留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乳化沥青冷再生混合料强度提升措施研究进展

汪海年 焦虎 徐宁 陈玉 李元乐

汪海年, 焦虎, 徐宁, 陈玉, 李元乐. 乳化沥青冷再生混合料强度提升措施研究进展[J]. 交通运输工程学报, 2024, 24(3): 48-68. doi: 10.19818/j.cnki.1671-1637.2024.03.003
引用本文: 汪海年, 焦虎, 徐宁, 陈玉, 李元乐. 乳化沥青冷再生混合料强度提升措施研究进展[J]. 交通运输工程学报, 2024, 24(3): 48-68. doi: 10.19818/j.cnki.1671-1637.2024.03.003
WANG Hai-nian, JIAO Hu, XU Ning, CHEN Yu, LI Yuan-le. Research progress on strength enhancement measures of emulsified asphalt cold recycled mixtures[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 48-68. doi: 10.19818/j.cnki.1671-1637.2024.03.003
Citation: WANG Hai-nian, JIAO Hu, XU Ning, CHEN Yu, LI Yuan-le. Research progress on strength enhancement measures of emulsified asphalt cold recycled mixtures[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 48-68. doi: 10.19818/j.cnki.1671-1637.2024.03.003

乳化沥青冷再生混合料强度提升措施研究进展

doi: 10.19818/j.cnki.1671-1637.2024.03.003
基金项目: 

国家重点研发计划 2021YFB2601000

国家自然科学基金项目 52078048

详细信息
    作者简介:

    汪海年(1977-),男,江苏涟水人,长安大学教授,工学博士,从事环保材料及耐久性研究

  • 中图分类号: U416

Research progress on strength enhancement measures of emulsified asphalt cold recycled mixtures

Funds: 

National Key Research and Development Program of China 2021YFB2601000

National Natural Science Foundation of China 52078048

More Information
  • 摘要: 分析了乳化沥青冷再生混合料的强度形成过程与构成机理,从外掺剂添加、结合料优化、设计方法和施工工艺改进以及再生沥青混合料回收料(RAP)预处理4个方面总结了乳化沥青冷再生沥青混合料强度的提升措施,分析对比了各种措施的提升机理和改善效果;根据各种措施存在的问题及特点,提出了相应的应用建议,并展望了未来的研究方向。研究结果表明:添加外掺剂来增强强度的研究相对较多,其次是优化结合料,改善混合料设计方法和施工工艺以及RAP预处理的研究较少,但这几个方面对于混合料强度的增加均有广阔的应用前景;外掺剂中,水泥最为常用,研究也最为系统,其增强效果要优于石灰,但掺量过高会导致低温抗裂性不足;火山灰质材料同样存在此问题,且杂质较多;纤维改善效果较为均衡,但受种类、掺量、添加顺序等因素影响;再生剂能够提高耐久性,但对早期强度不利;关于结合料,乳化沥青的慢裂性质有助于整体强度,高黏快凝有利于早期强度,掺量应适中,推荐3.5%~4.0%;改性乳化沥青应根据具体气候环境条件进行选择;改善混合料设计方法和施工工艺主要是从级配、含水率、结构层厚度、拌和顺序、压实养护方法等方面进行,强度增强效果相对较小,可作为附加改善条件;使用大掺量RAP的趋势使得RAP预处理技术变得更为重要,目前主要集中于降低结团率、级配分档、严控RAP储存条件和RAP表面化学改性4个方面。未来的研究应从以下几个方面进行:进一步明确火山灰质材料与乳化沥青之前的相互作用机理,以确定最佳掺量及剔除其中的杂质;探索不同外掺剂以及不同改性剂在提高混合料强度方面的复配应用;根据强度构成机理,探究多个提升措施的改善效果,以得到一个均衡的强度提升措施体系;重点关注RAP的预处理手段,探索RAP表面物理特性预处理对乳化沥青冷再生混合料强度的增强机理及效果。

     

  • 图  1  乳化沥青冷再生混合料强度形成过程

    Figure  1.  Strength formation process of emulsified asphalt cold recycled mixtures

    图  2  RAP表面老化沥青膜

    Figure  2.  Aged asphalt membranes on RAP surfaces

    图  3  水泥乳化沥青立体网状结构

    Figure  3.  Three-dimensional network structure of cement emulsified asphalt

    图  4  掺加过量水泥的ECRM微观观测

    Figure  4.  Microscopic observation of ECRM with excess cement

    图  5  ECRM劈裂破坏界面

    Figure  5.  Splitting damage interfaces of ECRM

    图  6  在ECRM添加5种纤维的结果

    Figure  6.  Results of ECRM with five kinds of fibers

    图  7  ECRM中结合料的微观结构

    Figure  7.  Microstructures of bonding materials in ECRM

    图  8  环氧树脂与水性固化剂的固化反应

    Figure  8.  Curing reaction of epoxy resin and waterborne curing agent

    图  9  RAP结团现象

    Figure  9.  RAP clumping phenomenons

    图  10  玄武岩与水泥乳化沥青的界面

    Figure  10.  Interface of basalt and cement emulsified asphalts

    图  11  增加构造深度后的RAP

    Figure  11.  RAP after increasing structural depth

    表  1  不同添加顺序下ECRM试验结果

    Table  1.   Results of ECRM tests with different addition sequences

    试验条件 毛体积相对密度 空隙率/% 劈裂强度/MPa
    不添加纤维 2.301 8.06 0.89
    干拌时添加 2.290 8.52 0.87
    加水后添加 2.289 8.55 1.03
    加乳化沥青后添加 2.293 8.40 0.90
    下载: 导出CSV

