留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形截面型钢超高性能混凝土梁抗弯承载力

林上顺 暨邦冲 刘君平 林建凡 赵锦冰

林上顺, 暨邦冲, 刘君平, 林建凡, 赵锦冰. 矩形截面型钢超高性能混凝土梁抗弯承载力[J]. 交通运输工程学报, 2024, 24(3): 94-109. doi: 10.19818/j.cnki.1671-1637.2024.03.006
引用本文: 林上顺, 暨邦冲, 刘君平, 林建凡, 赵锦冰. 矩形截面型钢超高性能混凝土梁抗弯承载力[J]. 交通运输工程学报, 2024, 24(3): 94-109. doi: 10.19818/j.cnki.1671-1637.2024.03.006
LIN Shang-shun, JI Bang-chong, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Flexural capacity of steel reinforced ultra-high performance concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 94-109. doi: 10.19818/j.cnki.1671-1637.2024.03.006
Citation: LIN Shang-shun, JI Bang-chong, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Flexural capacity of steel reinforced ultra-high performance concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 94-109. doi: 10.19818/j.cnki.1671-1637.2024.03.006

矩形截面型钢超高性能混凝土梁抗弯承载力

doi: 10.19818/j.cnki.1671-1637.2024.03.006
基金项目: 

国家自然科学基金项目 52078136

福建省交通运输科技项目 202024

详细信息
    作者简介:

    林上顺(1972-),男,福建永泰人,福建理工大学教授,工学博士,从事组合结构桥梁研究

    通讯作者:

    刘君平(1977-),男,江西安福人,福州大学研究员,工学博士

  • 中图分类号: U443.3

Flexural capacity of steel reinforced ultra-high performance concrete beams with rectangular section

Funds: 

National Natural Science Foundation of China 52078136

Traffic Science and Technology Project of Fujian Province 202024

More Information
  • 摘要: 为研究矩形截面型钢超高性能混凝土(SRUHPC)梁的抗弯特性,制作了4根配筋率为0.8%~1.1%,含钢率为8.7%~15.6%,内置型钢分别为一字型、倒T型与H型的矩形截面SRUHPC梁试件,开展了抗弯极限承载力试验,分析了矩形截面SRUHPC梁试件的损伤机理和破坏模式;基于试验结果与理论推导,提出了矩形截面SRUHPC梁抗弯承载力计算方法,计算了21根矩形截面SRUHPC梁试件和111个有限元计算模型的抗弯承载力,并将计算结果与试验值和有限元计算值进行了对比。分析结果表明:矩形截面SRUHPC梁试件的破坏模式均为适筋受弯破坏,即型钢与受拉纵筋先后屈服,随后受压区UHPC被压碎,且型钢与UHPC可较好地共同工作至试件破坏;内置倒T型钢试件和H型钢试件的承载力和刚度高于内置一字型钢试件,且抗裂性能更好;与其他试件相比,内置H型钢试件中纵筋、UHPC与型钢在相同荷载作用下的应变及其发展速度均较小,因此,在矩形截面SRUHPC梁内的型钢中设置上、下翼缘有助于提高组合梁的抗弯性能;采用提出方法得到的计算结果与试验值和有限元计算值的比值均值分别为0.972和1.035,方差分别为0.009和0.002,研究结果可为矩形截面SRUHPC梁在实际工程中的推广应用和规范、规程的制定提供理论支撑。

     

  • 图  1  SRUHPC梁截面示意

    Figure  1.  Schematic of SRUHPC beam section

    图  2  计算弯矩与试验弯矩的比值

    Figure  2.  Ratios of calculated bending moments to test bending moments

    图  3  试件横截面布置(单位:mm)

    Figure  3.  Cross-sectional layouts of specimens (unit: mm)

