian-xiong, WENG Xing-zhong, LIU Cong, et al. Evaluation of the bonding and fatigue properties of an innovative rapid repair structure for concrete pavement[J]. Construction and Building Materials, 2020, 235: 117484.
    [37] 付智. 高速公路水泥混凝土路面的表面功能研究[J]. 施工技术, 2013, 42(11): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201311036.htm

    FU Zhi. The surface function research of cement concrete pavement on expressway[J]. Construction Technology, 2013, 42(11): 108-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201311036.htm
    [38] 李晶晶, 张擎, 陈忠达. 水泥路面环氧树脂磨耗层的抗滑衰变模型[J]. 深圳大学学报(理工版), 2017, 34(6): 597-603. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201706008.htm

    LI Jing-jing, ZHANG Qing, CHEN Zhong-da. Skid resistance decay model of epoxy wear layer on cement pavement[J]. Journal of Shenzhen University (Science and Engineering), 2017, 34(6): 597-603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201706008.htm
    [39] SUN Pan, LIANG Xia-yi, DING Yue, et al. Laboratory evaluation on water-based and flexible epoxy/SiO2 nanocomposites to enhance anti-sliding effectiveness of pavement[J]. Materials Research Express, 2020, 7(2): 025303.
    [40] 周显鹏, 刘朝晖, 熊征, 等. 聚合物改性水泥路面抗滑降噪施工技术分析[J]. 公路工程, 2018, 43(3): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201803036.htm

    ZHOU Xian-peng, LIU Chao-hui, XIONG Zheng, et al. Analysis of anti skid and noise reduction construction technology of polymer modified cement pavement[J]. Highway Engineering, 2018, 43(3): 179-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201803036.htm
    [41] 丛卓红, 陈恒达, 郑南翔, 等. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202009016.htm

    CONG Zhuo-hong, CHEN Heng-da, ZHENG Nan-xiang, et al. Surface texture of cement concrete pavement: a review[J]. Materials Reports, 2020, 34(9): 9110-9116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202009016.htm
    [42] 陈飞宏, 张云, 梁军林, 等. 路面机制砂水泥混凝土的抗滑耐久性研究[J]. 混凝土, 2021(10): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202110013.htm

    CHEN Fei-hong, ZHANG Yun, LIANG Jun-lin, et al. Study on anti-skid durability of pavement manufactured sand cement concrete[J]. Concrete, 2021(10): 44-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202110013.htm
    [43] 李晓辉, 李波, 杨小龙. 基于水泥路面槽参数的表面功能研究[J]. 公路工程, 2015, 40(2): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201502025.htm

    LI Xiao-hui, LI Bo, YANG Xiao-long. Research on technology of pavement skid and noise reduction of tunnel concrete[J]. Highway Engineering, 2015, 40(2): 109-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201502025.htm
    [44] 马林, 罗志光, 李宝强, 等. 基于压力胶片技术的隧道纹理化路面抗滑性能研究[J]. 公路交通科技, 2020, 37(6): 22-28, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202006003.htm

    MA Lin, LUO Zhi-guang, LI Bao-qiang, et al. Study on skid-resistance performance of tunnel textured pavement based on pressure film technology[J]. Journal of Highway and Transportation Research and Development, 2020, 37(6): 22-28, 43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202006003.htm
    [45] 张晓华, 张蓉, 周水文, 等. 铣刨工艺提高隧道内水泥混凝土路面抗滑性能应用探讨[J]. 中外公路, 2016, 36(2): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201602014.htm

    ZHANG Xiao-hua, ZHANG Rong, ZHOU Shui-wen, et al. Discussion on application of milling technology to improve skid resistance of cement concrete pavement in tunnel[J]. Journal of China and Foreign Highway, 2016, 36(2): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201602014.htm
    [46] 展宏图, 刘亮. 陶瓷刀具仿形造纹技术在提高隧道水泥路面抗滑性能中的应用研究[J]. 中外公路, 2019, 39(4): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201904040.htm

