-
摘要: 为研究带钢底板的超高性能混凝土(UHPC)梁的抗剪性能和抗剪承载力计算方法,采用试验研究与理论分析的方法,设计制作了7片试验梁开展抗剪试验,试验参数包括接缝配置、纵向腹筋设置和剪跨比;结合极限平衡理论和分项线性叠加思想,建立了考虑箍筋、钢纤维、UHPC基体及钢板抗剪贡献的带钢底板UHPC梁抗剪承载力计算建议公式,并与法国规范计算公式进行比较。试验结果表明:接缝梁的破坏形态均为接缝处错位的剪切破坏,主裂缝沿靠近跨中的接缝一侧斜向发展,而完整梁的破坏形态与剪跨比有关,随着剪跨比的增加从剪压破坏向弯剪破坏转变;接缝的存在会降低带钢底板UHPC梁的抗剪承载力,且随剪跨比的增大而减小,设置纵向腹筋则可有效提高其抗剪承载力与变形能力;采用本文提出的计算方法的抗剪承载力计算值与试验值的平均比值为0.91,变异系数为0.16,采用法国规范抗剪承载力计算方法的抗剪承载力计算值与试验值的平均比值为1.08,变异系数为0.29,因此本文提出的计算方法离散性较小,可适用于带钢底板UHPC梁的抗剪承载力计算。Abstract: To investigate the shear performance and the calculation method for the shear bearing capacity of ultra-high performance concrete (UHPC) beams with steel bottom plates, seven test UHPC beams were designed and fabricated for shear-resistance testing by test research and theoretical analysis, with test parameters including joint configuration, longitudinal web reinforcement layout, and shear span ratio. Combined with limit equilibrium theory and sub-item linear superposition, a recommended formula for calculating the shear bearing capacity of UHPC beams with steel bottom plates was established. Shear contributions from stirrups, steel fibers, UHPC matrix, and steel plates were considered in this formula. It was subsequently compared with the calculation formula prescribed by the French code. Test results show that the failure mode of joint beams is characterized by shear failure with joint malposition, with primary cracks progressing diagonally along the joint side near the mid-span. In contrast, the failure mode of intact beams is related to the shear span ratio, shifting from shear-compression failure to flexural-shear failure as the shear span ratio increases. The presence of joints reduces the shear bearing capacity of UHPC beams with steel bottom plates, and it decreases with the increase of the shear span ratio. The layout of longitudinal web reinforcement can improve the shear bearing capacity and deformability of these beams effectively. The average ratio of the calculated value of shear bearing capacity via the proposed method to the test value is 0.91, with a coefficient of variation of 0.16. In comparison, the average ratio of the calculated value of shear bearing capacity via the French code method to the test value is 1.08, with a coefficient of variation of 0.29. Therefore, the proposed calculation method exhibits lower discreteness and is applicable for the shear bearing capacity calculation of UHPC beams with steel bottom plates.
-
Key words:
- bridge engineering /
- UHPC beam /
- shear bearing capacity /
- theoretical analysis /
- steel bottom plate /
- wet joint
-
表 1 试验梁参数
Table 1. Parameters of test beams
梁号 L/m l/m λ ρ/% ρv /% s/mm 钢筋布置 纵筋 跨中加强钢筋 箍筋 腰筋 S1 3.8 0.2 3.2 1.14 0.897 75 4C16 2C16 C8 6C10 S2 3.1 0.2 2.4 1.14 0.897 75 4C16 2C16 C8 6C10 S3 2.0 0.1 1.4 1.14 0.897 75 4C16 2C16 C8 6C10 B 3.1 0.2 2.4 1.14 0.897 75 4C16 2C16 C8 C1 3.8 0.2 3.2 1.14 0.897 75 4C16 6C16 C8 6C10 C2 3.1 0.2 2.4 1.14 0.897 75 4C16 2C16 C8 6C10 C3 2.0 0.1 1.4 1.14 0.897 75 4C16 2C16 C8 6C10 表 2 UHPC材料力学性能
Table 2. Material mechanical performances of UHPC
材料类型 立方体抗压强度/MPa 抗折强度/MPa 弹性模量/GPa UHPC150 161.1 21.1 47.14 表 3 钢筋力学性能
Table 3. Mechanical performances of reinforcement
钢筋类型 屈服强度/MPa 弹性模量/GPa 延伸率/% HRB400 475.6 200 24.5 表 4 试验梁极限荷载与破坏形态
Table 4. Ultimate loads and failure modes of test beams
梁号 Pu/kN Pr/kN μ θ/(°) 破坏模式 S1 1 184 345 1.41 45 剪错 S2 1 246 296 1.23 45 剪错 S3 1 344 336 1.07 45 剪错 B 1 066 131 1.19 45 剪错 C1 1 467 237 1.28 50 弯剪 C2 1 668 224 1.33 57 剪压 C3 1 735 365 1.07 62 剪压 表 5 抗剪承载力计算值与试验值
Table 5. Calculation values and test values of shear bearing capacity
梁号 Vv/kN Vw/kN Vc/kN Vl/kN Vu/kN Ve/kN Vu/Ve VF/kN VF/Ve S1 224.7 85.7 115.8 78.0 504.2 592.0 0.85 608.1 1.03 S2 224.7 85.7 151.1 78.0 539.5 623.0 0.87 608.1 0.98 S3 224.7 85.7 244.3 78.0 632.7 672.0 0.94 608.1 0.90 B 224.7 85.7 151.1 78.0 539.5 533.0 1.01 608.1 1.14 C1 299.6 189.5 115.8 78.0 682.9 733.5 0.93 954.3 1.30 C2 299.6 189.5 151.1 78.0 718.2 834.0 0.86 954.3 1.14 C3 299.6 189.5 244.3 78.0 811.4 867.5 0.94 954.3 1.10 -