    图  4  试件钢筋布置

    Figure  4.  Arrangement of rebars of specimen

    图  5  钢筋骨架与型钢的焊接

    Figure  5.  Welding of rebar frame to steel

    图  6  加载装置

    Figure  6.  Loading device

    图  7  应变片布置

    Figure  7.  Strain gauges arrangement

    图  8  荷载-挠度曲线

    Figure  8.  Load-deflection curves

    图  9  跨中截面沿竖向的型钢应变分布

    Figure  9.  Strain distributions of steels along vertical direction at mid-span section

    图  10  跨中截面沿竖向的UHPC应变分布

    Figure  10.  Strain distributions of UHPC along vertical direction at mid-span section

    图  11  跨中各部分荷载-应变曲线

    Figure  11.  Load-strain curves of each part of mid-span

    图  12  试件的破坏模式

    Figure  12.  Failure modes of specimens

    图  13  裂缝分布

    Figure  13.  Crack distributions

    图  14  试件的挠度变化趋势

    Figure  14.  Tendencies of deflection variations of specimens

    图  15  中性轴穿过腹板

    Figure  15.  Neutral shaft passing through web

    图  16  中性轴未穿过型钢

    Figure  16.  Neutral shaft not passing through steel

    图  17  中性轴穿过翼缘

    Figure  17.  Neutral shaft passing through flange

    图  18  抗弯承载力计算值与试验值的比值

    Figure  18.  Ratios of calculated flexural capacities to test values

    图  19  基于试件SU-DF的有限元模型

    Figure  19.  Finite element model based on SU-DF specimen

    图  20  有限元与实测荷载-挠度曲线对比

    Figure  20.  Comparison of load-deflection curves between finite element and test

    图  21  抗弯承载力公式计算值与有限元结果对比

    Figure  21.  Comparison between calculated flexural capacities by formula and finite element results

    表  1  试件详细参数

    Table  1.   Detailed parameters of specimens

    数据来源 试件编号 截面尺寸/mm 计算跨径/mm 型钢型号及布置方式 含钢率/% 受拉纵筋型号 fa/MPa fy/MPa fcu/MPa
    文献[18] B-1 150×250 1 600 H150×60×6×8,居中 4.7 2Φ14 260.5 435.0 109.6
    B-2 150×250 1 600 H150×60×6×8,居中 4.7 2Φ16 260.5 426.0 109.6
    B-3 150×250 1 600 H150×60×6×8,居中 4.7 2Φ18 260.5 447.0 109.6
    B-4 150×250 1 600 H150×60×6×8,下偏20 mm 4.7 2Φ14 260.5 435.0 109.6
    B-5 150×250 1 600 H150×60×6×6,居中 4.1 2Φ14 266.0 435.0 109.6
    B-6 150×250 1 600 H150×75×6×8,居中 5.3 2Φ14 260.5 435.0 109.6
    B-7 150×250 1 600 H150×60×6×8,下偏20 mm 4.7 2Φ14 358.0 435.0 109.6
    B-8 150×250 1 600 H150×75×6×8,居中 5.3 2Φ14 358.0 435.0 109.6
    文献[19] L1 200×300 3 200 I20a,居中 5.9 2Φ12 246.0 389.0 122.7
    L2 200×300 3 200 I20a,居中 5.9 2Φ12 246.0 389.0 154.7
    L3 200×300 3 200 I20a,居中 5.9 2Φ12 246.0 389.0 176.4
    L4 200×300 3 200 I20b,居中 6.6 2Φ12 246.0 389.0 122.7
    L5 200×300 3 200 I20b,居中 6.6 2Φ12 246.0 389.0 154.7
    L6 200×300 3 200 I20b,居中 6.6 2Φ12 246.0 389.0 176.4
    文献[20] SRC-1 150×200 1 800 I14,居中 7.2 246.0 127.3
    SRC-2 150×200 1 800 I14,居中 7.2 246.0 146.2
    SRC-3 150×200 1 800 I14,居中 7.2 246.0 176.4
    下载: 导出CSV

