留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

港口多能源融合系统综述

袁裕鹏 许朝远 李娜 唐道贵 袁成清 钟晓晖 严新平

袁裕鹏, 许朝远, 李娜, 唐道贵, 袁成清, 钟晓晖, 严新平. 港口多能源融合系统综述[J]. 交通运输工程学报, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007
引用本文: 袁裕鹏, 许朝远, 李娜, 唐道贵, 袁成清, 钟晓晖, 严新平. 港口多能源融合系统综述[J]. 交通运输工程学报, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007
YUAN Yu-peng, XU Chao-yuan, LI Na, TANG Dao-gui, YUAN Cheng-qing, ZHONG Xiao-hui, YAN Xin-ping. Review on multi-energy integration systems in ports[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007
Citation: YUAN Yu-peng, XU Chao-yuan, LI Na, TANG Dao-gui, YUAN Cheng-qing, ZHONG Xiao-hui, YAN Xin-ping. Review on multi-energy integration systems in ports[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007

港口多能源融合系统综述

doi: 10.19818/j.cnki.1671-1637.2024.04.007
基金项目: 

国家重点研发计划 2021YFB2601601

详细信息
    作者简介:

    袁裕鹏(1980-),男,湖北武汉人,武汉理工大学副教授,工学博士,从事船港装备新能源与能效控制研究

    通讯作者:

    严新平(1959-),男,江西莲花人,中国工程院院士,武汉理工大学教授,工学博士

  • 中图分类号: U653

Review on multi-energy integration systems in ports

Funds: 

National Key Research and Development Program of China 2021YFB2601601

More Information
    Author Bio:

    YUAN Yu-peng(1980-), male, associate professor, PhD, ypyuan@whut.edu.cn

    YAN Xin-ping(1959-), male, academician of Chinese Academy of Engineering, professor, PhD, xpyan@whut.edu.cn

  • 摘要: 调研了当前国内外港口风能、太阳能、氢能及其他清洁能源应用现状,评估了多种自然资源禀赋特征,结合港口用能类型与负荷特性,分析了直流并网、交流并网、交直流混联并网3种微电网系统架构和不同储能方式特性;针对风光储氢多能源融合系统整体架构及其“源-网-荷-储”网络架构的特点,提出了多能源融合系统融合模式、匹配方法、能源捕获、安全保障、运行控制等关键技术。研究结果表明:当前清洁能源在港口中存在应用形式单一、利用率较低的特点,港口负荷的能源需求形式多样,采用风光储氢多能源融合系统能够较好地满足港口负荷需求,并克服单一能源的缺点;港口多能源融合模式与架构需要综合考虑港口的实际情况进行个性化设计,一般采用多准则决策的方法来确定最优的能源融合形式,并采用基于多目标优化的方法,综合考虑安全、环境与经济等多种因素确定各个能源的容量;在具体的能源种类选择上,风、光发电结合电解水制氢比较适用于港口的实际应用场景,但需要对氢气的制、注、储、供等关键设备与安保技术进行适配研究;港口负荷和风、光发电都具有随机性,因此,需要研究新的多层次能源管理策略,以优化多能源融合系统的能源调度与负荷匹配,确保多能源融合系统能够安全、稳定、经济地运行。

     

  • 图  1  裕廊港太阳能发电系统

    Figure  1.  Jurong Harbor solar power generation system

    图  2  江阴港风力发电系统

    Figure  2.  Jiangyin Port wind power generation system

    图  3  前湾港加氢站

    Figure  3.  Qianwan Port hydrogen refueling station

    图  4  港口多能源融合系统拓扑结构

    Figure  4.  Topology of port multi-energy integration system

    图  5  风力发电系统

    Figure  5.  Wind power generation system

    图  6  风力发电机组成示意

    Figure  6.  Schematic of wind turbine generator composition

    图  7  光伏发电结构

    Figure  7.  Photovoltaic power generation structure

    图  8  风、光、氢耦合发电结构

    Figure  8.  Structure of wind-solar-hydrogen coupling power generation

    图  9  交直流混联并网结构

    Figure  9.  AC/DC hybrid grid-connected structure

    图  10  直流并网结构

    Figure  10.  DC grid-connected structure

    图  11  交流并网结构

    Figure  11.  AC grid-connected structure

    图  12  港口多能负荷用能分析

    Figure  12.  Energy consumption analysis of multi-energy load in ports

    图  13  氢气产业“制-注-储-供-用”全过程

    Figure  13.  Whole process of "production-refueling-storage-supply-use" in hydrogen industry

    图  14  港口环境下氢气“制-注-储-供-用”一体化运行控制

    Figure  14.  Integrated operation control of hydrogen "production-refueling-storage-supply-use" in port environment

