Flexural capacity of steel reinforced ultra-high performance concrete beams with rectangular section
-
摘要: 为研究矩形截面型钢超高性能混凝土(SRUHPC)梁的抗弯特性,制作了4根配筋率为0.8%~1.1%,含钢率为8.7%~15.6%,内置型钢分别为一字型、倒T型与H型的矩形截面SRUHPC梁试件,开展了抗弯极限承载力试验,分析了矩形截面SRUHPC梁试件的损伤机理和破坏模式;基于试验结果与理论推导,提出了矩形截面SRUHPC梁抗弯承载力计算方法,计算了21根矩形截面SRUHPC梁试件和111个有限元计算模型的抗弯承载力,并将计算结果与试验值和有限元计算值进行了对比。分析结果表明:矩形截面SRUHPC梁试件的破坏模式均为适筋受弯破坏,即型钢与受拉纵筋先后屈服,随后受压区UHPC被压碎,且型钢与UHPC可较好地共同工作至试件破坏;内置倒T型钢试件和H型钢试件的承载力和刚度高于内置一字型钢试件,且抗裂性能更好;与其他试件相比,内置H型钢试件中纵筋、UHPC与型钢在相同荷载作用下的应变及其发展速度均较小,因此,在矩形截面SRUHPC梁内的型钢中设置上、下翼缘有助于提高组合梁的抗弯性能;采用提出方法得到的计算结果与试验值和有限元计算值的比值均值分别为0.972和1.035,方差分别为0.009和0.002,研究结果可为矩形截面SRUHPC梁在实际工程中的推广应用和规范、规程的制定提供理论支撑。Abstract: To study the bending resistance characteristics of steel reinforced ultra-high performance concrete (SRUHPC) beams with rectangular section, four SRUHPC beam specimens with rectangular section were fabricated, with the reinforcing ratios ranging from 0.8% to 1.1% and the steel ratios ranging from 8.7% to 15.6%. The embedded steels are I-shaped, inverted T-shaped, and H-shaped. Flexural ultimate capacity tests were conducted to analyze the damage mechanism and failure modes of SRUHPC beam specimens with rectangular section. Based on test results and theoretical derivations, a calculation method for the flexural capacity of SRUHPC beam with rectangular section was proposed. The flexural capacities of 21 SRUHPC beam specimens with rectangular section and 111 finite element calculation models were calculated, and the calculation results were compared with the test and finite element calculation values. Analysis results indicate that the failure modes of SRUHPC beam specimens with rectangular section are all reinforced failures due to bending. The steels and longitudinal tensile reinforcements yield successively, followed by the crushing of the UHPC in the compression zone. The steels and UHPC work well together until the specimens failure. The specimens with embedded inverted T-shaped and H-shaped steels exhibit higher capacities and stiffnesses compared to those with embedded I-shaped steel, and they demonstrate better crack resistances. Compared with other specimens, under the same load, the strains and strain development rates of longitudinal reinforcements, UHPC, and steels in specimens with embedded H-shaped steels are relatively smaller. Therefore, setting upper and lower flanges in the steel within SRUHPC beam with rectangular section contributes to enhancing the flexural performance of the composite beam. The calculated results obtained by the proposed method show mean ratios of 0.972 and 1.035 compared with the test and finite element calculation values, with variances of 0.009 and 0.002, respectively. The research results can provide theoretical supports for the promotion and application of SRUHPC beams with rectangular section in practical engineering and the formulations of codes and regulations.