    表  2  部分再生剂参数

    Table  2.   Parameters of some regenerants

    文献 再生剂种类 黏度 饱和分比例/% 芳香分比例/% 黏度比 薄膜烘箱试验后质量损失/% 说明
    [39] 普通再生剂 60 ℃动力黏度为2.3 Pa·s 25 75 2.10 1.60
    [42] R1(基础油+ 增塑剂+抗老化剂) 60 ℃运动黏度为642 mm2·s-1 23 68 1.69 2.23
    R1+乳化剂 乳化剂作用:进一步降低再生剂黏度,乳液破乳后,发挥再生作用的是R1
    [43] 轻质油分+ 普通再生剂 60 ℃运动黏度为155 mm2·s-1 ≤30 ≥70 ≤3.00
    [44] 芳烃油 100 ℃运动黏度为35 mm2·s-1 芳烃含量为83%,闪点为240 ℃,苯胺点为35.5 ℃,凝点为3 ℃,折光率为1.573,水分为0.003%,灰分为0.03%
    [41] 以抽出油为主要成分的高浓度乳化材料 使用方法:混合RAP与再生剂,在25 ℃下保存5~7 d
    下载: 导出CSV

    表  3  外掺剂对ECRM强度的影响

    Table  3.   Effects of additives on strengths of ECRM

    外掺剂种类 推荐使用方式 早期强度 高温性能 低温性能 抗水损害性能 抗疲劳性能
    石灰 一般掺量不大于2% + + - +
    水泥 一般掺量为1%~2% ++ + - +
    火山灰质材料 根据物理、力学性能及环境所需确定最佳掺量和种类 + + - + +
    纤维 + + + + +
    再生剂 - - + + +
    下载: 导出CSV

    表  4  乳化沥青的技术性质

    Table  4.   Technical properties of emulsified asphalt

    检测项目 文献[36] 文献[13]
    普通慢裂 普通中裂 普通慢裂 普通中裂 高黏度慢裂
    筛上剩余量/% 0.024 0.018 0.040 0.080 0.050
    破乳速度 慢裂 中裂 慢裂 中裂 慢裂
    恩格拉黏度E25 9.0 5.5 9.0 10.0 22.0
    蒸发残留物含量/% 63 63 60 62 66
    下载: 导出CSV

    表  5  改性乳化沥青对ECRM强度的影响

    Table  5.   Influences of modified emulsified asphalts on strengths of ECRM

    文献 改性方式 推荐掺量/% 早期强度 高温性能 低温性能 抗水损害性能 抗疲劳性能
    [47] SBS 3.5 +
    [48] SBR 4.5 +
    [53] SBR 4.0 +
    水性环氧胶黏剂 12.0 +
    硅溶胶 4.0 +
    [36] SBS + +
    SBR + +
    [49] SBS + + + +
    胶粉 20.0 + + + +
    [51] 水性环氧乳化沥青 + +
    [52] 水性环氧乳化沥青 3.0 + + - + +
    [50] 外掺水性环氧树脂 2.5 + + + + +
    下载: 导出CSV

    表  6  结合料对ECRM强度的影响

    Table  6.   Effects of bonding materials on strengths of ECRM

    优化结合料方法 推荐使用方式 早期强度 高温性能 低温性能 抗水损害性能 抗疲劳性能
    优选乳化沥青种类 高黏、慢裂、快凝 +
    优选乳化沥青掺量 掺量3.5%~4.0% +
    改性乳化沥青 根据气候环境选择适合的改性剂 早期强度和耐久性均有所提升,但不同改性剂提升效果不同,详情见表 5
    下载: 导出CSV

    表  7  国内外部分地区对ECRM拌和顺序的规定

    Table  7.   Specifications on ECRM mixing sequence in some regions at home and abroad

    地区 拌和顺序
    山西 RAP、新矿料先干拌30 s,再加水拌和60 s,最后加入乳化沥青拌和60 s
    山东 RAP、新矿料和水泥进行干拌,再与水拌和,最后加入乳化沥青
    维特根 RAP、水泥和少量水先进行拌和,再加入乳化沥青,最后加入剩余水
    RAP、乳化沥青、水泥和水同时拌和
    纽约 RAP先与水拌和,再加入乳化沥青
    明尼苏达 RAP先与水拌和,再加入乳化沥青
    挪威 RAP、沥青和水同时拌和
    南非 RAP先与水泥拌和,再加水拌和并放置15~30 min,最后加入乳化沥青拌和并放置40~60 min
    下载: 导出CSV

    表  8  混合料设计方法和施工工艺对ECRM强度的影响

    Table  8.   Effects of design methods of mixture and construction process on strength of ECRM