    图  15  电解槽系统结构

    Figure  15.  Electrolyser system structure

    图  16  电解水制氢原理

    Figure  16.  Principle of hydrogen production by electrolysis of water

    图  17  加氢工艺流程简化示意

    Figure  17.  Simplified schematic of hydrogenation process flow

    图  18  加氢枪基本架构

    Figure  18.  Basic structure of hydrogen gun

    图  19  气态加氢站设备配置

    Figure  19.  Equipment configuration of gaseous hydrogenation station

    图  20  燃料电池系统结构

    Figure  20.  Structure of fuel cell system

    图  21  燃料电池原理

    Figure  21.  Fuel cell principles

    图  22  高压氢气泄漏事故类型

    Figure  22.  Types of high-pressure hydrogen leakage accidents

    图  23  不同类型氢气传感器的工作原理

    Figure  23.  Operating principles of different types of hydrogen sensors

    表  1  三种并网结构特性对比

    Table  1.   Comparison of characteristics of three grid-connected structures

    特点 交流并网 直流并网 交直流混联并网
    传输距离 中长距离 远距离 中长距离
    转换效率 较高 较高 较低
    系统复杂度 中等
    适用场景 风力和光伏发电 远距离传输、高压直流输电 多种能源(例如风+光+其他)
    网络稳定性 较高 较高 较低
    维护成本 较低 较低 较高
    下载: 导出CSV

    表  2  港口设备可用能源类型

    Table  2.   Types of available energy for port equipment

    能源类型 设备
    码头起重机 轨道式龙门吊 轮胎式龙门吊 堆场卡车 自动导引运输车 自动堆垛起重机
    柴油 $ \checkmark$ $ \checkmark$ $ \checkmark$ $ \checkmark$
    $ \checkmark$ $ \checkmark$ $ \checkmark$ $ \checkmark$ $ \checkmark$ $ \checkmark$
    天然气 $ \checkmark$ $ \checkmark$ $ \checkmark$
    $ \checkmark$ $ \checkmark$ $ \checkmark$
    下载: 导出CSV

    表  3  常见储能方式特性分析

    Table  3.   Analysis of characteristics of common energy storage methods

    储能方式 碳酸铁锂电池 超级电容器 铅酸蓄电池 磷酸铁锂电池
    特点 化学反应 电场 化学反应 化学反应
    储能容量 较低 中等 中等
    充放电效率 较高 非常高 较高 较高
    响应时间 极快 较慢 较慢
    寿命 较长 非常长 较长
    循环次数 非常多 中等
    质量 相对较轻 较轻 相对较重 较重
    成本 中等 中等
    下载: 导出CSV

    表  4  近期多能源融合系统设计研究

    Table  4.   Research on recent multi-energy integration systems design

    参考文献 对象位置 多能源形式 主要结论
    文献[61] 塔科拉迪 风、光、储、天然气、柴 风、光、储、天然气最优
    文献[62] 肯尼亚 风、光、储、天然气、柴、网 风、光、柴、储最优
    文献[63] 萨迪亚、阿拉伯 风、光、储、氢、柴 光、储、柴最优
    文献[64] 埃及 光、储、柴 光、储、柴最优
    下载: 导出CSV

    表  5  不同电解水制氢技术特点比较

    Table  5.   Comparison of characteristics of different hydrogen production technologies by electrolysis of water

    类型 碱性电解水 质子交换膜电解水 固体氧化物电解水
    电解质 KOH水溶液 聚合物电解质 固体氧化物电解质
    工作温度/℃ 40~90 20~100 500~1 000
    能源效率/% 70~80 80~90 90~100
    系统寿命/年 10~20 10~20
    优点 技术成熟,非贵金属催化剂,成本较低 电流密度高,设计简单,结构紧凑,产氢纯度高 能源效率高,产氢量高,非贵金属催化剂
    缺点 电流密度低,电极上有碳化沉积,电解质具有易腐蚀性 使用贵金属材料,电解介质具有腐蚀性,耐久性差 结构复杂,陶瓷材料易碎,耐久性较差
    技术水平 国内外均已实现大规模工业化生产 国内仍处于试验阶段,国外已初步实现商业化生产 国内外均仍处于试验阶段
    与可再生能源的结合 适用于稳定电源的装机规模较大的电力系统 适配波动性较大的可再生能源发电系统 适用于产生高温、高压蒸汽的光热发电系统
    下载: 导出CSV

    表  6  燃料电池技术特点比较

    Table  6.   Comparison of fuel cell technology characteristics

    类型 碱性燃料电池 质子交换膜燃料电池
    电解质 KOH水溶液 聚合物电解质
    工作温度/℃ 80~100 70~80
    能源效率/% 35~45
    优点 启动迅速,能量密度高 效率高,质量轻,体积小
    缺点 电极上有沉积,电解质具有易腐蚀性 采用贵金属催化剂,成本较高
    应用 国防和空间领域 车辆,自备热电联产发电(小规模)
    下载: 导出CSV
  • [1] 严新平, 张金奋, 吴兵. 交通强国战略下水运安全挑战与展望[J]. 长江技术经济, 2018, 2(3): 39-43.

    YAN Xin-ping, ZHANG Jin-fen, WU Bing. Challenges and prospects of waterway shippment safety under the strategy of strength in transportation[J]. Technology and Economy of Changjiang, 2018, 2(3): 39-43. (in Chinese)
    [2] 严新平, 贺亚鹏, 贺宜, 等. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001

    YAN Xin-ping, HE Ya-peng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.001
    [3] Marine Environment Protection Committee. Report of the marine environment protection committee on its sixty-second session[R]. London: Marine Environment Protection Committee, 2011.
    [4] 徐国平, 潘欣竹. 国际海运碳减排国际法制和行业规则[J]. 浙江海洋大学学报(人文科学版), 2022, 39(5): 7-14.

