留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
周育名, 邓瑶, 刘玉琴, 彭竹仪, 查旭东, 李平, 魏建国, 刘朝晖. 路面发电技术综述[J]. 交通运输工程学报, 2024, 24(4): 129-147. doi: 10.19818/j.cnki.1671-1637.2024.04.010
引用本文: 周育名, 邓瑶, 刘玉琴, 彭竹仪, 查旭东, 李平, 魏建国, 刘朝晖. 路面发电技术综述[J]. 交通运输工程学报, 2024, 24(4): 129-147. doi: 10.19818/j.cnki.1671-1637.2024.04.010
ZHOU Yu-ming, DENG Yao, LIU Yu-qin, PENG Zhu-yi, ZHA Xu-dong, LI Ping, WEI Jian-guo, LIU Zhao-hui. Review on pavement power generation technologies[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 129-147. doi: 10.19818/j.cnki.1671-1637.2024.04.010
Citation: ZHOU Yu-ming, DENG Yao, LIU Yu-qin, PENG Zhu-yi, ZHA Xu-dong, LI Ping, WEI Jian-guo, LIU Zhao-hui. Review on pavement power generation technologies[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 129-147. doi: 10.19818/j.cnki.1671-1637.2024.04.010

路面发电技术综述

doi: 10.19818/j.cnki.1671-1637.2024.04.010
基金项目: 

国家自然科学基金项目 52108396

国家自然科学基金项目 52278437

道路结构与材料交通行业重点实验室开放基金项目 kfj210301

详细信息
    作者简介:

    周育名(1985-),女,山东威海人,长沙理工大学讲师,工学博士,从事沥青路面结构与材料、道路新能源等方向研究

  • 中图分类号: U414

Review on pavement power generation technologies

Funds: 

National Natural Science Foundation of China 52108396

National Natural Science Foundation of China 52278437

Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport kfj210301

More Information
  • 摘要: 为系统地了解路面发电技术的研究进展,促进节能减排的绿色智慧道路快速发展,使用CiteSpace软件对2012至2022年路面发电技术研究相关文献进行了计量学分析,对比了光伏发电、温差发电和压电发电3种主要技术的研究进展及其优缺点和适用性;介绍了收集太阳能、热能和机械能转化成电能的基本理论,总结了光伏发电和温差发电技术的路面设计方法,探讨了压电发电技术的发电材料选择、压电换能器装置设计和一体化发电路面系统结构设计,并展望了路面发电技术未来的研究趋势;基于现有路面发电技术研究基础,从材料、结构、施工和运营管养的角度出发,对绿色智慧道路和交通与能源融合发展的需求提出了建议。研究结果表明:针对光伏发电的研究大多基于宏观层面分析光伏路面的可行性,其可为交通基础设施提供电力供应,且能缓解热岛效应,但光伏路面力学性能和电力转化效率研究还存在较大优化空间;温差发电主要依赖路面结构的温度差,可以全天候发电,且能量收集稳定,但目前存在效率较低的劣势,同时需重点考虑温差热电导热装置与沥青路面的力学性能不匹配的问题;压电发电收集能量密度大,可持续性好,具有较好前景,但一些关键问题尚未得到较好的解决,如压电材料的耐久性、压电换能器元件与路面的相容性及刚度匹配性、压电发电系统一体化路面结构稳定性和耐久性等方面仍需进行大量研究。

     

  • 图  1  发电路面技术发文量

    Figure  1.  Numbers of publications issued by pavement power generation technology

    图  2  WOS中路面发电关键词共现网络

    Figure  2.  Co-occurrence network of key words related to pavement power generation in WOS

    图  3  CNKI中路面发电关键词共现网络

    Figure  3.  Co-occurrence network of key words related to pavement power generation in CNKI

    图  4  WOS中路面发电关键词聚类时间线

    Figure  4.  Clustering timelines of key words related to pavement power generation in WOS

    图  5  CNKI中路面发电关键词聚类时间线

    Figure  5.  Clustering timelines of key words related to pavement power generation in CNKI

    图  6  WOS中路面发电关键词突现分析结果

    Figure  6.  Burst analysis results of key words related to pavement power generation in WOS

    图  7  CNKI发电路面关键词突现分析结果

    Figure  7.  Burst analysis results of key words related to pavement power generation in CNKI