    提升措施 推荐使用方式 早期强度 高温性能 低温性能 抗水损害性能 抗疲劳性能
    级配设计 保证骨架形成的同时采用较细级配 + + +
    含水率设计 使用最佳有效液体含量 + +
    结构层厚度 在限制条件内尽可能提高 + + +
    拌和顺序 若能够制备均匀的水泥-乳化沥青砂浆,推荐RAP、新矿料与水拌和,同时乳化沥青、水泥和水拌和,最后两者混合,否则推荐RAP、新矿料与水先拌和,再加入乳化沥青拌和,最后加入水泥 + +
    压实方法 旋转压实法、振动压实法 + + +
    养护方式 适宜较高温度、微波加热 + +
    下载: 导出CSV

    表  9  回收破碎方式及特点

    Table  9.   Recycling crushing methods and characteristics

    破碎方式 特点
    人工破碎 风镐破碎 适用于小工程以及大型机械设备无法进入的地方,工作效率慢
    液压钳破碎
    机械破碎 铣刨破碎 铣刨破碎机 主要用于现场破碎,操作简单、机动性好、作业灵活,自动化程度高,能够调整铣刨机参数得到所需集料粒径尺寸
    刨松破碎 挖掘机破碎锤 主要辅助类破碎机械手段,机械成本低,对RAP级配破坏小,但工作效率较慢,机械调配复杂,仍会有结团现象
    推土机松土器
    下载: 导出CSV

    表  10  常用破碎方式与特点

    Table  10.   General crushing methods and characteristics

    破碎方式 特点
    冲击式破碎 反击式破碎机 生产效率高,集料颗粒形态较好,但用于破碎RAP时,结团率仍然较高,假大粒径集料仍然较多
    锤式破碎机 减少块体微裂缝,但易产生大量粉碎性物体,利用率变差
    立轴冲击式破碎机 破碎效率高,针片状含量少,可用于石料整形,但冲击力过大,易打碎集料,细化原有级配
    压缩型破碎 颚式破碎 主要用于粗料破碎,但破碎速度慢,RAP易结团造成堵塞,且细化原有级配
    圆锥式破碎机 破碎比大,工作效率高,但破碎RAP易结团造成堵塞,且细化原有级配
    锟式破碎机 双浮动式 可保证旧集料不被破碎,但极易产生假大粒径集料
    固定式 压力较大,集料易被破碎
    单浮动式 一边有缓冲弹簧,可以使RAP充分破碎且与原级配接近
    离心式破碎 转子离心式破碎机 可以得到沥青含量较少的粗料和沥青含量较多的细料
    下载: 导出CSV

    表  11  RAP预处理方式对ECRM强度的影响

    Table  11.   Effects of RAP pretreatment modes on strength of ECRM

    RAP预处理方式 推荐使用方式 早期强度 高温性能 低温性能 抗水损害性能 抗疲劳性能 说明
    优化RAP级配 降低结团率 反击式+单浮动双锟式或转子离心式破碎机 保证RAP质量及级配
    级配分档 分为2档或3档
    堆放条件 控制RAP含水率、堆放高度
    旧料分离 将旧沥青和旧石料分离 + + +
    改善RAP表面特性 化学改性 使用消石灰溶液或硅烷偶联剂浸泡RAP + + +
    物理改性 增加RAP表面物理构造深度 理论上增加,需进一步实践完善
    下载: 导出CSV
  • [1] KULESHOV A. Comparative analysis of pavement reconstruction methods[J]. Architecture and Engineering, 2018, 3(1): 21-28.
    [2] BROVELLI C, CRISPINO M. Investigation into cold recycled materials: influence of rejuvenant, mix design procedure and effects of temperature on compaction[J]. Construction and Building Materials, 2012, 37: 507-511. doi: 10.1016/j.conbuildmat.2012.07.070
    [3] DEB P, LAKSHMAN SINGH K. Mix design, durability and strength enhancement of cold mix asphalt: a state-of-the-art review[J]. Innovative Infrastructure Solutions, 2021, 7(61): 1-22.
    [4] TURK J, PRANJIĆ A M, MLADENOVIČ A, et al. Environmental comparison of two alternative road pavement rehabilitation techniques: cold-in-place-recycling versus traditional reconstruction[J]. Journal of Cleaner Production, 2016, 121: 45-55. doi: 10.1016/j.jclepro.2016.02.040
    [5] 王兆仑, 宁金成, 栗威. 冷拌再生沥青混合料能耗与碳排放量分析[J]. 公路, 2021, 66(5): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202105053.htm

    WANG Zhao-lun, NING Jin-cheng, LI Wei. Analysis of energy consumption and carbon emissions of cold mix recycled asphalt mixtures[J]. Highway, 2021, 66(5): 263-268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202105053.htm
    [6] JIANG Ji-wang, NI Fu-jian, ZHENG Jun-qin, et al. Improving the high-temperature performance of cold recycled mixtures by polymer-modified asphalt emulsion[J]. International Journal of Pavement Engineering, 2020, 21(1): 41-48. doi: 10.1080/10298436.2018.1435882
    [7] NAGEIM H A, AL-BUSALTAN S F, ATHERTON W, et al. A comparative study for improving the mechanical properties of cold bituminous emulsion mixtures with cement and waste materials[J]. Construction and Building Materials, 2012, 36: 743-748. doi: 10.1016/j.conbuildmat.2012.06.032
    [8] 李志刚, 郝培文, 徐金枝. 冻融循环作用对乳化沥青冷再生混合料抗剪性能的影响[J]. 材料导报, 2016, 30(10): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201610029.htm