    XU Guo-ping, PAN Xin-zhu. On international law and industrial rules for reduction of carbon emission from international shipping[J]. Journal of Zhejiang Ocean University (Humanities Sciences), 2022, 39(5): 7-14. (in Chinese)
    [5] 谢梦强. 船舶排放对我国港口大气污染法律问题研究[D]. 大连: 大连海事大学, 2020.

    XIE Meng-qiang. A study on the legal problems of port air pollution in China from ship discharge[D]. Dalian: Dalian Maritime University, 2020. (in Chinese)
    [6] 禹湘, 娄峰, 谭畅. 基于CIE-CEAM模型的中国工业"双碳"路径模拟[J]. 中国人口·资源与环境, 2022, 32(7): 49-56.

    YU Xiang, LOU Feng, TAN Chang. A simulation study of the pathway of achieving the 'dual carbon' goals in China's industrial sectors based on the CIE-CEAM Model[J]. China Population, Resources and Environment, 2022, 32(7): 49-56. (in Chinese)
    [7] 王卓妮, 巢清尘, 张黎黎. "十四五"时期中国省级"双碳"目标评估和政策分析[J]. 环境保护, 2023, 51(4): 49-54.

    WANG Zhuo-ni, CHAO Qing-chen, ZHANG Li-li. Assessment and policy analysis of carbon peaking and carbon neutrality targets at provincial level in China during the 14th Five-Year Plan period[J]. Environmental Protection, 2023, 51(4): 49-54. (in Chinese)
    [8] CHEN Ji-hong, XIONG Wen-jing, XU Lang, et al. Evolutionary game analysis on supply side of the implement shore-to-ship electricity[J]. Ocean and Coastal Management, 2021, 215: 105926. doi: 10.1016/j.ocecoaman.2021.105926
    [9] 袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002

    YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.002
    [10] KENAN N, JEBALI A, DIABAT A. The integrated quay crane assignment and scheduling problems with carbon emissions considerations[J]. Computers and Industrial Engineering, 2022, 165: 107734. doi: 10.1016/j.cie.2021.107734
    [11] ZHAO Nan, SCHOFIELD N, NIU Wang-qiang. Energy storage system for a port crane hybrid power-train[J]. IEEE Transactions on Transportation Electrification, 2016, 2(4): 480-492. doi: 10.1109/TTE.2016.2562360
    [12] ALASALI F, HABEN S, HOLDERBAUM W. Energy management systems for a network of electrified cranes with energy storage[J]. International Journal of Electrical Power and Energy Systems, 2019, 106: 210-222. doi: 10.1016/j.ijepes.2018.10.001
    [13] AHAMAD N B, SU Chun-lien, XIAO Zhao-xia, et al. Energy harvesting from harbor cranes with flywheel energy storage systems[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3354-3364. doi: 10.1109/TIA.2019.2910495
    [14] PENG Yun, WANG Wen-yuan, SONG Xiang-qun, et al. Optimal allocation of resources for yard crane network management to minimize carbon dioxide emissions[J]. Journal of Cleaner Production, 2016, 131: 649-658. doi: 10.1016/j.jclepro.2016.04.120
    [15] OLABI A G, ALI ABDELKAREEM M. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112111. doi: 10.1016/j.rser.2022.112111
    [16] MISRA A, VENKATARAMANI G, GOWRISHANKAR S, et al. Renewable energy based smart microgrids-a pathway to green port development[J]. Strategic Planning for Energy and the Environment, 2018, 37(2): 17-32.
    [17] 李全生, 卓卉. 基于协同供能的轨道交通能源转型发展路径研究[J]. 北京交通大学学报(社会科学版), 2022, 21(3): 53-60.

    LI Quan-sheng, ZHUO Hui. Research on the development path of rail transit energy based on synergistic energy[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2022, 21(3): 53-60. (in Chinese)
    [18] ACCIARO M, GHIARA H, CUSANO M. Energy management in seaports: a new role for port authorities[J]. Energy Policy, 2014, 71: 4-12. doi: 10.1016/j.enpol.2014.04.013
    [19] BARRETT S. Valencia will be first port in Europe to use hydrogen energy in its container terminals[J]. Fuel Cells Bulletin, 2019, 2019(2): 3.
    [20] 方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(一): 典型系统结构与关键问题[J]. 中国电机工程学报, 2023, 43(1): 114-135.

    FANG Si-dun, ZHAO Chang-hong, DING Zhao-hao, et al. Port integrated energy systems toward carbon neutrality(Ⅰ): typica topology and key problems[J]. Proceedings of the CSEE, 2023, 43(1): 114-135. (in Chinese)
    [21] 方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(二): 能源-交通融合中的柔性资源与关键技术[J]. 中国电机工程学报, 2023, 43(3): 950-969.