    图  8  光电效应原理

    Figure  8.  Principle of photoelectric effect

    图  9  光伏路面组件的基本三层结构

    Figure  9.  Basic three-layer structure of photovoltaic pavement components

    图  10  太阳能电池板

    Figure  10.  Solar panels

    图  11  2015年实测发电量与预测发电量对比

    Figure  11.  Comparison of measured and predicted energy generations in 2015

    图  12  太阳能涡轮机结构设计

    Figure  12.  Structural design of solar turbine

    图  13  热电发电系统设计

    Figure  13.  Design of thermoelectric power generation system

    图  14  压电耦合方程中各项的物理解释

    Figure  14.  Physical interpretations of terms in piezoelectric coupling equations

    图  15  PEH道路

    Figure  15.  PEH road

    图  16  压电陶瓷

    Figure  16.  Piezoelectric ceramics

    图  17  PVDF能量收集材料的简单放置方式

    Figure  17.  Simple placement modes of PVDF energy harvesting materials

    图  18  常见3种压电装置结构

    Figure  18.  Three common piezoelectric device structures

    图  19  梯形悬臂梁结构压电振子

    Figure  19.  Piezoelectric vibrator with trapezoidal cantilever beam structure

    图  20  集成式压电装置

    Figure  20.  Integrated piezoelectric device

    图  21  压电基能量收集路面系统

    Figure  21.  Piezoelectric energy harvesting pavement system

    图  22  PZ-EHPS结构

    Figure  22.  PZ-EHPS structure

    图  23  风能发电路面原理

    Figure  23.  Principle of wind power generation pavement

    图  24  声能收集噪声屏障的体系结构

    Figure  24.  Architecture of sound energy harvesting noise barrier

    表  1  太阳能路面结构模型

    Table  1.   Solar pavement structure model

    序号 结构形式 代表性模型
    1 钢化玻璃+太阳能电池+钢化玻璃/玻璃纤维板 美国太阳能道路(Solar Roadway, SR)模型[29]、滑铁卢大学模型[34]、香港理工大学模型[17]
    2 钢化玻璃/树脂与玻璃颗粒涂层+太阳能电池+ 混凝土底板 荷兰SR自行车道模型
    3 树脂与玻璃颗粒涂层+太阳能电池+树脂和聚合物底板 法国Watt way模型、济南光伏高速公路模型[11]
    4 PMMA板+太阳能电池+预制混凝土空心板 长沙理工大学查旭东模型[35]
    5 橡胶/塑料+太阳能电池+高分子/废旧材料(树脂、塑料、橡胶、玻璃等) 匈牙利Platio模型、伊朗Dezfooli模型[36]、透明树脂混凝土模型[37]
    下载: 导出CSV

    表  2  压电材料特性参数

    Table  2.   Parameters of piezoelectric materials

    材料类型 材料名称 面外压电常数/(C·N-1) 面内压电常数/(C·N-1) 相对介电常数 横向机电耦合系数
    压电陶瓷 PZT-4D 450 -145 1 280 0.270
    PZT-5J 550 -210 2 800 0.350
    PZT-5H 640 -283 3 400 0.390
    PZT-5A 450 -175 1 800 0.340
    压电聚合物 PVDF 39~44 -12~24 13 0.117
    下载: 导出CSV