[1] 阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010(9): 36-41. doi: 10.3969/j.issn.1674-7011.2010.09.009YAN Pei-yu. Development and present situation of ultra high performance concrete (UHPC)[J]. China Concrete, 2010(9): 36-41. (in Chinese) doi: 10.3969/j.issn.1674-7011.2010.09.009 [2] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002 [3] 李国平, 胡皓, 任才, 等. 桥梁混凝土结构接缝的耐久性能[J]. 土木工程学报, 2018, 51(7): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201807011.htmLI Guo-ping, HU Hao, REN Cai, et al. Study on durability of joints in concrete bridge structures[J]. China Civil Engineering Journal, 2018, 51(7): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201807011.htm [4] VOO Y L, POON W K, FOSTER S J. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups[J]. Journal of Structural Engineering, 2010, 136(11): 1393-1400. doi: 10.1061/(ASCE)ST.1943-541X.0000234 [5] VOO Y L, FOSTER S J, IAN G R. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 123-132. doi: 10.3151/jact.4.123 [6] MESZOELY T, RANDL N. Shear behavior of fiber-reinforced ultra-high performance concrete beams[J]. Engineering Structures, 2018, 168: 119-127. doi: 10.1016/j.engstruct.2018.04.075 [7] YANG K H, CHUNG H S, LEE E T, et al. Shear characteristics of high-strength concrete deep beams without shear reinforcements[J]. Engineering Structures, 2003, 25: 1343-1352. doi: 10.1016/S0141-0296(03)00110-X [8] DINH H H, PARRA-MONTESINOS G J, WIGHT J K. Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement[J]. Journal of Structural Engineering, 2011, 137(10): 1039-1051. doi: 10.1061/(ASCE)ST.1943-541X.0000362 [9] KWAK Y K, EBERHARD M O, KIM W S, et al. Shear strength of steel fiber-reinforced concrete beams without stirrups[J]. ACI Structural Journal, 2002, 99(4): 530-538. [10] ZAGON R, MATTHYS S, KISS Z. Shear behaviour of SFR-UHPC I-shaped beams[J]. Construction and Building Materials, 2016, 124(15): 258-268. [11] WANG Qiang, SONG Hua-lin, LU Chun-ling, et al. Shear performance of reinforced ultra-high performance concrete rectangular section beams[J]. Structures, 2020, 27(8): 1184-1194. [12] 戚家南, 王景全, 周凯, 等. UHPC梁受剪性能试验与抗剪承载力计算方法[J]. 中国公路学报, 2020, 33(7): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007010.htmQI Jia-nan, WANG Jing-quan, ZHOU Kai, et al. Experimental and theoretical investigations on shear strength of UHPC beams[J]. China Journal of Highway and Transport, 2020, 33(7): 95-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007010.htm [13] 张宏战, 张瑞瑾, 黄承逵. 基于MCFT理论的钢纤维混凝土梁的截面分析[J]. 工程力学, 2008, 25(3): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200803028.htmZHANG Hong-zhan, ZHANG Rui-jin, HUANG Cheng-kui. Sectional analysis of steel fiber reinforced concrete beams using modified compression field theory[J]. Engineering Mechanics, 2008, 25(3): 144-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200803028.htm [14] 马恺泽, 马煜东, 邢国华, 等. 配筋超高性能混凝土梁受剪性能研究[J]. 建筑结构学报, 2022, 43(12): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202212018.htmMA Kai-ze, MA Yu-dong, XING Guo-hua, et al. Study on shear behavior of reinforced ultra-high performance concrete beams[J]. Journal of Building Structures, 2022, 43(12): 179-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202212018.htm [15] 马熙伦, 陈宝春, 杨艳, 等. R-UHPC梁的抗剪承载力计算方法[J]. 