    LI Zhi-gang, HAO Pei-wen, XU Jin-zhi. Study on impacts of freeze-thaw cycles on the shear performances of emulsified asphalt cold recycle mixture[J]. Materials Reports, 2016, 30(10): 121-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201610029.htm
    [9] KHALID H A, MONNEY O K. Moisture damage potential of cold asphalt[J]. International Journal of Pavement Engineering, 2009, 10(5): 311-318. doi: 10.1080/10298430802169838
    [10] 杨彦海, 钱百通, 安中华, 等. 乳化沥青厂拌冷再生技术使用效果评价研究[J]. 公路工程, 2021, 46(4): 129-137, 156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202104019.htm

    YANG Yan-hai, QIAN Bai-tong, AN Zhong-hua, et al. Study on evaluation of application effect of emulsified asphalt central plant cold recycling technology[J]. Highway Engineering, 2021, 46(4): 129-137, 156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202104019.htm
    [11] 杨彦海, 崔宏, 杨野, 等. 冻融循环作用对非饱和乳化沥青冷再生混合料性能的影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2352-2359. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202210016.htm

    YANG Yan-hai, CUI Hong, YANG Ye, et al. Effect of freeze-thaw cycle on performance of unsaturated emulsified asphalt cold recycled mixture[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2352-2359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202210016.htm
    [12] GARCÍA A, LURA P, PARTL M N, et al. Influence of cement content and environmental humidity on asphalt emulsion and cement composites performance[J]. Materials and Structures, 2013, 46(8): 1275-1289. doi: 10.1617/s11527-012-9971-6
    [13] MA Tao, WANG Hao, ZHAO Yong-li, et al. Strength mechanism and influence factors for cold recycled asphalt mixture[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-10.
    [14] 邓交龙. 乳化沥青冷再生混合料界面强度机理研究[D]. 南京: 东南大学, 2019.

    DENG Jiao-long. Research on interface strength mechanism of emulsified asphalt cold reclaimed mixture[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [15] 金成, 贾小龙, 任斌. 不同外加材料对乳化沥青冷再生混合料性能的影响[J]. 公路, 2017, 62(12): 255-258. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201712062.htm

    JIN Cheng, JIA Xiao-long, REN Bin. Effect of different admixtures on the performance of emulsified asphalt cold recycled mixture[J]. Highway, 2017, 62(12): 255-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201712062.htm
    [16] NIAZI Y, JALILI M. Effect of Portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion[J]. Construction and Building Materials, 2009, 23: 1338-1343. doi: 10.1016/j.conbuildmat.2008.07.020
    [17] AYAR P. Effects of additives on the mechanical performance in recycled mixtures with bitumen emulsion: an overview[J]. Construction and Building Materials, 2018, 178: 551-561. doi: 10.1016/j.conbuildmat.2018.05.174
    [18] DU Shao-wen. Performance characteristic of cold recycled mixture with asphalt emulsion and chemical additives[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-8.
    [19] LIN Jun-tao, WEI Tan-zhong, HONG Jin-xiang, et al. Research on development mechanism of early-stage strength for cold recycled asphalt mixture using emulsion asphalt[J]. Construction and Building Materials, 2015, 99: 137-142. doi: 10.1016/j.conbuildmat.2015.09.019
    [20] 杨彦海, 邬宇航, 杨野, 等. 水泥对乳化沥青冷再生材料性能影响的宏微观分析[J]. 公路交通科技, 2018, 35(10): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810001.htm

    YANG Yan-hai, WU Yu-hang, YANG Ye, et al. Macro and micro analysis on influence of cement on performance of emulsified asphalt cold recycled material[J]. Journal of Highway and Transportation Research and Development, 2018, 35(10): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810001.htm
    [21] 沙爱民, 王振军. 水泥乳化沥青混凝土胶浆-集料界面微观结构[J]. 长安大学学报(自然科学版), 2008, 28(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200804002.htm

    SHA Ai-min, WANG Zhen-jun. Microstructure of mastics-aggregate interface in cement emulsified asphalt concrete[J]. Journal of Chang'an University (Natural Science Edition), 2008, 28(4): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200804002.htm
    [22] 王宏. 不同水泥掺量乳化沥青冷再生混合料细微观空隙分布特征[J]. 公路交通科技, 2016, 33(7): 27-34, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201607005.htm

    WANG Hong. Meso-microscopic void distribution characteristics of emulsified asphalt cold recycled mixture with different cement contents[J]. Journal of Highway and Transportation Research and Development, 2016, 33(7): 27-34, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201607005.htm
    [23] 孙建秀, 刘黎萍, 孙立军. 早强剂对乳化沥青冷再生混合料早期强度的影响[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(6): 1037-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201706030.htm