    ZHAN Hong-tu, LIU Liang. Study on the application of ceramic tool profiling technology in improving the skid resistance of tunnel cement pavement[J]. Journal of China and Foreign Highway, 2019, 39(4): 200-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201904040.htm
    [47] 张艳聪, 周新星. 高速公路隧道水泥混凝土路面抗滑能力恢复技术的应用[J]. 公路, 2021, 66(2): 297-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202102059.htm

    ZHANG Yan-cong, ZHOU Xin-xing. Application of recovery technology for anti-sliding capability of cement concrete pavement of tunnel on expressway[J]. Highway, 2021, 66(2): 297-299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202102059.htm
    [48] 郑少鹏, 彭鹏, 谢晋德, 等. 水泥混凝土路面抛丸机施工效果研究[J]. 中外公路, 2013, 33(6): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201306020.htm

    ZHENG Shao-peng, PENG Peng, XIE Jin-de, et al. Study on the construction effect of cement concrete pavement shot blasting machine[J]. Journal of China and Foreign Highway, 2013, 33(6): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201306020.htm
    [49] 肖鹏飞, 韩森. 环境因素对水泥混凝土路面抗滑性能影响的试验研究[J]. 公路, 2012(7): 246-249. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201207053.htm

    XIAO Peng-fei, HAN Sen. Experimental study on influence of environmental factors on skid resistance of cement concrete pavement[J]. Highway, 2012(7): 246-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201207053.htm
    [50] SUN Ya-zhen, ZHENG Zhi, HUANG Wei-ming, et al. Analytical solution based on state-space method for cracked concrete pavement subjected to arbitrary concentrated loading[J]. Construction and Building Materials, 2022, 347: 128612.
    [51] 孙雅珍, 郑直, 黄伟明, 等. 基于状态空间法的含裂缝水泥路面结构分析[J]. 吉林大学学报(工学版), 2023, 53(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202301019.htm

    SUN Ya-zhen, ZHENG Zhi, HUANG Wei-ming, et al. Structural analysis of cement pavement with cracks based on state-space method[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 188-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202301019.htm
    [52] BARI M E, ZOLLINGER D G. New concepts for the assessment of concrete slab interfacial effects in pavement design and analysis[J]. International Journal of Pavement Engineering, 2016, 17(3): 233-244.
    [53] 郑直, 郭乃胜, 孙雅珍, 等. 考虑层间滑移的水泥混凝土路面结构力学响应分析[J]. 东南大学学报(自然科学版), 2023, 53(4): 655-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202304011.htm

    ZHENG Zhi, GUO Nai-sheng, SUN Ya-zhen, et al. Mechanical response analysis on cement concrete pavement structure considering interlayer slip[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(4): 655-663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202304011.htm
    [54] 段小兰. 混凝土路面脱空板角的温度应力有限元分析研究[D]. 重庆: 重庆交通大学, 2016.

    DUAN Xiao-lan. The thermal stress study of void beneath slab on cement concrete pavement[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)
    [55] 颜可珍, 沈光辉, 游凌云. 非线性温度梯度作用下水泥混凝土路面力学分析[J]. 湖南大学学报(自然科学版), 2015, 42(7): 74-80.

    YAN Ke-zhen, SHEN Guang-hui, YOU Ling-yun. Mechanical analysis of cement concrete pavement on nonlinear temperature profile[J]. Journal of Hunan University (Natural Sciences), 2015, 42(7): 74-80. (in Chinese)
    [56] DING Fei, YIN Yan, CAI Liang-cai, et al. Mechanical response of typical cement concrete pavements under impact loading[J]. Mathematical Problems in Engineering, 2017, 2017: 2050285.
    [57] CUI Can, LU Qing, GUO Cheng-chao, et al. Analysis of the coupling effect of thermal and traffic loads on cement concrete pavement with voids repaired with polymer grout[J]. Advances in Materials Science and Engineering, 2022, 2022: 2517250.
    [58] MAITRA S R, REDDY K S, RAMACHANDRA L S. Numerical investigation of fatigue characteristics of concrete pavement[J]. International Journal of Fracture, 2014, 189(2): 181-193.
    [59] MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
    [60] 肖赟. 预应力混凝土梁超载疲劳刚度退化试验研究[D]. 北京: 北京交通大学, 2014.