交通运输工程学报, 2017, 17(5): 16-26. https://transport.chd.edu.cn/article/id/201705002MA Xi-lun, CHEN Bao-chun, YANG Yan, et al. Calculation method of shear bearing capacity of R-UHPC beam[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 16-26. (in Chinese) https://transport.chd.edu.cn/article/id/201705002 [16] WU Peng-tao, WU Cheng-qing, LIU Zhong-xian, et al. Investigation of shear performance of UHPC by direct shear tests[J]. Engineering Structures, 2019, 183: 780-790. doi: 10.1016/j.engstruct.2019.01.055 [17] JANG H, LEE H, CHO K, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 152: 16-23. doi: 10.1016/j.conbuildmat.2017.06.156 [18] PAN Ren-sheng, HE Wei-wei, CHENG Ling-xiao, et al. Direct shear strength of UHPC large-keyed epoxy joint: theoretical model and experimental verification[J]. Journal of Bridge Engineering, 2022, 27(9): 04022083. doi: 10.1061/(ASCE)BE.1943-5592.0001936 [19] PAN Ren-sheng, CHENG Ling-xiao, HE Wei-wei, et al. Direct shear performance of UHPC multi-keyed epoxy joint[J]. Structures, 2022, 44(2): 1898-1909. [20] LIU Tong-xu, WANG Zhen, GUO Jian, et al. Shear strength of dry joints in precast UHPC segmental bridges: experimental and theoretical research[J]. Journal of Bridge Engineering, 2019, 24(1): 04018100. doi: 10.1061/(ASCE)BE.1943-5592.0001323 [21] 冯峥, 李传习, 周佳乐, 等. UHPC键齿湿接缝直剪试验及湿接缝直剪承载力统一公式[J]. 土木工程学报, 2022, 55(6): 79-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202206007.htmFENG Zheng, LI Chuan-xi, ZHOU Jia-le, et al. Direct shear test on UHPC key-wet-joints and the unified calculation formula of direct shear capacity of UHPC wet-joints[J]. China Civil Engineering Journal, 2022, 55(6): 79-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202206007.htm [22] AHMED A, FARGHALY A S, AHMED E A, et al. Laboratory testing of GFRP-RC panels with UHPFRC joints of the Nipigon River Cable-Stayed Bridge in Northwest Ontario, Canada[J]. Journal of Bridge Engineering, 2016, 21(11): 05016006. [23] 贾依楠. 带T型条带UHPC菱形湿接缝梁受力性能研究[D]. 长沙: 湖南大学, 2020.JIA Yi-nan. On the mechanical behavior of the UHPC diamond wet joint beam with T-shaped strip[D]. Changsha: Hunan University, 2020. (in Chinese) [24] 高剑平, 吴章勇, 任乐, 等. 梁侧锚贴钢板加固钢筋混凝土梁抗弯性能试验研究[J]. 工程抗震与加固改造, 2012, 34(2): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201202004.htmGAO Jian-ping, WU Zhang-yong, REN Le, et al. Experimental study on bending behavior of reinforced concrete beam strengthened with bolted side steel plate[J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(2): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201202004.htm [25] 王峥. 钢筋混凝土梁斜截面受剪承载力研究[D]. 西安: 西安建筑科技大学, 2012.WANG Zheng. Research on inclined section shear capacity of reinforced concrete beams[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. (in Chinese) [26] 徐海宾, 邓宗才. 超高性能混凝土梁抗剪承载力计算方法[J]. 华中科技大学学报: 自然科学版, 2015, 43(7): 24-28, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201507005.htmXU Hai-bin, DENG Zong-cai. Shear bearing capacity of ultra-high performance concrete beams[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43(7): 24-28, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201507005.htm [27] HASSAN A, MEHDI B, WILLIAM D C, et al. Response of steel fiber-reinforced concrete beams with and without stirrups[J]. ACI Structural Journal, 2012, 109(3): 359-367. [28] NAAMAN A E. Tensile strain-hardening FRC composites: historical evolution since the 1960[C]//CHRISTIAN U G. Advances in Construction Materials 2007. Berlin: Springer-Verlag, 2007: 181-202. [29] 李浩稻. 粗骨料UHPC梁斜截面抗剪性能试验研究[D]. 成都: 西南交通大学, 2018.LI Hao-dao. Experimental research on shear behavior of ultra-high performance concrete structure with coarse aggregate[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [30] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199103000.htmGUO Zhen-hai, WANG Chuan-zhi. Investigation of strength and failure criterion of concrete under multi-axial stresses[J]. China Civil Engineering Journal, 1991, 24(3): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199103000.htm [31] XIA Jun, XIAO Yu-lin, MACKIE K R, et al. Dowel action and shear strength contribution of high strength rebar embedded in ultra-high performance fiber reinforced concrete[J]. Engineering Structures, 2015, 83: 223-232.