    表  2  试件荷载与挠度比较

    Table  2.   Comparison of load and deflection of specimens

    荷载或挠度 SU SU-T SU-LF SU-DF
    开裂荷载Pcr/kN 60.0 60.0 60.0 60.0
    主裂缝宽度达到0.2 mm荷载Pcr, 0.2/kN 140.0 285.0 385.0 403.3
    极限荷载Pu/kN 380.0 396.0 477.0 516.0
    型钢受压部分屈服荷载Psc/kN 323.6 365.4 345.0 368.2
    型钢受拉部分屈服荷载Pst/kN 235.6 264.3 278.5 271.0
    受压纵筋屈服荷载Prc/kN 357.1 395.0 442.2 466.2
    受拉纵筋屈服荷载Prt/kN 305.3 374.2 404.6 431.7
    Pcr对应的跨中挠度Δcr/mm 0.8 0.3 0.8 0.4
    Pcr, 0.2对应的跨中挠度Δcr, 0.2/mm 2.2 3.8 6.5 4.4
    Pu对应的跨中挠度Δu/mm 9.6 11.6 14.0 12.6
    Psc对应的跨中挠度Δsc/mm 5.2 6.0 5.6 3.7
    Pst对应的跨中挠度Δst/mm 3.3 3.5 4.3 2.3
    Prc对应的跨中挠度Δrc/mm 6.8 11.2 8.5 6.4
    Prt对应的跨中挠度Δrt/mm 4.7 6.6 7.0 5.2
    下载: 导出CSV

    表  3  试件计算结果

    Table  3.   Calculation results of specimens

    试件编号 含钢率/% Me/(kN·m) Mc/(kN·m) Mc/Me
    B-1 4.7 97.50 95.38 0.978
    B-2 4.7 105.10 101.45 0.965
    B-3 4.7 118.40 110.51 0.933
    B-4 4.7 106.50 88.40 0.830
    B-5 4.1 89.20 91.52 1.026
    B-6 5.3 104.60 99.79 0.954
    B-7 4.7 119.60 100.05 0.837
    B-8 5.3 115.10 91.50 0.795
    L1 5.9 179.44 173.67 0.968
    L2 5.9 189.12 192.60 1.018
    L3 5.9 199.76 205.33 1.028
    L4 6.6 203.60 175.85 0.864
    L5 6.6 218.96 193.67 0.885
    L6 6.6 235.52 205.54 0.873
    SRC-1 7.2 38.70 44.23 1.143
    SRC-2 7.2 40.40 45.66 1.130
    SRC-3 7.2 42.60 46.31 1.087
    SU 11.0 114.00 113.81 0.998
    SU-T 8.7 118.80 118.48 0.997
    SU-LF 13.1 143.10 146.28 1.022
    SU-DF 15.3 154.80 166.76 1.077
    下载: 导出CSV
  • [1] HONG W K, KIM J M, PARK S C, et al. Composite beam composed of steel and pre-cast concrete. (modularized hybrid system, MHS) Part Ⅱ: analytical investigation[J]. The Structural Design of Tall and Special Buildings, 2009, 18(8): 891-905. doi: 10.1002/tal.484
    [2] HONG W K, PARK S C, LEE H C, et al. Composite beam composed of steel and precast concrete (modularized hybrid system). Part Ⅲ: application for a 19-storey building[J]. The Structural Design of Tall and Special Buildings, 2010, 19(6): 679-706. doi: 10.1002/tal.507
    [3] IKEDA M. Transition and future prospects of research and development of railway steel-concrete hybrid structures[J]. Journal of Japan Society of Civil Engineers (Structural Engineering and Earthquake Engineering), 2022, 78(5): 1-18.
    [4] IKEDA M. The trend of new technologies on SRC and CFT members in railway structures[J]. Concrete Journal, 2014, 52(1): 102-107. doi: 10.3151/coj.52.102
    [5] 林上顺, 暨邦冲, 夏樟华, 等. 矩形截面型钢混凝土梁抗弯极限承载力[J]. 交通运输工程学报, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009