    FANG Si-dun, ZHAO Chang-hong, DING Zhao-hao, et al. Port integrated energy systems toward carbon neutrality(Ⅱ): flexible resources and key technologies in energy-transportation integration[J]. Proceedings of the CSEE, 2023, 43(3): 950-969. (in Chinese)
    [22] 王思佳. 为什么是甲醇?[J]. 中国船检, 2022(1): 38-42.

    WANG Si-jia. Why methanol?[J]. China Ship Survey, 2022(1): 38-42. (in Chinese)
    [23] 王轩, 张晋恺. 新一代智能集装箱码头绿色零碳设计探讨[J]. 港工技术, 2022, 59(4): 94-96, 111.

    WANG Xuan, ZHANG Jin-kai. Discussion on green design of new-generation intelligent container terminal with zero-carbon emission[J]. Port Engineering Technology, 2022, 59(4): 94-96, 111. (in Chinese)
    [24] 周文峰, 张凯, 祖巧红, 等. 风电和光伏在绿色港口建设中的应用[J]. 港口装卸, 2023(2): 36-38.

    ZHOU Wen-feng, ZHANG Kai, ZU Qiao-hong, et al. Application of wind power and photovoltaics in green port construction[J]. Port Operation, 2023(2): 36-38. (in Chinese)
    [25] 仲昭林. 自动化集装箱码头设备配置与作业调度集成优化[D]. 青岛: 青岛大学, 2022.

    ZHONG Zhao-lin. Automated container terminal equipment configuration and operation scheduling integration optimization[D]. Qingdao: Qingdao University, 2022. (in Chinese)
    [26] 杜小云. 我国低碳城市建设水平时空演变规律及提升策略研究[D]. 重庆: 重庆大学, 2021.

    DU Xiao-yun. Research on spatio-temporal evolution and promotion strategy of low carbon city practice in China[D]. Chongqing: Chongqing University, 2021. (in Chinese)
    [27] 岑琪. 宁波舟山港加速推进碳达峰碳中和行动[J]. 中国港口, 2021, 354(12): 19-21.

    CEN Qi. Ningbo Zhoushan Port accelerated the action of carbon peaking and carbon neutrality[J]. China Ports, 2021, 354(12): 19-21. (in Chinese)
    [28] BALI S, THANGALAKSHMI S, RAJOO B. Renewable energy options for seaports[C]//IEEE. OCEANS 2022 Chennai. New York: IEEE, 2022: 1-6.
    [29] ROFHIWA T, LESEDI M. Development of an energy management strategy for port cranes[C]//IEEE. IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society. New York: IEEE, 2021: 1-6.
    [30] 杨卫华, 蒋康乐, 孙文叶. 不同应用规模下风光互补发电储能系统优化与设计[J]. 节能, 2017, 36(10): 40-43.

    YANG Wei-hua, JIANG Kang-le, SUN Wen-ye. Optimization and design under different application scale on wind/photovoltaic hybrid generation system[J]. Energy Conservation, 2017, 36(10): 40-43. (in Chinese)
    [31] 刘悦璋. 多能源微电网控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    LIU Yue-zhang. Research on control strategy of multi-energy microgrid[D]. Harbin: Harbin Engineering University, 2021. (in Chinese)
    [32] 姜碧佳, 叶远茂. 直流微电网的控制技术综述[J]. 广东电力, 2020, 33(5): 1-10.

    JIANG Bi-jia, YE Yuan-mao. Overview on control techniques of DC micro-grid[J]. Guangdong Electric Power, 2020, 33(5): 1-10. (in Chinese)
    [33] 蔡欣灵, 张前. 交直流混合微电网的拓扑结构与重构综述[J]. 自动化应用, 2018(9): 79-82.

    CAI Xin-ling, ZHANG Qian. A review of the topology and reconstruction of AC/DC hybrid microgrids[J]. Automation Application, 2018(9): 79-82. (in Chinese)
    [34] 李滨, 陶思思, 张杨杨, 等. 含多种可再生能源发电联盟的优化运行[J]. 电力系统及其自动化学报, 2021, 33(6): 84-92.

    LI Bin, TAO Si-si, ZHANG Yang-yang, et al. Optimized operation of power generation alliance with multiple renewable energy sources[J]. Proceedings of the CSU-EPSA, 2021, 33(6): 84-92. (in Chinese)
    [35] FANG Liang, XU Xiao-yan, XIA Jun, et al. Reliability assessment of the port power system based on integrated energy hybrid system[J]. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2022, 70(2): 1-12.
    [36] 浦盛斌. 风光储联合发电系统建模与协同优化控制研究[D]. 上海: 上海交通大学, 2016.

    PU Sheng-bin. Research on wind-PV-storage hybrid system model and coordinated control strategy[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
    [37] 江苏江阴港港口集团股份有限公司. 风光互补供电系统技术研究及应用[J]. 交通节能与环保, 2022, 18(增1): 54-57.