    SUN Jian-xiu, LIU Li-ping, SUN Li-jun. Effect of early strength agent on early strength of emulsified asphalt cold recycled mixture[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2017, 41(6): 1037-1040. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201706030.htm
    [24] ZHANG Han-xiao, WANG Zhen-jun, WANG Qiong. Quantitative evaluation of cement emulsified asphalt mortar and aggregate adhesion performance with dynamic mechanical analysis[J]. Construction and Building Materials, 2020, 262: 120043. doi: 10.1016/j.conbuildmat.2020.120043
    [25] HAN Shi, LIU Yong-jian, LYU Yi, et al. Numerical simulation investigation on hydration heat temperature and early cracking risk of concrete box girder in cold regions[J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(4): 697-720. doi: 10.1016/j.jtte.2023.05.002
    [26] LIN Jun-tao, HUO Lin, XU Fang, et al. Development of microstructure and early-stage strength for 100% cold recycled asphalt mixture treated with emulsion and cement[J]. Construction and Building Materials, 2018, 189: 924-933. doi: 10.1016/j.conbuildmat.2018.09.064
    [27] ABBASNEJAD S Y, MODARRES A. Effect of setting accelerator additive on short- and long-term properties of cold recycled mixture containing bitumen emulsion-cement composites[J]. Road Materials and Pavement Design, 2019, 21(7): 1932-1954.
    [28] OUYANG Jian, YANG Wen-ting, CHEN Ji-jiang, et al. Effect of superplasticizer and wetting agent on pavement properties of cold recycled mixture with bitumen emulsion and cement[J]. Journal of Materials in Civil Engineering, 2020, 32(6): 04020136. doi: 10.1061/(ASCE)MT.1943-5533.0003194
    [29] TIAN Yao-gang, LU Dong, MA Rong-hui, et al. Effects of cement contents on the performance of cement asphalt emulsion mixtures with rapidly developed early-age strength[J]. Construction and Building Materials, 2020, 244: 118365. doi: 10.1016/j.conbuildmat.2020.118365
    [30] 李昊隆. 乳化沥青冷再生混合料早期强度发展规律研究[D]. 北京: 北京建筑大学, 2021.

    LI Hao-long. Research on early strength development of emulsified asphalt cold recycled mixture[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021. (in Chinese)
    [31] OMRANI M A, MODARRES A. Emulsified cold recycled mixtures using cement kiln dust and coal waste ash-mechanical-environmental impacts[J]. Journal of Cleaner Production, 2018, 199: 101-111. doi: 10.1016/j.jclepro.2018.07.155
    [32] AL-HDABI A, NAGEIM H A, RUDDOCK F, et al. Development of sustainable cold rolled surface course asphalt mixtures using waste fly ash and silica fume[J]. Journal of Materials in Civil Engineering, 2014, 26(3): 536-543. doi: 10.1061/(ASCE)MT.1943-5533.0000843
    [33] MODARRES A, AYAR P. Coal waste application in recycled asphalt mixtures with bitumen emulsion[J]. Journal of Cleaner Production, 2014, 83: 263-272. doi: 10.1016/j.jclepro.2014.07.082
    [34] 王志刚. 掺加纤维的乳化沥青冷再生混合料路用性能及机理分析[J]. 公路工程, 2016, 41(6): 262-266, 288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201606054.htm

    WANG Zhi-gang. Fiber emulsified asphalt cold recycled mixture road performance and mechanism analysis[J]. Highway Engineering, 2016, 41(6): 262-266, 288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201606054.htm
    [35] 杨东光. 不同纤维对乳化沥青冷再生混合料力学及路用性能的影响[J]. 公路, 2020, 65(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202003002.htm

    YANG Dong-guang. Effect of different fibers on mechanical and road performance of emulsified asphalt cold recycled mixture[J]. Highway, 2020, 65(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202003002.htm
    [36] 蒋应军, 谭云鹏, 王瑞祥, 等. 冷再生混合料力学强度影响因素探究[J]. 科学技术与工程, 2020, 20(11): 4560-4565. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202011052.htm

    JIANG Ying-jun, TAN Yun-peng, WANG Rui-xiang, et al. On factors of mechanical strength of cold regenerative mixture[J]. Science Technology and Engineering, 2020, 20(11): 4560-4565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202011052.htm
    [37] 孙建秀, 刘黎萍, 孙立军. 纤维对乳化沥青冷再生混合料疲劳性能的影响[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(1): 97-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201901020.htm

    SUN Jian-xiu, LIU Li-ping, SUN Li-jun. Effect of fiber on fatigue performance of emulsified asphalt cold recycled mixture[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2019, 43(1): 97-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201901020.htm
    [38] DU Shao-wen. Effect of different fibres on the performance properties of cold recycled mixture with asphalt emulsion[J]. International Journal of Pavement Engineering, 2021, DOI: 10.1080/10298436.2021.1901100.
    [39] DONG Shi, WANG De-cai, HAO Pei-wen, et al. Quantitative assessment and mechanism analysis of modification approaches for cold recycled mixtures with asphalt emulsion[J]. Journal of Cleaner Production, 2021, 323: 129163. doi: 10.1016/j.jclepro.2021.129163
    [40] 张庆, 侯德华, 史纪村, 等. 混杂废旧纤维对乳化沥青冷再生混合料的性能优化研究[J]. 硅酸盐通报, 2020, 39(8): 2662-2671. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202008041.htm

    ZHANG Qing, HOU De-hua, SHI Ji-cun, et al. Performance optimization of emulsified asphalt cold recycled mixture with hybrid waste fiber[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2662-2671. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202008041.htm
    [41] LI Chun, OUYANG Jian, CAO Peng, et al. Effect of rejuvenating agent on the pavement properties of cold recycled mixture with bitmen emulsion[J]. Coatings, 2021, DOI: 10.3390/COATINGS11050520.
    [42] 郝林, 吴建灵, 陈兵, 等. 冷拌用再生剂的制备及乳化沥青冷再生混合料路用性能研究[J]. 公路, 2021, 66(7): 7-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202107002.htm