-
表 1 试件详细参数
Table 1. Detailed parameters of specimens
数据来源 试件编号 截面尺寸/mm 计算跨径/mm 型钢型号及布置方式 含钢率/% 受拉纵筋型号 fa/MPa fy/MPa fcu/MPa 文献[18] B-1 150×250 1 600 H150×60×6×8,居中 4.7 2Φ14 260.5 435.0 109.6 B-2 150×250 1 600 H150×60×6×8,居中 4.7 2Φ16 260.5 426.0 109.6 B-3 150×250 1 600 H150×60×6×8,居中 4.7 2Φ18 260.5 447.0 109.6 B-4 150×250 1 600 H150×60×6×8,下偏20 mm 4.7 2Φ14 260.5 435.0 109.6 B-5 150×250 1 600 H150×60×6×6,居中 4.1 2Φ14 266.0 435.0 109.6 B-6 150×250 1 600 H150×75×6×8,居中 5.3 2Φ14 260.5 435.0 109.6 B-7 150×250 1 600 H150×60×6×8,下偏20 mm 4.7 2Φ14 358.0 435.0 109.6 B-8 150×250 1 600 H150×75×6×8,居中 5.3 2Φ14 358.0 435.0 109.6 文献[19] L1 200×300 3 200 I20a,居中 5.9 2Φ12 246.0 389.0 122.7 L2 200×300 3 200 I20a,居中 5.9 2Φ12 246.0 389.0 154.7 L3 200×300 3 200 I20a,居中 5.9 2Φ12 246.0 389.0 176.4 L4 200×300 3 200 I20b,居中 6.6 2Φ12 246.0 389.0 122.7 L5 200×300 3 200 I20b,居中 6.6 2Φ12 246.0 389.0 154.7 L6 200×300 3 200 I20b,居中 6.6 2Φ12 246.0 389.0 176.4 文献[20] SRC-1 150×200 1 800 I14,居中 7.2 246.0 127.3 SRC-2 150×200 1 800 I14,居中 7.2 246.0 146.2 SRC-3 150×200 1 800 I14,居中 7.2 246.0 176.4 表 2 试件荷载与挠度比较
Table 2. Comparison of load and deflection of specimens
荷载或挠度 SU SU-T SU-LF SU-DF 开裂荷载Pcr/kN 60.0 60.0 60.0 60.0 主裂缝宽度达到0.2 mm荷载Pcr, 0.2/kN 140.0 285.0 385.0 403.3 极限荷载Pu/kN 380.0 396.0 477.0 516.0 型钢受压部分屈服荷载Psc/kN 323.6 365.4 345.0 368.2 型钢受拉部分屈服荷载Pst/kN 235.6 264.3 278.5 271.0 受压纵筋屈服荷载Prc/kN 357.1 395.0 442.2 466.2 受拉纵筋屈服荷载Prt/kN 305.3 374.2 404.6 431.7 Pcr对应的跨中挠度Δcr/mm 0.8 0.3 0.8 0.4 Pcr, 0.2对应的跨中挠度Δcr, 0.2/mm 2.2 3.8 6.5 4.4 Pu对应的跨中挠度Δu/mm 9.6 11.6 14.0 12.6 Psc对应的跨中挠度Δsc/mm 5.2 6.0 5.6 3.7 Pst对应的跨中挠度Δst/mm 3.3 3.5 4.3 2.3 Prc对应的跨中挠度Δrc/mm 6.8 11.2 8.5 6.4 Prt对应的跨中挠度Δrt/mm 4.7 6.6 7.0 5.2 表 3 试件计算结果
Table 3. Calculation results of specimens
试件编号 含钢率/% Me/(kN·m) Mc/(kN·m) Mc/Me B-1 4.7 97.50 95.38 0.978 B-2 4.7 105.10 101.45 0.965 B-3 4.7 118.40 110.51 0.933 B-4 4.7 106.50 88.40 0.830 B-5 4.1 89.20 91.52 1.026 B-6 5.3 104.60 99.79 0.954 B-7 4.7 119.60 100.05 0.837 B-8 5.3 115.10 91.50 0.795 L1 5.9 179.44 173.67 0.968 L2 5.9 189.12 192.60 1.018 L3 5.9 199.76 205.33 1.028 L4 6.6 203.60 175.85 0.864 L5 6.6 218.96 193.67 0.885 L6 6.6 235.52 205.54 0.873 SRC-1 7.2 38.70 44.23 1.143 SRC-2 7.2 40.40 45.66 1.130 SRC-3 7.2 42.60 46.31 1.087 SU 11.0 114.00 113.81 0.998 SU-T 8.7 118.80 118.48 0.997 SU-LF 13.1 143.10 146.28 1.022 SU-DF 15.3 154.80 166.76 1.077 -
[1] HONG W K, KIM J M, PARK S C, et al. Composite beam composed of steel and pre-cast concrete. (modularized hybrid system, MHS) Part Ⅱ: analytical investigation[J]. The Structural Design of Tall and Special Buildings, 2009, 18(8): 891-905. doi: 10.1002/tal.484 [2] HONG W K, PARK S C, LEE H C, et al. Composite beam composed of steel and precast concrete (modularized hybrid system). Part Ⅲ: application for a 19-storey building[J]. The Structural Design of Tall and Special Buildings, 2010, 19(6): 679-706. doi: 10.1002/tal.507 [3] IKEDA M. Transition and future prospects of research and development of railway steel-concrete hybrid structures[J]. Journal of Japan Society of Civil Engineers (Structural Engineering and Earthquake Engineering), 2022, 78(5): 1-18. [4] IKEDA M. The trend of new technologies on SRC and CFT members in railway structures[J]. Concrete Journal, 2014, 52(1): 102-107. doi: 10.3151/coj.52.102 [5] 林上顺, 暨邦冲, 夏樟华, 等. 矩形截面型钢混凝土梁抗弯极限承载力[J]. 交通运输工程学报, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009 LIN Shang-shun, JI Bang-chong, XIA Zhang-hua, et al. Ultimate flexural capacity of steel reinforced concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 146-157. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2024.01.009 [6] 叶列平, 方鄂华. 钢骨混凝土构件的受力性能研究综述[J]. 土木工程学报, 2000, 33(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005000.htmYE Lie-ping, FANG E-hua. State-of-the-art of study on the behaviors of steel reinforced concrete structure[J]. China Civil Engineering Journal, 2000, 33(5): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200005000.htm [7] TONG Le-wei, LIU Bo, XIAN Qing-jun, et al. Experimental study on fatigue behavior of steel reinforced concrete (SRC) beams[J]. Engineering Structures, 2016, 123: 247-262. doi: 10.1016/j.engstruct.2016.05.052 [8] XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844-1-12. [9] 黄宛昆, 吴庆雄, 王渠. 装配式空心板桥改进型铰缝结合面受力性能[J]. 交通运输工程学报, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011 HUANG Wan-kun, WU Qing-xiong, WANG Qu. Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 169-181. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.06.011 [10] 周家亮, 陈宝春, 马熙伦, 等. 超高性能混凝土深梁受剪性能[J]. 交通运输工程学报, 2020, 20(6): 117-125. doi: 10.19818/j.cnki.1671-1637.2020.06.010 ZHOU Jia-liang, CHEN Bao-chun, MA Xi-lun, et al. Shear performance of ultra-high performance concrete deep beams[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 117-125. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.010 [11] 李聪, 陈宝春, 韦建刚. 粗集料UHPC收缩与力学性能[J]. 交通运输工程学报, 2019, 19(5): 11-20. doi: 10.19818/j.cnki.1671-1637.2019.05.002 LI Cong, CHEN Bao-chun, WEI Jian-gang. Shrinkage and mechanical properties of UHPC with coarse aggregate[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 11-20. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.05.002 [12] 陈宝春, 李聪, 黄伟, 等. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28. doi: 10.19818/j.cnki.1671-1637.2018.01.002 CHEN Bao-chun, LI Cong, HUANG Wei, et al. Review of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.01.002 [13] MCMULLEN K F, ZAGHI A E. An accelerated repair method for steel girders with severe end corrosion damage[J]. Engineering Structures, 2022, 251: 113493. doi: 10.1016/j.engstruct.2021.113493 [14] FAN Liang, MENG Wei-na, TENG Le, et al. Effect of steel fibers with galvanized coatings on corrosion of steel bars embedded in UHPC[J]. Composites Part B: Engineering, 2019, 177: 107445. doi: 10.1016/j.compositesb.2019.107445 [15] WILLE K, NAAMAN A E, PARRA-MONTESINOS G J. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way[J]. ACI Materials Journal, 2011, 108(1): 46-54. [16] CWIRZEN A, PENTTALA V, VORNANEN C. Reactive powder based concretes: mechanical properties, durability and hybrid use with OPC[J]. Cement and Concrete Research, 2008, 38(10): 1217-1226. doi: 10.1016/j.cemconres.2008.03.013 [17] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002 [18] 翟建恺. 型钢活性粉末混凝土梁正截面受弯承载力试验与分析[D]. 扬州: 扬州大学, 2020.ZHAI Jian-kai. Test and analysis of flexural bearing capacity of normal section of steel reactive powder concrete beam[D]. Yangzhou: Yangzhou University, 2020. (in Chinese) [19] 唐长久. 超高性能混凝土型钢梁受弯性能试验研究[D]. 长沙: 湖南大学, 2020.TANG Chang-jiu. Experimental research on the flexural performance of ultra-high performance concrete beam[D]. Changsha: Hunan University, 2020. (in Chinese) [20] 卜良桃, 刘鼎. 通过外包活性粉末混凝土型钢梁抗弯性能试验研究[J]. 铁道科学与工程学报, 2018, 15(2): 389-397. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201802016.htmBU Liang-tao, LIU Ding. Experimental study on prestressed steel reinforced high-strength wrapped by reactive power concrete beams[J]. Journal of Railway Science and Engineering, 2018, 15(2): 389-397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201802016.htm [21] 张涛. 配筋超高性能混凝土(UHPC)梁受弯性能数值模拟与试验分析[D]. 武汉: 武汉理工大学, 2020.ZHANG Tao. Numerical simulation and experimental analysis of bending performance of reinforced ultra high performance concrete (UHPC) beams[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese) [22] 林明畅. UHPC梁的抗弯性能研究[D]. 广州: 华南理工大学, 2020.LIN Ming-chang. Study on the anti-bend performance of UHPC beams[D]. Guangzhou: South China University of Technology, 2020. (in Chinese) [23] 郑山锁, 邓国专, 杨勇, 等. 型钢混凝土结构粘结滑移性能试验研究[J]. 工程力学, 2003, 20(5): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200305011.htmZHENG Shan-suo, DENG Guo-zhuan, YANG Yong, et al. Experimental study of bond-slip performance between steel and concrete in SRC structures[J]. Engineering Mechanics, 2003, 20(5): 63-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200305011.htm [24] 卜良桃, 罗恺彦. 型钢外包活性粉末混凝土(RPC)的界面黏结性能[J]. 科学技术与工程, 2018, 18(3): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803051.htmBU Liang-tao, LUO Kai-yan. Interface bonding performance between shape steel and reactive power concrete (RPC) in steel reinforced RPC structures[J]. Science Technology and Engineering, 2018, 18(3): 307-312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201803051.htm [25] 吴琛, 陈柯丹, 林上顺, 等. 免蒸养超高性能混凝土力学性能的试验[J]. 工业建筑, 2021, 51(1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202101021.htmWU Chen, CHEN Ke-dan, LIN Shang-shun, et al. Experimental study on mechanical properties of ultra-high performance concrete under normal temperature curing[J]. Industrial Construction, 2021, 51(1): 140-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202101021.htm [26] 赵国栋, 傅传国, 孙会社, 等. 型钢混凝土梁力学性能试验研究[J]. 建筑结构, 2011, 41(增1): 1115-1118. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-JZJG201104002266.htmZHAO Guo-dong, FU Chuan-guo, SUN Hui-she, et al. Experimental study on the mechanical behavior of SRC beams[J]. Building Structure, 2011, 41(S1): 1115-1118. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-JZJG201104002266.htm [27] 陈宝春, 杨简, 吴香国, 等. UHPC力学性能的多指标分级[J]. 中国公路学报, 2021, 34(8): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108003.htmCHEN Bao-chun, YANG Jian, WU Xiang-guo, et al. Multi-indicators classification of UHPC mechanical properties[J]. China Journal of Highway and Transport, 2021, 34(8): 23-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108003.htm [28] 彭飞, 方志. 钢筋UHPC梁正截面抗弯承载力计算方法[J]. 土木工程学报, 2021, 54(3): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103008.htmPENG Fei, FANG Zhi. Calculation approach for flexural capacity of reinforced UHPC beams[J]. China Civil Engineering Journal, 2021, 54(3): 86-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202103008.htm [29] 郑文忠, 李莉, 卢姗姗. 钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J]. 建筑结构学报, 2011, 32(6): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201106015.htmZHENG Wen-zhong, LI Li, LU Shan-shan. Experimental research on mechanical performance of normal section of reinforced reactive powder concrete beam[J]. Journal of Building Structures, 2011, 32(6): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201106015.htm [30] 安钰丰. 方形钢管混凝土叠合压弯构件力学性能和设计方法研究[D]. 北京: 清华大学, 2015.AN Yu-feng. Performance and design method of square concrete-encased CFST members under combined compression and bending[D]. Beijing: Tsinghua University, 2015. (in Chinese)