    Jiangsu Jiangyin Port Group Co., Ltd. Technology research and application of wind-solar hybrid power supply system[J]. Energy Conservation and Enviromental Protection in Transportation, 2022, 18(S1): 54-57. (in Chinese)
    [38] 杨文强, 邢小文, 覃姝仪, 等. 大规模风/光互补制储氢系统协调控制策略研究[J]. 电力电子技术, 2020, 54(12): 24-27, 55.

    YANG Wen-qiang, XING Xiao-wen, QIN Shu-yi, et al. Research on coordinated control strategy of large-scale wind/solar complementary hydrogen production and storage system[J]. Power Electronics, 2020, 54(12): 24-27, 55. (in Chinese)
    [39] 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75-83.

    JING Tao, CHEN Geng, WANG Zi-hao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75-83. (in Chinese)
    [40] DOUGLAS T. Dynamic modelling and simulation of a solar-PV hybrid battery and hydrogen energy storage system[J]. Journal of Energy Storage, 2016, 7: 104-114.
    [41] 李宝意. 大连湾港区风光互补发电系统设计[D]. 大连: 大连理工大学, 2018.

    LI Bao-yi. Design of wind solar hybrid power generation system in Dalian bay port area[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
    [42] 甘勇见. 风光互补供电系统的组成与结构[J]. 中国设备工程, 2019(9): 146-148.

    GAN Yong-jian. The composition and structure of wind-solar complementary power supply system[J]. China Plant Engineering, 2019(9): 146-148. (in Chinese)
    [43] ZHAO Fang, ZHU Hai-yun, CHEN Long. Research of Grid-connected inverter based on SVPWM control strategy[C]// MCEI. Proceedings of the 2016 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2016). Paris: MCEI, 2016.
    [44] 亢苏占. 基于微电网的多功能并网逆变器控制策略研究[D]. 重庆: 重庆理工大学, 2018.

    KANG Su-zhan. Research on control strategy of multi-function grid-connected inverter based on microgrid[D]. Chongqing: Chongqing University of Technolog, 2018. (in Chinese)
    [45] 顾后生. 交直流微电网运行与控制研究[D]. 天津: 天津大学, 2019.

    GU Hou-sheng. Research on operation and control of AC/DC microgrids[D]. Tianjin: Tianjin University, 2019. (in Chinese)
    [46] 辛乳江, 魏勇. 光伏发电并网关键技术及对策探究[J]. 工业技术创新, 2017, 4(1): 128-130, 139.

    XIN Ru-jiang, WEI Yong. Investigations on grid connection technology for photovoltaic power generation and its countermeasures[J]. Industrial Technology Innovation, 2017, 4(1): 128-130, 139. (in Chinese)
    [47] 袁裕鹏, 袁成清, 徐洪磊, 等. 我国水路交通与能源融合发展路径探析[J]. 中国工程科学, 2022, 24(3): 184-194.

    YUAN Yu-peng, YUAN Cheng-qing, XU Hong-lei, et al. Pathway for integrated development of waterway transportation and energy in China[J]. Strategic Study of CAE, 2022, 24(3): 184-194. (in Chinese)
    [48] 赵瑞嘉, 谢燕, 宿博涵, 等. 集装箱港口碳排放量及碳达峰时间测算方法[J]. 大连海事大学学报, 2021, 47(4): 56-64.

    ZHAO Rui-jia, XIE Yan, SU Bo-han, et al. Carbon emission and carbon peak time calculation method of container port[J]. Journal of Dalian Maritime University, 2021, 47(4): 56-64. (in Chinese)
    [49] 李洪春. 港口带式输送机节能研究与设计初探[J]. 中国设备工程杂志, 2017(18): 72-73.

    LI Hong-chun. Preliminary study on energy-saving research and design of port belt conveyor[J]. China Plant Engineering, 2017(18): 72-73. (in Chinese)
    [50] IRIS Ç, LAM J S L. A review of energy efficiency in ports: operational strategies, technologies and energy management systems[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 170-182.
    [51] 马一鸣. 直流微电网中能量协调控制策略研究[D]. 扬州: 扬州大学, 2022.

    MA Yi-ming. Research on energy coordination control strategy in DC microgrid[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
    [52] ATES M, CHEBIL A, YORUK O, et al. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review[J]. Ionics, 2022, 28(1): 27-52.
    [53] 赵超恩. 基于多能互补的风光储氢一体化可再生系统设计[J]. 节能, 2022, 41(8): 51-54.

    ZHAO Chao-en. Design of integrated renewable system for wind, solar and hydrogen storage based on multi-energy complementarity[J]. Energy Conservation, 2022, 41(8): 51-54. (in Chinese)
    [54] PAKHIRA S, MENDOZA-CORTES J L. Quantum nature in the interaction of molecular hydrogen with porous materials: implications for practical hydrogen storage[J]. The Journal of Physical Chemistry C, 2020, 124(11): 6454-6460.
    [55] 殷缶, 梅深. 比亚迪、洛杉矶港推出全方位绿色港区示范项目[J]. 水道港口, 2016, 37(4): 330.

    YIN Fou, MEI Shen. BYD and the Port of Los Angeles launched a comprehensive green port area demonstration project[J]. Journal of Waterway and Harbor, 2016, 37(4): 330. (in Chinese)
    [56] 张波, 项丽媛, 王彦超. 推动绿色能源、储能及综合运营一体化的船舶岸电运营方案刍议[J]. 中国海事, 2021, 197(12): 39-41, 49.