    表  3  路面发电技术对比

    Table  3.   Comparison of pavement power generation technologies

    发电方式 光伏发电 温差发电 压电发电
    安装位置 路面表面层 路面表面层、中面层 路面中、下面层
    技术关键点 表层透光性与抗滑性的平衡、光伏板与路面结构层黏结性 热点材料耐久性、整体路面结构承载力和稳定性 压电路面复合材料一体化、压电装置多样性
    优点 适用性强、产能大、施工难度相对小 降低路面温度,减少高温病害 能量转化率高、连续性好
    缺点 易折断、易产生水损坏、连续性较差 施工难度大、沥青材料老化 路面结构层间黏结差、储能装置要求高
    适用范围 适用于中国大部分地区,尤其西部、西北高海拔、少植被地区 适用于中国中部及北部地区,不适用于常年高温的南方地区 交通量较大地区
    当前技术难点 保证表面层及路面结构的稳定性及耐久性、表面层抗滑性 提高热电材料和系统的能量转化率 保证压电系统的高效率和耐久性,压电路面结构施工技术和质量
    经济性 前期投入高,后期维护费用高 前期投入高,后期维护费用相对低 前期投入高,后期维护费用低
    下载: 导出CSV
  • [1] ATABANI A E, BADRUDDIN I A, MEKHILEF S, et al. A review on global fuel economy standards, labels and technologies in the transportation sector[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4586-4610. doi: 10.1016/j.rser.2011.07.092
    [2] HOLMBERG K, ANDERSSON P, ERDEMIR A. Global energy consumption due to friction in passenger cars[J]. Tribology International, 2012, 47: 221-234. doi: 10.1016/j.triboint.2011.11.022
    [3] ASAEDA T, CA V T, WAKE A. Heat storage of pavement and its effect on the lower atmosphere[J]. Atmospheric Environment, 1996, 30(3): 413-427. doi: 10.1016/1352-2310(94)00140-5
    [4] FEDELE R, MERENDA M, GIAMMARIA F. Energy harvesting for IoT road monitoring systems[J]. Instrumentation Mesure Métrologie, 2018, 18(4): 605-623. doi: 10.3166/i2m.17.605-623
    [5] BAI Yang, JANTUNEN H, JUUTI J. Energy harvesting research: the road from single source to multisource[J]. Advanced Materials (Weinheim), 2018, 30(34): e1707271. doi: 10.1002/adma.201707271
    [6] PAN Pan, WU Shao-peng, XIAO Yue, et al. A review on hydronic asphalt pavement for energy harvesting and snow melting[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 624-634. doi: 10.1016/j.rser.2015.04.029
    [7] ZHU Xing-yi, YU Yue, LI Feng. A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future[J]. Construction and Building Materials, 2019, 228: 116818. doi: 10.1016/j.conbuildmat.2019.116818
    [8] GHOLIKHANI M, BEHESHTI SHIRAZI S Y, MABROUK G M, et al. Dual electromagnetic energy harvesting technology for sustainable transportation systems[J]. Energy Conversion and Management, 2021, 230: 113804. doi: 10.1016/j.enconman.2020.113804
    [9] MAGHSOUDI NIA E, WAN ABDULLAH ZAWAWI N A, MAHINDER SINGH B S. Design of a pavement using piezoelectric materials gestaltung eines gehweges mittels piezoelektrischer werkstoffe[J]. Materialwissenschaft Und Werkstofftechnik, 2019, 50(3): 320-328. doi: 10.1002/mawe.201900002
    [10] FAISAL F, WU N, KAPOOR K. Energy harvesting in pavement from passing vehicles with piezoelectric composite plate for ice melting[C]//PARK G. Active and Passive Smart Structures and Integrated Systems 2016. Las Vegas: SPIE Proceedings, 2016: 97992Q.
    [11] HU Heng-wu, VIZZARI D, ZHA Xu-dong, et al. Solar pavements: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111712. doi: 10.1016/j.rser.2021.111712
    [12] PEI Jian-zhong, GUO Fu-cheng, ZHANG Jiu-peng, et al. Review and analysis of energy harvesting technologies in roadway transportation[J]. Journal of Cleaner Production, 2021, 288: 125338. doi: 10.1016/j.jclepro.2020.125338
    [13] YANG Hong-xing, MA Tao. Research and development of solar PV pavement panels for application on the green deck[R]. Hong Kong: The Hong Kong Polytechnic University, 2016.
    [14] EUGSTER W J, SCHATZMANN J. Harnessing solar energy for winter road clearing on heavily loaded expressways[C]//PIARC. Proceedings of XIth PIARC International Winter Road Congress. Sapporo: PIARC, 2002: 1-9.
    [15] TU Yan-ping, LI Jie, GUAN Chang-sheng. Heat transfer analysis of asphalt concrete pavement based on snow melting[C]// IEEE. 2010 International Conference on Electrical and Control Engineering. New York: IEEE, 2010: 3795-3798.
    [16] WU Shao-peng, CHEN Ming-yu, ZHANG Ji-zhe. Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs[J]. Applied Thermal Engineering, 2011, 31(10): 1582-1587. doi: 10.1016/j.applthermaleng.2011.01.028
    [17] NORTHMORE A B, TIGHE S. Developing innovative roads using solar technologies[C]//Canadian Society for Civil Engineering. 9th International Transportation Specialty Conference of the Canadian Society of Civil Engineers Annual Conference. Edmonton: Canadian Society for Civil Engineering, 2012.
    [18] EFTHYMIOU C, SANTAMOURIS M, KOLOKOTSA D, et al. Development and testing of photovoltaic pavement for heat island mitigation[J]. Solar Energy, 2016, 130: 148-160. doi: 10.1016/j.solener.2016.01.054
    [19] WU Guang-xi, YU Xiong. Thermal energy harvesting system to harvest thermal energy across pavement structure[J]. International Journal of Pavement Research and Technology, 2012, 5(5): 311.
    [20] GUO Lu-kai, LU Qing. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 761-773. doi: 10.1016/j.rser.2017.01.090
    [21] ABRAMOVICH H, HARASH E, MILGROM C, et al. Power harvesting apparatus, system and method: U.S., 12/195670[P]. 2010-10-12.
    [22] GAO Qing, HUANG Yong, LI Ming, et al. Experimental study of slab solar collection on the hydronic system of road[J]. Solar Energy, 2010, 84(12): 2096-2102. doi: 10.1016/j.solener.2010.09.008
    [23] KIM H W, PRIYA S, UCHINO K, et al. Piezoelectric energy harvesting under high pre-stressed cyclic vibrations[J]. Journal of Electroceramics, 2005, 15(1): 27-34. doi: 10.1007/s10832-005-0897-z
    [24] KLUGER J M, SAPSIS T P, SLOCUM A H. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams[J]. Journal of Sound and Vibration, 2015, 341: 174-194. doi: 10.1016/j.jsv.2014.11.035
    [25] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009