    HAO Lin, WU Jian-ling, CHEN Bing, et al. Preparation of regenerant for cold mixing and research on road performance of emulsified asphalt cold recycled mixture[J]. Highway, 2021, 66(7): 7-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202107002.htm
    [43] 程培峰, 李炬辉. 掺轻质油分再生剂冷再生沥青混合料设计[J]. 科学技术与工程, 2018, 18(14): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201814043.htm

    CHENG Pei-feng, LI Ju-hui. Design on cold recycled asphalt mixture with light oil regenerant[J]. Science Technology and Engineering, 2018, 18(14): 241-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201814043.htm
    [44] 许严. 芳烃油用作冷再生沥青混合料再生剂的试验研究[J]. 公路, 2018, 63(12): 269-273. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201812056.htm

    XU Yan. Study on the use of aromatic oil as cold recycled asphalt mix regenerant[J]. Highway, 2018, 63(12): 269-273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201812056.htm
    [45] WANG De-cai, GUO Teng-teng, CHANG Hao-lei, et al. Research on the performance of regenerant modified cold recycled mixture with asphalt emulsions[J]. Sustainability, 2021, 13(13): 7284. doi: 10.3390/su13137284
    [46] 吕政桦, 申爱琴, 覃潇, 等. 乳化沥青冷再生混合料性能优化及机理研究[J]. 建筑材料学报, 2018, 21(4): 614-619. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201804015.htm

    LYU Zheng-hua, SHEN Ai-qin, QIN Xiao, et al. Performance optimization and mechanism of emulsified asphalt cold recycled mixtures[J]. Journal of Building Materials, 2018, 21(4): 614-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201804015.htm
    [47] BABAGOLI R, AMELI A, SHAHRIARI H. Laboratory evaluation of rutting performance of cold recycling asphalt mixtures containing SBS modified asphalt emulsion[J]. Petroleum Science and Technology, 2016, 34(4): 309-313. (in Chinese) doi: 10.1080/10916466.2015.1135168
    [48] 韩庆奎, 李晓民, 魏定邦. 基于Fénix法的胶乳掺量对乳化沥青冷再生混合料抗开裂性能影响研[J]. 硅酸盐通报, 2016, 35(1): 336-340. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601059.htm

    HAN Qing-kui, LI Xiao-min, WEI Ding-bang. Effect of latex content on cracking resistance of emulsified asphalt cold recycled mixture based on Fénix test[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 336-340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601059.htm
    [49] 陈诚, 薛建荣. 橡胶粉改性的乳化沥青冷再生混合料强度特性及路用性能研究[J]. 公路工程, 2016, 41(4): 72-77, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201604019.htm

    CHEN Cheng, XUE Jian-rong. Study on strength characteristics and road performance of rubber powder modified emulsified asphalt cold reclaimed mixture[J]. Highway Engineering, 2016, 41(4): 72-77, 90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201604019.htm
    [50] 李亚菲. 不同水性环氧树脂掺量乳化沥青冷再生混合料耐久性试验研究[J]. 公路工程, 2016, 41(5): 82-87, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201605017.htm

    LI Ya-fei. Study on durability of emulsion asphalt cold recycled mixture with different dosage of waterborne epoxy resin[J]. Highway Engineering, 2016, 41(5): 82-87, 101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201605017.htm
    [51] LI Rui, LENG Zhen, ZHANG Yuan, et al. Preparation and characterization of waterborne epoxy modified bitumen emulsion as a potential high-performance cold binder[J]. Journal of Cleaner Production, 2019, 235: 1265-1275. doi: 10.1016/j.jclepro.2019.06.267
    [52] 李泉, 吴超凡. 环氧乳化沥青冷再生沥青混合料性能研究[J]. 硅酸盐通报, 2017, 36(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201701010.htm

    LI Quan, WU Chao-fan. Performance of epoxy emulsified asphalt cold recycled asphalt mixture[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201701010.htm
    [53] PAN Chang-luan, LIANG De-qiang, MO Lian-tong, et al. Influence of different modifiers on bonding strength and rheological performance of bitumen emulsion[J]. Materials, 2019, 12: 2414. doi: 10.3390/ma12152414
    [54] 谭忆秋, 董泽蛟, 曹丽萍, 等. 应用Superpave体积设计法设计冷再生沥青混合料[J]. 公路交通科技, 2005, 22(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200503009.htm

    TAN Yi-qiu, DONG Ze-jiao, CAO Li-ping, et al. Designing cold recycled asphalt mixtures with superpave volumetric design method[J]. Journal of Highway and Transportation Research and Development, 2005, 22(3): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200503009.htm
    [55] 蒋应军, 韩占闯. 级配对乳化沥青冷再生混合料路用性能影响[J]. 大连理工大学学报, 2018, 58(6): 607-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201806009.htm