    ZHANG Bo, XIANG Li-yuan, WANG Yan-chao. Brief discussion on promoting green energy, energy storage and comprehensive operation integrated ship shore power operation plan[J]. China Maritime Safety, 2021, 197(12): 39-41, 49. (in Chinese)
    [57] 盛戈皞, 钱勇, 罗林根, 等. 面向新型电力系统的电力设备运行维护关键技术及其应用展望[J]. 高电压技术, 2021, 47(9): 3072-3084.

    SHENG Ge-hao, QIAN Yong, LUO Lin-gen, et al. Key technologies and application prospects for operation and maintenance of power equipment in new type power system[J]. High Voltage Engineering, 2021, 47(9): 3072-3084. (in Chinese)
    [58] KOTRIKLA A M, LILAS T, NIKITAKOS N. Abatement of air pollution at an Aegean Island Port utilizing shore side electricity and renewable energy[J]. Marine Policy, 2017, 75: 238-248.
    [59] GUTIERREZ-ROMERO J E, ESTEVE-PÉREZ J, ZAMORA B. Implementing onshore power supply from renewable energy sources for requirements of ships at berth[J]. Applied Energy, 2019, 255: 113883.
    [60] VICHOS E, SIFAKIS N, TSOUTSOS T. Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports[J]. Energy, 2022, 241: 122878.
    [61] ODOI-YORKE F, OWUSU J J, ATEPOR L. Composite decision- making algorithms for optimisation of hybrid renewable energy systems: Port of Takoradi as a case study[J]. Energy Reports, 2022, 8: 2131-2150.
    [62] ELKADEEM M R, YOUNES A, SHARSHIR S W, et al. Sustainable siting and design optimization of hybrid renewable energy system: a geospatial multi-criteria analysis[J]. Applied Energy, 2021, 295: 117071.
    [63] SALAMEH T, SAYED E T, ALI ABDELKAREEM M, et al. Optimal selection and management of hybrid renewable energy system: Neom city as a case study[J]. Energy Conversion and Management, 2021, 244: 114434.
    [64] REZK H, MUKHAMETZYANOV I Z, AL-DHAIFALLAH M, et al. Optimal selection of hybrid renewable energy system using multi-criteria decision-making algorithms[J]. Computers, Materials and Continua, 2021, 68(2): 2001-2027.
    [65] ABU BAKAR N N, GUERRERO J M, VASQUEZ J C, et al. Optimal configuration and sizing of seaport microgrids including renewable energy and cold ironing—the port of Aalborg case study[J]. Energies, 2022, 15(2): 431.
    [66] AHAMAD N B, OTHMAN M, VASQUEZ J C, et al. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports[C]//IEEE. 2018 IEEE International Conference on Industrial Technology. New York: IEEE, 2018: 1043-1048.
    [67] WANG Wen-yuan, PENG Yun, LI Xiang-da, et al. A two-stage framework for the optimal design of a hybrid renewable energy system for port application[J]. Ocean Engineering, 2019, 191: 106555.
    [68] LI Xiang-da, PENG Yun, WANG Wen-yuan, et al. A method for optimizing installation capacity and operation strategy of a hybrid renewable energy system with offshore wind energy for a green container terminal[J]. Ocean Engineering, 2019, 186: 106125.
    [69] WANG Li-fen, LIANG Cheng-ji, SHI Jian, et al. A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports[J]. Applied Energy, 2021, 292: 116892.
    [70] CHEN Ying-feng, WANG Rui, MING Meng-jun, et al. Constraint multi-objective optimal design of hybrid renewable energy system considering load characteristics[J]. Complex and Intelligent Systems, 2022, 8(2): 803-817.
    [71] ZHANG Yi, SUN He-xu, TAN Jian-xin, et al. Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery[J]. Energy, 2022, 252: 124046.
    [72] GANJEFAR S, GHASSEMI A A, AHMADI M M. Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network[J]. Energy, 2014, 67: 444-453.
    [73] 陈佳, 岑丽辉, 曹安康, 等. 一种考虑风力机实际大转动惯量的改进最优转矩法[J]. 太阳能学报, 2021, 42(6): 297-303.

    CHEN Jia, CEN Li-hui, CAO An-kang, et al. An improved optimal torque control of wind turbine considering actual large rotational inertia[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 297-303. (in Chinese)
    [74] 李悦强, 蔡旭, 贾锋. 大型风电机组最大功率曲线自校正方法[J]. 电网技术, 2017, 41(10): 3269-3276.

    LI Yue-qiang, CAI Xu, JIA Feng. Self-correction method for maximum power curves of large wind turbines[J]. Power System Technology, 2017, 41(10): 3269-3276. (in Chinese)
    [75] 冯月, 王利强, 王啸天, 等. 基于GPS定位算法的双轴轨迹自动太阳能追踪系统[J]. 仪器仪表用户, 2022, 29(1): 15-18.