    XIAO Yun. Experimental study on stiffness degradation of prestressed concrete beam under overload fatigue[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [61] 赵少汴. 常用累积损伤理论疲劳寿命估算精度的试验研究[J]. 机械强度, 2000, 22(3): 206-209. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200003013.htm

    ZHAO Shao-bian. Study on the accuracy of fatigue life predictions by the generally used damage accmulation theory[J]. Journal of Mechanical Strength, 2000, 22(3): 206-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200003013.htm
    [62] MARCO S M, STARKEY W L. A concept of fatigue damage[J]. Journal of Fluids Engineering, 1954, 76(4): 627-632.
    [63] 李威. 考虑强度退化的非线性累积损伤模型分析[J]. 机械强度, 2020, 42(3): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202003031.htm

    LI Wei. Analysis of nonlinear cumulative damage model considering strength degradation[J]. Journal of Mechanical Strength, 2020, 42(3): 723-727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202003031.htm
    [64] 王文阁, 卢延辉. 实用概率Miner理论及在汽车部件疲劳计算上的应用[J]. 汽车技术, 2009(12): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS200912006.htm

    WANG Wen-ge, LU Yan-hui. Application of pragmatic probability miner fatigue damage theory in auto parts fatigue calculation[J]. Automobile Technology, 2009(12): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS200912006.htm
    [65] 李荣, 邱洪兴, 淳庆. 疲劳累积损伤规律研究综述[J]. 金陵科技学院学报, 2005, 21(3): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-NJNZ200503006.htm

    LI Rong, QIU Hong-xing, CHUN Qing. Research review of fatigue accumulative damage rule[J]. Journal of Jinling Institute of Technology, 2005, 21(3): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJNZ200503006.htm
    [66] 郭寅川, 申爱琴, 田丰, 等. 动态疲劳荷载作用下路面混凝土力学性能研究[J]. 中国公路学报, 2017, 30(7): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707003.htm