    CHEN Yue, CHEN Chao-mei, LIU Ze-yuan, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253. (in Chinese) doi: 10.3969/j.issn.1003-2053.2015.02.009
    [26] 张芙颖, 顾鑫炳, 彭毅, 等. 中国灾害风险认知研究的知识图谱分析[J]. 安全与环境工程, 2019, 26(2): 32-37.

    ZHANG Fu-ying, GU Xin-bing, PENG Yi, et al. Analysis of knowledge map of disaster risk perception[J]. Safety and Environmental Engineering, 2019, 26(2): 32-37. (in Chinese)
    [27] LIU Xiao-yu, CUI Qing-bin, SCHWARTZ C. Greenhouse gas emissions of alternative pavement designs: framework development and illustrative application[J]. Journal of Environmental Management, 2014, 132: 313-322. doi: 10.1016/j.jenvman.2013.11.016
    [28] WANG Hao, JASIM A, CHEN Xiao-dan. Energy harvesting technologies in roadway and bridge for different applications—a comprehensive review[J]. Applied Energy, 2018, 212: 1083-1094. doi: 10.1016/j.apenergy.2017.12.125
    [29] LI Si-nan, MA Tao, WANG Deng-jia. Photovoltaic pavement and solar road: a review and perspectives[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102933. doi: 10.1016/j.seta.2022.102933
    [30] BRUSAW S D, BRUSAW J A. Solar roadway panel: U.S., D712822[P]. 2014-09-09.
    [31] 胡恒武, 查旭东, 岑晏青, 等. 太阳能路面研究现状及展望[J]. 长安大学学报(自然科学版), 2020, 40(1): 16-29.

    HU Heng-wu, ZHA Xu-dong, CEN Yan-qing, et al. Research status and prospect of solar pavement[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40(1): 16-29. (in Chinese)
    [32] SELVARAJU R K. Characterization of solar roadways via computational and experimental investigations[D]. London: The University of Western Ontario, 2012.
    [33] VIZZARI D, PUNTORIERI P, PRATICÒ F G, et al. Solar and permeable road: a prototypical study[C]//DI BENEDETTO H, BAAJ H, CHAILLEUX E, et al. Proceedings of the RILEM International Symposium on Bituminous Materials. Berlin: Springer, 2022: 1675-1680.
    [34] YANG Ning, WEI Xiao-feng, LI Wei-hong. Sunlight irradiation induced green synthesis of silver nanoparticles using peach gum polysaccharide and colorimetric sensing of H2O2[J]. Materials Letters, 2015, 154: 21-24. doi: 10.1016/j.matlet.2015.03.034
    [35] 查旭东, 张铖坚, 伍智吉, 等. 太阳能路面空心板块单元力学分析与模型制备[J]. 太阳能学报, 2016, 37(1): 136-141. doi: 10.3969/j.issn.0254-0096.2016.01.021

    ZHA Xu-dong, ZHANG Cheng-jian, WU Zhi-ji, et al. Mechanical analysis and model preparation for hollow slab element of solar pavement[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 136-141. (in Chinese) doi: 10.3969/j.issn.0254-0096.2016.01.021
    [36] DEZFOOLI A S, NEJAD F M, ZAKERI H, et al. Solar pavement: a new emerging technology[J]. Solar Energy, 2017, 149: 272-284. doi: 10.1016/j.solener.2017.04.016
    [37] 李子豪. 基于透明树脂混凝土的太阳能路面材料与模型制备及性能研究[D]. 长沙: 长沙理工大学, 2018.