    FENG Yue, WANG Li-qiang, WANG Xiao-tian, et al. Dual-axis trajectory automatic solar tracking system based on GPS positioning algorithm[J]. Instrumentation Users, 2022, 29(1): 15-18. (in Chinese)
    [76] 王桥莉, 张文浪. 太阳能发电系统MPPT控制策略[J]. 科技与创新, 2022(9): 70-72, 77.

    WANG Qiao-li, ZHNAG Wen-lang. MPPT control strategy for solar power generation system[J]. Science and Technology and Innovation, 2022(9): 70-72, 77. (in Chinese)
    [77] 仝昊. 基于CAHHO算法的光伏阵列MPPT控制研究[D]. 阜新: 辽宁工程技术大学, 2021.

    TONG Hao. Research on MPPT control of photovoltaic array based on CAHHO algorithm[D]. Fuxin: Liaoning Technical University, 2021. (in Chinese)
    [78] 李宏俊, 刘薇, 胡开明. 太阳能光伏并网发电中最大功率点追踪的仿真研究[J]. 南方农机, 2022, 53(11): 20-23.

    LI Hong-jun, LIU Wei, HU Kai-ming. Simulation research on maximum power point tracking in solar photovoltaic grid connected power generation[J]. China Southern Agricultural Machinery, 2022, 53(11): 20-23. (in Chinese)
    [79] 岳应娟, 凤林, 蔡艳平, 等. 交直流混合微电网运行控制技术[J]. 科学技术与工程, 2022, 22(28): 12242-12252.

    YUE Ying-juan, FENG Lin, CAI Yan-ping, et al. AC-DC hybrid microgrid operation control technology[J]. Science Technology and Engineering, 2022, 22(28): 12242-12252. (in Chinese)
    [80] ZHANG Bing, ZHANG Sui-xin, Yao Rui, et al. Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of Electronic Science and Technology, 2021, 19(2): 100080.
    [81] WANG Meng-jiao, WANG Gui-zhou, SUN Zhen-xin, et al. Review of renewable energy-based hydrogen production processes for sustainable energy innovation[J]. Global Energy Interconnection, 2019, 2(5): 436-443.
    [82] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.

    LI Liang-rong, PENG Jian, FU Bing, et al. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 508-520. (in Chinese)
    [83] CHI Jun, YU Hong-mei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
    [84] 刘易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18-26, 33.

    LIU Yi-ming, WANG Fu, WANG Jun, et al. Application form and its key technology of fuel cell ship[J]. Ship Engineering, 2021, 43(3): 18-26, 33. (in Chinese)
    [85] YUE Mei-ling, LAMBERT H, PAHON E, et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180.
    [86] DOS SANTOS K G, ECKERT C T, DE ROSSI E, et al. Hydrogen production in the electrolysis of water in Brazil, a review[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 563-571.
    [87] ANWAR S, KHAN F, ZHANG Ya-hui, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32284-32317.
    [88] REZAEI M, MOSTAFAEIPOUR A, QOLIPOUR M, et al. Hydrogen production using wind energy from sea water: a case study on southern and northern coasts of Iran[J]. Energy and Environment, 2018, 29(3): 333-357.
    [89] SIFAKIS N, VICHOS E, SMARAGDAKIS A, et al. Introducing the cold-ironing technique and a hydrogen-based hybrid renewable energy system into ports[J]. International Journal of Energy Research, 2022, 46(14): 1.
    [90] XING Xue-tao, LIN Jin, SONG Yong-hua, et al. Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: a model-based study[J]. Applied Energy, 2018, 232.
    [91] LI Guo-liang, YUAN Ben-feng, GE Min, et al. Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage[J]. International Journal of Green Energy, 2022, 19(14): 1583-1599.
    [92] JOUBI A, AKIMOTO Y, OKAJIMA K. A production and delivery model of hydrogen from solar thermal energy in the United Arab Emirates[J]. Energies, 2022, 15(11): 4000.
    [93] 王雅真, 党文义, 于安峰, 等. 加氢站风险分析及泄漏探测覆盖率评估[J]. 安全与环境学报, 2022, 22(6): 2971-2977.

    WANG Ya-zhen, DANG Wen-yi, YU An-feng, et al. Risk analysis and detector scenario coverage assessment of hydrogen refueling station[J]. Journal of Safety and Environment, 2022, 22(6): 2971-2977. (in Chinese)
    [94] 洑春干. 氢气长管拖车的操作安全技术[J]. 低温与特气, 2009, 27(1): 37-41.

    FU Chun-gan. The safety technology of operating hydrogen tube trailer[J]. Low Temperature and Specialty Gases, 2009, 27(1): 37-41. (in Chinese)
    [95] 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478.

    CAO Jun-wen, QIN Xiang-fu, GENG Ga, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6): 1461-1478. (in Chinese)
    [96] 熊亚林, 许壮, 王雪颖, 等. 我国加氢基础设施关键技术及发展趋势分析[J]. 储能科学与技术, 2022, 11(10): 3391-3400.