    LIN Shang-shun, JI Bang-chong, XIA Zhang-hua, et al. Ultimate flexural capacity of steel reinforced concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 146-157. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2024.01.009
    [6] 叶列平, 方鄂华. 钢骨混凝土构件的受力性能研究综述[J]. 土木工程学报, 2000, 33(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005000.htm

    YE Lie-ping, FANG E-hua. State-of-the-art of study on the behaviors of steel reinforced concrete structure[J]. China Civil Engineering Journal, 2000, 33(5): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005000.htm
    [7] TONG Le-wei, LIU Bo, XIAN Qing-jun, et al. Experimental study on fatigue behavior of steel reinforced concrete (SRC) beams[J]. Engineering Structures, 2016, 123: 247-262. doi: 10.1016/j.engstruct.2016.05.052
    [8] XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844-1-12.
    [9] 黄宛昆, 吴庆雄, 王渠. 装配式空心板桥改进型铰缝结合面受力性能[J]. 交通运输工程学报, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011

    HUANG Wan-kun, WU Qing-xiong, WANG Qu. Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 169-181. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.06.011
    [10] 周家亮, 陈宝春, 马熙伦, 等. 超高性能混凝土深梁受剪性能[J]. 交通运输工程学报, 2020, 20(6): 117-125. doi: 10.19818/j.cnki.1671-1637.2020.06.010

    ZHOU Jia-liang, CHEN Bao-chun, MA Xi-lun, et al. Shear performance of ultra-high performance concrete deep beams[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 117-125. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.010
    [11] 李聪, 陈宝春, 韦建刚. 粗集料UHPC收缩与力学性能[J]. 交通运输工程学报, 2019, 19(5): 11-20. doi: 10.19818/j.cnki.1671-1637.2019.05.002

    LI Cong, CHEN Bao-chun, WEI Jian-gang. Shrinkage and mechanical properties of UHPC with coarse aggregate[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 11-20. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.05.002
    [12] 陈宝春, 李聪, 黄伟, 等. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28. doi: 10.19818/j.cnki.1671-1637.2018.01.002

    CHEN Bao-chun, LI Cong, HUANG Wei, et al. Review of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.01.002
    [13] MCMULLEN K F, ZAGHI A E. An accelerated repair method for steel girders with severe end corrosion damage[J]. Engineering Structures, 2022, 251: 113493. doi: 10.1016/j.engstruct.2021.113493
    [14] FAN Liang, MENG Wei-na, TENG Le, et al. Effect of steel fibers with galvanized coatings on corrosion of steel bars embedded in UHPC[J]. Composites Part B: Engineering, 2019, 177: 107445. doi: 10.1016/j.compositesb.2019.107445
    [15] WILLE K, NAAMAN A E, PARRA-MONTESINOS G J. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way[J]. ACI Materials Journal, 2011, 108(1): 46-54.
    [16] CWIRZEN A, PENTTALA V, VORNANEN C. Reactive powder based concretes: mechanical properties, durability and hybrid use with OPC[J]. Cement and Concrete Research, 2008, 38(10): 1217-1226. doi: 10.1016/j.cemconres.2008.03.013
    [17] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002
    [18] 翟建恺. 型钢活性粉末混凝土梁正截面受弯承载力试验与分析[D]. 扬州: 扬州大学, 2020.

    ZHAI Jian-kai. Test and analysis of flexural bearing capacity of normal section of steel reactive powder concrete beam[D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
    [19] 唐长久. 超高性能混凝土型钢梁受弯性能试验研究[D]. 长沙: 湖南大学, 2020.