    GUO Yin-chuan, SHEN Ai-qin, TIAN Feng, et al. Mechanical property of pavement cement concrete under dynamic fatigue load[J]. China Journal of Highway and Transport, 2017, 30(7): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707003.htm
    [67] HOU Yue, LI Qiu-han, ZHANG Chen, et al. The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis[J]. Engineering, 2021, 7(6): 845-856.
    [68] BRAUNFELDS J, SENKANS U, SKELS P, et al. Road pavement structural health monitoring by embedded fiber-bragg-grating-based optical sensors[J]. Sensors, 2022, 22(12): 4581.
    [69] SOUNTHARARAJAH A, WONG L, NGUYEN N, et al. Evaluation of flexural behaviour of cemented pavement material beams using distributed fibre optic sensors[J]. Construction and Building Materials, 2017, 156: 965-975.
    [70] BLANC J, HORNYCH P, DUONG N S, et al. Monitoring of an experimental motorway section[J]. Road Materials and Pavement Design, 2019, 20(1): 74-89.
    [71] ALSHANDAH M, HUANG Ying, GAO Zhi-li, et al. Internal crack detection in concrete pavement using discrete strain sensors[J]. Journal of Civil Structural Health Monitoring, 2020, 10(2): 345-356.
    [72] CAI Shu-xiang, YUAN Hai-wen, CUI Yong, et al. An ISO/IEC/IEEE21451 smart sensor network for distributed measurement of pavement structural temperature[J]. International Journal of Distributed Sensor Networks, 2016, 12(3): 3408489.
    [73] GODOY J, HABER R, MUÑOZ J J, et al. Smart sensing of pavement temperature based on low-cost sensors and V2I communications[J]. Sensors, 2018, 18(7): 2092.
    [74] RASOL M A, PÉREZ-GRACIA V, SOLLA M, et al. An experimental and numerical approach to combine ground penetrating radar and computational modeling for the identification of early cracking in cement concrete pavements[J]. NDT and E International, 2020, 115: 102293.
    [75] STRYK J, MATULA R, POSPÍŠIL K, et al. Comparative measurements of ground penetrating radars used for road and bridge diagnostics in the Czech Republic and France[J]. Construction and Building Materials, 2017, 154: 1199-1206.
    [76] ZHAO Shan, AL-QADI I L, WANG Si-qi. Prediction of thin asphalt concrete overlay thickness and density using nonlinear optimization of GPR data[J]. NDT and E International, 2018, 100: 20-30.
    [77] YANG Guang-wei, WANG K C P, LI J Q, et al. A novel 0.1 mm 3D laser imaging technology for pavement safety measurement[J]. Sensors, 2022, 22(20): 8038.
    [78] GAO Ming-xing, WANG Xu, ZHU Shou-lin, et al. Detection and segmentation of cement concrete pavement pothole based on image processing technology[J]. Mathematical Problems in Engineering, 2020: 1360832.
    [79] PEDDINTI P R T, PUPPALA H, KIM B. Pavement monitoring using unmanned aerial vehicles: an overview[J]. Journal of Transportation Engineering, Part B: Pavements, 2023, 149(3): 03123002.
    [80] LEI Guang-yu, HAN Ji-chang, DANG Fa-ning. Using X-ray CT scanning to study the failure mechanism of concrete under static and dynamic loadings[J]. Advances in Materials Science and Engineering, 2018: 3019158.
    [81] WANG Ning, ZHANG Chao, MA Tao, et al. Damage evolution analysis in cementitious mixtures using acoustic emission techniques[J]. Journal of Transportation Engineering, Part B: Pavements, 2023, 149(3): 04023014.
    [82] ARUNDAS P H, DEWANGAN U K. Compressive strength of concrete based on ultrasonic and impact echo test[J]. Indian Journal of Science and Technology, 2016, 9(23): 1-7.
    [83] ARNDT R W. Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering[J]. Infrared Physics and Technology, 2010, 53(4): 246-253.
    [84] LU Yang, GOLROKH A J, ISLAM M A. Concrete pavement service condition assessment using infrared thermography[J]. Advances in Materials Science and Engineering, 2017: 3829340.
    [85] GOLROKH A J, LU Yang. An experimental study of the effects of climate conditions on thermography and pavement assessment[J]. International Journal of Pavement Engineering, 2019, 22(8): 1030-1041.
    [86] LI Xiao-jun, WEN Hai-fang. Effects of preoverlay pavement conditions and preoverlay repair methods on the performance of asphaltic concrete overlays[J]. Journal of Transportation Engineering, 2014, 140(1): 42-49.
    [87] 程培峰, 林宏. 基于Abaqus的旧水泥混凝土路面加铺沥青层结构的力学研究[J]. 公路工程, 2017, 42(1): 9-12, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201701003.htm

    CHENG Pei-feng, LIN Hong. Based on Abaqus of paving asphalt layer structure of old cement concrete pavement mechanics[J]. Highway Engineering, 2017, 42(1): 9-12, 30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201701003.htm
    [88] ZHONG Yang, LIU Heng. Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement[J]. Road Materials and Pavement Design, 2014, 15(3): 701-711.
    [89] 张丽娟, 陈晓生, 骆亚军. 旧水泥沥青加铺层路面结构温度场及热力分析[J]. 科学技术与工程, 2018, 18(12): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201812048.htm

    ZHANG Li-juan, CHEN Xiao-sheng, LUO Ya-jun. The temperature field simulation and the thermomechanical analysis of asphalt overlay on the old portland cement pavement[J]. Science Technology and Engineering, 2018, 18(12): 292-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201812048.htm
    [90] 李盛, 杨帆, 曹前, 等. 连续配筋混凝土路面结构优化及性能评价[J]. 土木工程学报, 2017, 50(7): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707013.htm

    LI Sheng, YANG Fan, CAO Qian, et al. Structure optimization and performance evaluation of continuously reinforced concrete pavement[J]. China Civil Engineering Journal, 2017, 50(7): 122-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707013.htm
    [91] 朱琳, 党发宁, 丁卫华, 等. 基于CT技术和灰度共生矩阵理论研究不同荷载作用下混凝土的细观损伤演化过程[J]. 土木工程学报, 2020, 53(8): 97-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008011.htm