    XIONG Ya-lin, XU Zhuang, WANG Xue-ying, et al. Analysis of key technologies and development trends of hydrogen refueling stations in China[J]. Energy Storage Science and Technology, 2022, 11(10): 3391-3400. (in Chinese)
    [97] WANG Shuang-yin, JIANG San-ping. Prospects of fuel cell technologies[J]. National Science Review, 2017, 4(2): 163-166.
    [98] JAMIL A, RAFIQ S, IQBAL T, et al. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells[J]. Chemosphere, 2022, 303(3): 135204.
    [99] MASIP MACÍA Y, RODRÍGUEZ MACHUCA P, RODRÍGUEZ SOTO A A, et al. Green hydrogen value chain in the sustainability for port operations: case study in the region of Valparaiso, Chile[J]. Sustainability, 2021, 13(24): 13681.
    [100] 沈晓波, 章雪凝, 刘海峰. 高压氢气泄漏相关安全问题研究与进展[J]. 化工学报, 2021, 72(3): 1217-1229.

    SHEN Xiao-bo, ZHANG Xue-ning, LIU Hai-feng. Research and progress on safety issues related to high-pressure hydrogen leakage[J]. CIESC Journal, 2021, 72(3): 1217-1229. (in Chinese)
    [101] 郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20(1): 106-115.

    ZHENG Jin-yang, LIU Zi-liang, HUA Zheng-li, et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment, 2020, 20(1): 106-115. (in Chinese)
    [102] 张颖, 宿禹祺, 陈俊帅, 等. 氢气传感器研究的进展与展望[J]. 科学通报, 2023, 68(Z1): 204-219.

    ZHANG Ying, SU Yu-qi, CHEN Jun-shuai, et al. Progress and prospects of research on hydrogen sensors[J]. Chinese Science Bulletin, 2023, 68(Z1): 204-219. (in Chinese)
    [103] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄露爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.

    LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(7): 1389-1394. (in Chinese)
    [104] FUSTER B, HOUSSIN-AGBOMSON D, JALLAIS S, et al. Guidelines and recommendations for indoor use of fuel cells and hydrogen systems[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7600-7607.
    [105] QI Wei, LIU Jin-feng, CHRISTOFIDES P D. Distributed supervisory predictive control of distributed wind and solar energy systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 504-512.
    [106] 郭雅娟, 陈锦铭, 何红玉, 等. 交直流混合微电网接入分布式新能源的关键技术研究综述[J]. 电力建设, 2017, 38(3): 9-18.

    GUO Ya-juan, CHEN Jin-ming, HE Hong-yu, et al. A review on AC/DC hybrid microgrid key technology containing distributed new energy[J]. Electric Power Construction, 2017, 38(3): 9-18. (in Chinese)
    [107] ROY A, OLIVIER J C, AUGER F, et al. A combined optimization of the sizing and the energy management of an industrial multi-energy microgrid: application to a harbour area[J]. Energy Conversion and Management: X, 2021, 12: 100107.
    [108] PU Yue, CHEN Wei, ZHANG Rui-cong, et al. Optimal operation strategy of port integrated energy system considering demand response[C]//IEEE. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). New York: IEEE, 2020: 518-523.
    [109] PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A method for determining the allocation strategy of on-shore power supply from a green container terminal perspective[J]. Ocean and Coastal Management, 2019, 167: 158-175.
    [110] 王景石. 港口微电网中的用电负荷预测及调度优化关键技术研究[D]. 武汉: 武汉理工大学, 2020.

    WANG Jing-shi. Research on key technologies of power load forecasting[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
    [111] KONG Xiao-bing, LIU Xiang-jie, MA Le-le, et al. Hierarchical distributed model predictive control of standalone wind/solar/battery power system[J]. IEEE Transactions on Systems, Man and Cybernetics. Systems, 2019, 49(8): 1570-1581.
    [112] CHENG Tan, ZHU Xiang-qian, GU Xiao-yong, et al. Stochastic energy management and scheduling of microgrids in correlated environment: a deep learning-oriented approach[J]. Sustainable Cities and Society, 2021, 69: 102856.
    [113] 张宏涛, 吴怡之, 邓开连, 等. 一种基于强化学习的微电网能量管理算法[J]. 物联网技术, 2022, 12(12): 74-78.

    ZHANG Hong-tao, WU Yi-zhi, DENG Kai-lian, et al. An energy management algorithm for microgrid based on reinforcement learning[J]. Internet of Things Technologies, 2022, 12(12): 74-78. (in Chinese)
    [114] GOH H H, HUANG Yi-feng, LIM C S, et al. An assessment of multistage reward function design for deep reinforcement learning-based microgrid energy management[J]. IEEE Transactions on Smart Grid, 2022, 13(6): 1.
    [115] 刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44: 3794-3803.

    LIU Jun-feng, CHEN Jian-long, WANG Xiao-sheng, et al. Energy management and optimization of multi-energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10): 3794-3803. (in Chinese)
    [116] PEI Rui, XIE Ji-hua, ZHANG Han-lin, et al. Robust multi-layer energy management and control methodologies for reefer container park in port terminal[J]. Energies, 2021, 14(15): 4456.
  • 加载中
图(23) / 表(6)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  52
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-13
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回