    JIANG Ying-jun, HAN Zhan-chuang. Influence of gradation on pavement performance of emulsified asphalt cold regenerated mixture[J]. Journal of Dalian University of Technology, 2018, 58(6): 607-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201806009.htm
    [56] ZHU Chong-zheng, ZHANG Heng-long, HUANG Li-kui, et al. Long-term performance and microstructure of asphalt emulsion cold recycled mixture with different gradations[J]. Journal of Cleaner Production, 2019, 215: 944-951. doi: 10.1016/j.jclepro.2019.01.103
    [57] PI Yu-hui, LI Yan, PI Ying-xing, et al. Strength and micro-mechanism analysis of cement-emulsified asphalt cold recycled mixture[J]. Materials, 2020, 13: 128.
    [58] 李强, 许傲, 陈浩, 等. 级配和水泥掺量对泡沫沥青冷再生混合料路用性能的影响[J]. 铁道科学与工程学报, 2021, 18(2): 402-407. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202102015.htm

    LI Qiang, XU Ao, CHEN Hao, et al. Effects of aggregate gradations and cement content on pavement performance of cold recycled mixture with foamed asphalt[J]. Journal of Railway Science and Engineering, 2021, 18(2): 402-407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202102015.htm
    [59] CHEN Zhang, LIANG Yuan-lu, YANG Jin, et al. Improved design method of emulsified asphalt cold recycled mixture[J]. Frontiers in Materials, 2020, DOI: 10.3389/fmats.2020.00207.
    [60] FLORES G, GALLEGO J, MIRANDA L, et al. Influence of the compaction method in the volumetric design of cold recycled mixtures with emulsion[J]. Materials, 2021, 14: 1309. doi: 10.3390/ma14051309
    [61] GONG Hong-ren, HUANG Bao-shan, SHU Xiang. Field performance evaluation of asphalt mixtures containing high percentage of RAP using LTPP data[J]. Construction and Building Materials, 2018, 176: 118-128. doi: 10.1016/j.conbuildmat.2018.05.007
    [62] CARVALHO R L, SHIRAZI H, AYRES M, et al. Performance of recycled hot-mix asphalt overlays in rehabilitation of flexible pavements[J]. Transportation Research Record, 2010, 2155: 55-62. doi: 10.3141/2155-06
    [63] CHEN Tian, MA Tao, HUANG Xiao-ming, et al. Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture[J]. Journal of Cleaner Production, 2020, 263: 121467. doi: 10.1016/j.jclepro.2020.121467
    [64] 易勇, 蒋应军, 谭云鹏, 等. 不同成型方式乳化沥青冷再生混合料力学特性研究[J]. 重庆大学学报, 2021, 44(5): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202105006.htm

    YI Yong, JIANG Ying-jun, TAN Yun-peng, et al. Mechanical properties of emulsified asphalt cold recycling mixture with different forming methods[J]. Journal of Chongqing University, 2021, 44(5): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202105006.htm
    [65] WEI Hui, BAI Xian-ping, WANG Fei-yue, et al. Mixing ratio design of emulsified asphalt cold recycled mixture based on gyratory compaction molding[J]. Journal of Central South University, 2019, 26(3): 759-767. doi: 10.1007/s11771-019-4045-3
    [66] MENESES J P C, VASCONCELOS K, BERNUCCI L L B, et al. Compaction methods of cold recycled asphalt mixtures and their effects on pavement analysis[J]. Road Materials and Pavement Design, 2021, 22(S1): 154-179.
    [67] JIA Hai-chuan, SHENG Yan-ping, GUO Ping, et al. Effect of synthetic fibers on the mechanical performance of asphalt mixture: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(3): 331-348. doi: 10.1016/j.jtte.2023.02.002
    [68] GRAZIANI A, GODENZONI C, CARDONE F, et al. Effect of curing on the physical and mechanical properties of cold-recycled bituminous mixtures[J]. Materials and Design, 2016, 95: 358-369. doi: 10.1016/j.matdes.2016.01.094
    [69] WANG Zhen-jun, DAI Nan, WANG Xiao-feng, et al. Early-stage road property improvements of cold recycled asphalt emulsion mixture with microwave technology[J]. Journal of Cleaner Production, 2020, 263: 121451. doi: 10.1016/j.jclepro.2020.121451
    [70] 黄康旭, 梁星敏, 徐波. RAP掺量对泡沫温拌再生沥青混合料路用性能的影响[J]. 材料科学与工程学报, 2016, 34(5): 794-797. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201605023.htm

    HUANG Kang-xu, LIANG Xing-min, XU Bo. Influences of RAP dosage on road performances of foamed warm mix reclaimed asphalt[J]. Journal of Materials Science and Engineering, 2016, 34(5): 794-797. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201605023.htm
    [71] 吕振北. RAP掺量对乳化沥青冷再生混合料的性能影响研究[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(2): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201502043.htm

    LYU Zhen-bei. Influences of Portland rap on the performance of emulsified asphalt cold regeneration[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2015, 39(2): 414-418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201502043.htm
    [72] SHU Xiang, HUANG Bao-shan, VUKOSAVLJEVIC D. Laboratory evaluation of fatigue characteristics of recycled asphalt mixture[J]. Construction and Building Materials, 2008, 22: 1323-1330. doi: 10.1016/j.conbuildmat.2007.04.019
    [73] XIAO Fei-peng, PUTMAN B, AMIRKHANIAN S. Rheological characteristics investigation of high percentage RAP binders with WMA technology at various aging states[J]. Construction and Building Materials, 2015, 98: 315-324. doi: 10.1016/j.conbuildmat.2015.08.114
    [74] ZHU Jun-qing, MA Tao, FANG Zhan-yong. Characterization of agglomeration of reclaimed asphalt pavement for cold recycling[J]. Construction and Building Materials, 2020, 240: 117912. doi: 10.1016/j.conbuildmat.2019.117912
    [75] 李佳坤. RAP加工工艺及温拌再生沥青混合料路用性能研究[D]. 重庆: 重庆交通大学, 2013.