    ZHU Lin, DANG Fa-ning, DING Wei-hua, et al. Coupled X-ray computed tomography and grey level co-occurrence matrices theory as a method for detecting microscopic damage of concrete under different loads[J]. China Civil Engineering Journal, 2020, 53(8): 97-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008011.htm
    [92] 李盛, 余时清, 张豪, 等. 连续配筋混凝土复合式沥青路面Top-Down裂缝疲劳扩展研究[J]. 中南大学学报(自然科学版), 2022, 53(11): 4473-4484. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202211026.htm

    LI Sheng, YU Shi-qing, ZHANG Hao, et al. Research on fatigue propagation of top-down cracks on continuously reinforced concrete composite asphalt pavement[J]. Journal of Central South University (Science and Technology), 2022, 53(11): 4473-4484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202211026.htm
    [93] 潘勤学, 郑健龙. 考虑拉压模量不同的沥青路面力学计算方法与分析[J]. 土木工程学报, 2020, 53(1): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202001012.htm

    PAN Qin-xue, ZHENG Jian-long. Mechanical calculation method and analysis of asphalt pavement considering different modulus in tension and compression[J]. China Civil Engineering Journal, 2020, 53(1): 110-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202001012.htm
    [94] 刘斌, 姚佳良, 沈丽. 沥青缓冲封层对水泥混凝土路面结构力学性能的影响[J]. 公路, 2016, 61(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201601006.htm

    LIU Bin, YAO Jia-liang, SHEN Li. Impact of asphalt buffer layer on the mechanical properties of cement concrete pavement[J]. Highway, 2016, 61(1): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201601006.htm
    [95] 蔡燕霞, 臧芝树, 付欣. 设置层间功能层的刚性基层水泥混凝土路面动态响应灰关联分析[J]. 公路交通科技, 2012, 29(11): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201211009.htm

    CAI Yan-xia, ZANG Zhi-shu, FU Xin. Grey incidence analysis of dynamic response of cement concrete pavement based on rigid base with function layer[J]. Journal of Highway and Transportation Research and Development, 2012, 29(11): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201211009.htm
    [96] CHEN Qi-qi, WANG Guan-hu, HUANG Xue-lin, et al. Evaluation and formulation of assessment criteria for dominant distresses in preventive maintenance of cement concrete pavements[J]. Mathematical Problems in Engineering, 2020: 8645213.
    [97] 武贤慧, 沙爱民, 张娟. 水泥路面病害-成因关系链及数字化编码[J]. 长安大学学报(自然科学版), 2015, 35(2): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502005.htm

    WU Xian-hui, SHA Ai-min, ZHANG Juan. Chain and digital coding of distress and cause of cement concrete pavement[J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(2): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502005.htm
    [98] KHEIRATI A, GOLROO A. Machine learning for developing a pavement condition index[J]. Automation in Construction, 2022, 139: 104296.
    [99] 王丽娟, 胡昌斌. 设沥青夹层水泥混凝土路面早龄期力学行为与作用效应研究[J]. 工程力学, 2018, 35(2): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802014.htm

    WANG Li-juan, HU Chang-bin. Early-age mechanical behavior and action effect of cement concrete pavement with asphalt interlayers[J]. Engineering Mechanics, 2018, 35(2): 105-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802014.htm
    [100] ITANI H, SAAD G, CHEHAB G. The use of geogrid reinforcement for enhancing the performance of concrete overlays: an experimental and numerical assessment[J]. Construction and Building Materials, 2016, 124: 826-837.
    [101] HU Li-wei, YAO Jia-liang, WANG Zhen-quan. Interlaminar mechanical properties of cement concrete pavement structures with isolation layer[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021093.
    [102] BISSONNETTE B, COURARD L, BEUSHAUSEN H, et al. Recommendations for the repair, the lining or the strengthening of concrete slabs or pavements with bonded cement-based material overlays[J]. Materials and Structures, 2013, 46(3): 481-494.
    [103] 黄今, 陈拴发, 李祖仲. 旧水泥混凝土路面沥青加铺层反射裂缝的研究进展[J]. 材料导报, 2013, 27(3): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201303017.htm