    TANG Chang-jiu. Experimental research on the flexural performance of ultra-high performance concrete beam[D]. Changsha: Hunan University, 2020. (in Chinese)
    [20] 卜良桃, 刘鼎. 通过外包活性粉末混凝土型钢梁抗弯性能试验研究[J]. 铁道科学与工程学报, 2018, 15(2): 389-397. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201802016.htm

    BU Liang-tao, LIU Ding. Experimental study on prestressed steel reinforced high-strength wrapped by reactive power concrete beams[J]. Journal of Railway Science and Engineering, 2018, 15(2): 389-397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201802016.htm
    [21] 张涛. 配筋超高性能混凝土(UHPC)梁受弯性能数值模拟与试验分析[D]. 武汉: 武汉理工大学, 2020.

    ZHANG Tao. Numerical simulation and experimental analysis of bending performance of reinforced ultra high performance concrete (UHPC) beams[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
    [22] 林明畅. UHPC梁的抗弯性能研究[D]. 广州: 华南理工大学, 2020.

    LIN Ming-chang. Study on the anti-bend performance of UHPC beams[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
    [23] 郑山锁, 邓国专, 杨勇, 等. 型钢混凝土结构粘结滑移性能试验研究[J]. 工程力学, 2003, 20(5): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200305011.htm

    ZHENG Shan-suo, DENG Guo-zhuan, YANG Yong, et al. Experimental study of bond-slip performance between steel and concrete in SRC structures[J]. Engineering Mechanics, 2003, 20(5): 63-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200305011.htm
    [24] 卜良桃, 罗恺彦. 型钢外包活性粉末混凝土(RPC)的界面黏结性能[J]. 科学技术与工程, 2018, 18(3): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803051.htm

    BU Liang-tao, LUO Kai-yan. Interface bonding performance between shape steel and reactive power concrete (RPC) in steel reinforced RPC structures[J]. Science Technology and Engineering, 2018, 18(3): 307-312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803051.htm
    [25] 吴琛, 陈柯丹, 林上顺, 等. 免蒸养超高性能混凝土力学性能的试验[J]. 工业建筑, 2021, 51(1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202101021.htm

    WU Chen, CHEN Ke-dan, LIN Shang-shun, et al. Experimental study on mechanical properties of ultra-high performance concrete under normal temperature curing[J]. Industrial Construction, 2021, 51(1): 140-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202101021.htm
    [26] 赵国栋, 傅传国, 孙会社, 等. 型钢混凝土梁力学性能试验研究[J]. 建筑结构, 2011, 41(增1): 1115-1118. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-JZJG201104002266.htm

    ZHAO Guo-dong, FU Chuan-guo, SUN Hui-she, et al. Experimental study on the mechanical behavior of SRC beams[J]. Building Structure, 2011, 41(S1): 1115-1118. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-JZJG201104002266.htm
    [27] 陈宝春, 杨简, 吴香国, 等. UHPC力学性能的多指标分级[J]. 中国公路学报, 2021, 34(8): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108003.htm

    CHEN Bao-chun, YANG Jian, WU Xiang-guo, et al. Multi-indicators classification of UHPC mechanical properties[J]. China Journal of Highway and Transport, 2021, 34(8): 23-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108003.htm
    [28] 彭飞, 方志. 钢筋UHPC梁正截面抗弯承载力计算方法[J]. 土木工程学报, 2021, 54(3): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103008.htm

    PENG Fei, FANG Zhi. Calculation approach for flexural capacity of reinforced UHPC beams[J]. China Civil Engineering Journal, 2021, 54(3): 86-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103008.htm
    [29] 郑文忠, 李莉, 卢姗姗. 钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J]. 建筑结构学报, 2011, 32(6): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201106015.htm

    ZHENG Wen-zhong, LI Li, LU Shan-shan. Experimental research on mechanical performance of normal section of reinforced reactive powder concrete beam[J]. Journal of Building Structures, 2011, 32(6): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201106015.htm
    [30] 安钰丰. 方形钢管混凝土叠合压弯构件力学性能和设计方法研究[D]. 北京: 清华大学, 2015.

    AN Yu-feng. Performance and design method of square concrete-encased CFST members under combined compression and bending[D]. Beijing: Tsinghua University, 2015. (in Chinese)
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  33
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回