    LI Jia-kun. Study on processing technic of RAP and pavement performance of warm-mixed recycled asphalt mixture[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese)
    [76] 邹桂莲, 查争晖, 董思学, 等. 厂拌再生RAP预处理工艺对分离效率的影响[J]. 工程机械, 2022, 53(2): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA202202011.htm

    ZOU Gui-lian, ZHA Zheng-hui, DONG Si-xue, et al. Influence of RAP pretreatment process of plant mixed recycling on separation efficiency[J]. Construction Machinery and Equipment, 2022, 53(2): 56-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA202202011.htm
    [77] 宋伟伟, 秦秀荣, 宋文学, 等. 基于破碎效果的RAP破碎设备选择研究[J]. 工程机械, 2021, 52(12): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA202112005.htm

    SONG Wei-wei, QIN Xiu-rong, SONG Wen-xue, et al. Research on selection of RAP crushing equipment based on crushing effect[J]. Construction Machinery and Equipment, 2021, 52(12): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA202112005.htm
    [78] 高立波, 王森, 霍继辉, 等. 沥青路面旧料精分离技术与大比例再生技术在高速公路中的应用[J]. 北方交通, 2021(8): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT202108010.htm

    GAO Li-bo, WANG Sen, HUO Ji-hui, et al. Application of fine separation technology and large proportion recycling technology of old materials of asphalt pavement in expressways[J]. Beifang Jiaotong, 2021(8): 33-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT202108010.htm
    [79] 谢宝山. 水泥对乳化沥青再生混合料早期性能影响研究[J]. 公路, 2022, 67(3): 292-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202203048.htm

    XIE Bao-shan. Study on the effect of cement on the early performance of emulsified asphalt recycled mixes[J]. Highway, 2022, 67(3): 292-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202203048.htm
    [80] 赵文珅. 美日两国沥青路面旧料再生经验与最佳实践[J]. 筑路机械与施工机械化, 2017, 34(8): 23-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201708002.htm

    ZHAO Wen-shen. Experience and best practices of asphalt pavement recycling in the U.S. and Japan[J]. Road Machinery and Construction Mechanization, 2017, 34(8): 23-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201708002.htm
    [81] 李周强, 张明月. 偶联剂-熟石灰表面改性对RAP性能的影响研究[J]. 公路工程, 2021, 46(3): 214-218, 276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202103032.htm

    LI Zhou-qiang, ZHANG Ming-yue. Study on the effect of coupling agent hydrated lime surface modification on RAP performance[J]. Highway Engineering, 2021, 46(3): 214-218, 276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL202103032.htm
    [82] 刘亮. RAP表面特征及其性能改善研究[D]. 西安: 长安大学, 2016.

    LIU Liang. Surface characteristics and performance improvement of RAP[D]. Xi'an: Chang'an University, 2016. (in Chinese)
    [83] 邱伟. RAP特性对乳化沥青路面冷再生性能影响的研究[D]. 重庆: 重庆交通大学, 2017.

    QIU Wei. Study on influence on the performance of asphalt pavement cooling reclamation from RAP feature[D]. Chongqing: Chongqing Jiaotong University, 2017. (in Chinese)
    [84] GUO Peng, CHEN Si-xian, XIE Feng-zhang, et al. Influence of coarse aggregate morphological properties on the performances of warm-mix asphalt containing recycled asphalt pavement[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021081. doi: 10.1061/(ASCE)MT.1943-5533.0003681
    [85] AL-BAYATI H K A, TIGHE S L. Effect of recycled concrete aggregate on rutting and stiffness characteristics of asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2019, 31(10): 04019219. doi: 10.1061/(ASCE)MT.1943-5533.0002810
    [86] AL-BAYATI H K A, TIGHE S L, ACHEBE J. Influence of recycled concrete aggregate on volumetric properties of hot mix asphalt[J]. Resources, Conservation and Recycling, 2018, 130: 200-214. doi: 10.1016/j.resconrec.2017.11.027
    [87] FENG Po-nan, WANG Hai-nian, DING He-yang, et al. Effects of surface texture and its mineral composition on interfacial behavior between asphalt binder and coarse aggregate[J]. Construction and Building Materials, 2020, 262: 120869. doi: 10.1016/j.conbuildmat.2020.120869
    [88] 王璐. 沥青-集料界面相结构和粘附机理研究[D]. 西安: 长安大学, 2014.

    WANG Lu. Investigation of the interface structure and adhesion mechanism between asphalt and aggregate[D]. Xi'an: Chang'an University, 2014. (in Chinese)
    [89] WANG Lu-sheng, SHEN Ai-qin, YAO Jia-liang. Effect of different coarse aggregate surface morphologies on cement emulsified asphalt adhesion[J]. Construction and Building Materials, 2020, 262: 120030. doi: 10.1016/j.conbuildmat.2020.120030
  • 加载中
图(11) / 表(11)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  51
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-13
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回