    HUANG Jin, CHEN Shuan-fa, LI Zu-zhong. Advances in reflection cracking of asphalt overlay on old concrete pavement[J]. Materials Reports, 2013, 27(3): 77-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201303017.htm
    [104] 刘志胜, 刘志岗, 张翛, 等. 刚柔复合式路面裂缝反射预防技术研究进展[J]. 材料导报, 2016, 30(3): 86-90, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201603017.htm

    LIU Zhi-sheng, LIU Zhi-gang, ZHANG Xiao, et al. Review of crack-reflection preventive technologies for rigid-flexible composite pavement[J]. Materials Reports, 2016, 30(3): 86-90, 104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201603017.htm
    [105] XUE Y C, QIAN Z D, ZHANG M, et al. Reflective cracking resistance improvement of the asphalt concrete overlay on an airfield pavement[J]. Strength of Materials, 2020, 52(1): 149-159.
    [106] GE Zhe-sheng, WANG Hao, ZHANG Qing-shan, et al. Glass fiber reinforced asphalt membrane for interlayer bonding between asphalt overlay and concrete pavement[J]. Construction and Building Materials, 2015, 101: 918-925.
    [107] ZHAO Zi-feng, GUAN Xin, XIAO Fei-peng, et al. Applications of asphalt concrete overlay on Portland cement concrete pavement[J]. Construction and Building Materials, 2020, 264: 120045.
    [108] PEI Zhong-shi, YI Jun-yan, MAO Qing-yang, et al. DEM analysis of the evolution of reflection cracks in old cement concrete pavement with an ATB layer[J]. International Journal of Pavement Engineering, 2022, 24(2): 2049263.
    [109] BHATTACHARYA B B, GOTLIF A, DARTER M I, et al. Impact of joint spacing on bonded concrete overlay of existing asphalt pavement in the AASHTOW are pavement ME design software[J]. Journal of Transportation Engineering, Part B: Pavements, 2019, 145(3): 04019018.
    [110] CHEN Yu-an, CEYLAN H, NLENANYA I, et al. Long-term performance evaluation of Iowa concrete overlays[J]. International Journal of Pavement Engineering, 2020, 23(3): 719-730.
    [111] 祝斯月, 秦先涛. 分离式水泥混凝土加铺层设计[J]. 中外公路, 2013, 33(4): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201304024.htm

    ZHU Si-yue, QIN Xian-tao. Separate cement concrete overlay design[J]. Journal of China and Foreign Highway, 2013, 33(4): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201304024.htm
    [112] LI Sheng, YANG Fan, LIU Zhao-hui. A new structure for continuously reinforced concrete pavement with road performance evaluation[J]. Construction and Building Materials, 2017, 157: 1047-1052.
    [113] 李盛, 杨帆, 刘萌, 等. 新型双层CRCP结构及在城市道路中的应用[J]. 中南大学学报(自然科学版), 2019, 50(4): 983-989. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201904028.htm

    LI Sheng, YANG Fan, LIU Meng, et al. Structure of continuously reinforced concrete pavement with double-layer reinforced and its application in urban road[J]. Journal of Central South University (Science and Technology), 2019, 50(4): 983-989. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201904028.htm
    [114] 杨帆, 李琛琛, 李盛, 等. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202304020.htm

    YANG Fan, LI Chen-chen, LI Sheng, et al. Numerical simulation of continuously reinforced concrete pavement with double-layer reinforcement under effect of temperature shrinkage[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(4): 1122-1132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202304020.htm
    [115] 朱孝笑, 田莉梅. 某国道水泥混凝土路面病害分析及加铺方案比选研究[J]. 公路工程, 2019, 44(3): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201903027.htm

    ZHU Xiao-xiao, TIAN Li-mei. Disease analysis and paving scheme for cement concrete pavement of a national highway comparison and selection research[J]. Highway Engineering, 2019, 44(3): 138-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201903027.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  51
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-14
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回