    LI Zi-hao. Research on preparation and performance of material and model for solar pavement based on transparent resin concrete[D]. Changsha: Changsha University of Science and Technology, 2018. (in Chinese)
    [38] SHEKHAR A, KUMARAVEL V K, KLERKS S, et al. Harvesting roadway solar energy—performance of the installed infrastructure integrated PV bike path[J]. IEEE Journal of Photovoltaics, 2018, 8(4): 1066-1073. doi: 10.1109/JPHOTOV.2018.2820998
    [39] LIU Zi-yu, YANG An-qi, GAO Meng-yao, et al. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image[J]. Journal of Cleaner Production, 2019, 228: 303-318. doi: 10.1016/j.jclepro.2019.04.262
    [40] WU Ling-jie, YUAN Yue, WU Han. Solar road power generation assessment based on coupled transportation and power distribution systems[J]. Journal of Physics: Conference Series, 2020, 1659(1): 12041-12048. doi: 10.1088/1742-6596/1659/1/012041
    [41] GARCÍA A, PARTL M N. How to transform an asphalt concrete pavement into a solar turbine[J]. Applied Energy, 2014, 119: 431-437. doi: 10.1016/j.apenergy.2014.01.006
    [42] ROWE L A. Video compression for desktop applications[J]. IT—Information Technology, 1995, 37(4): 7-10. doi: 10.1524/itit.1995.37.4.7
    [43] MALLICK R B, CHEN B L, BHOWMICK S. Harvesting energy from asphalt pavements and reducing the heat island effect[J]. International Journal of Sustainable Engineering, 2009, 2(3): 214-228. doi: 10.1080/19397030903121950
    [44] HASEBE M, KAMIKAWA Y, MEIARASHI S. Thermoelectric generators using solar thermal energy in heated road pavement[C]//IEEE. 25th International Conference on Thermoelectrics. New York: IEEE, 2006: 697-700.
    [45] DATTA U, DESSOUKY S, PAPAGIANNAKIS A T. Harvesting of thermoelectric energy from asphalt pavements[J]. Transportation Research Record, 2017(2628): 12-22.
    [46] 胡甫才, 朱顺敏, 汪岸, 等. 沥青路面温差发电系统设计分析与试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2014, 38(4): 834-838. doi: 10.3963/j.issn.2095-3844.2014.04.029

    HU Fu-cai, ZHU Shun-min, WANG An, et al. Design analysis and experimental study of asphalt pavement temperature difference power generation system[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering) 2014, 38(4): 834-838. (in Chinese) doi: 10.3963/j.issn.2095-3844.2014.04.029
    [47] YUAN Dong-dong, JIANG Wei, SHA Ai-min, et al. Energy output and pavement performance of road thermoelectric generator system[J]. Renewable Energy, 2022, 201: 22-33. doi: 10.1016/j.renene.2022.11.057
    [48] YANG Hai-lu, WEI Ya, ZHANG Wei-dong, et al. Development of piezoelectric energy harvester system through optimizing multiple structural parameters[J]. Sensors, 2021, 21(8): 2876. doi: 10.3390/s21082876
    [49] 周均. 基于压电材料的智能梁结构性能研究[D]. 南京: 东南大学, 2018.

    ZHOU Jun. Mechanical study on piezoelectric smart beam[D]. Nanjing: Southeast University, 2018. (in Chinese)
    [50] WANG Chao-hui, WANG Shuai, GAO Zhi-wei, et al. Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures[J]. Applied Energy, 2019, 251: 113383. doi: 10.1016/j.apenergy.2019.113383
    [51] JUNG I, SHIN Y H, KIM S, et al. Flexible piezoelectric polymer-based energy harvesting system for roadway applications[J]. Applied Energy, 2017, 197: 222-229. doi: 10.1016/j.apenergy.2017.04.020
    [52] SHIN Y, JUNG I, NOH M, et al. Piezoelectric polymer-based roadway energy harvesting via displacement amplification module[J]. Applied Energy, 2018, 216: 741-750. doi: 10.1016/j.apenergy.2018.02.074
    [53] 赵晓康. 压电发电技术在道路应用中的可行性研究[D]. 西安: 长安大学, 2013.

    ZHAO Xiao-kang. Feasibility study on piezoelectric power generation technology applied in pavement[D]. Xi'an: Chang'an University, 2013. (in Chinese)
    [54] GUAN Ming-jie. Characteristics of piezoelectric energy harvesting circuits and storage devices[D]. Hong Kong: The Chinese University of Hong Kong, 2006.
    [55] 谭忆秋, 钟勇, 吕建福, 等. 路面用PZT/沥青压电复合材料的制备及性能[J]. 建筑材料学报, 2013, 16(6): 975-980.

    TAN Yi-qiu, ZHONG Yong, LYU Jian-fu, et al. Preparation and properties of PZT/asphalt-based piezoelectric composites used on pavement[J]. Journal of Building Materials, 2013, 16(6): 975-980. (in Chinese)
    [56] 黄世峰, 叶正茂, 王守德, 等. 1-3型水泥基压电复合材料的制备及性能[J]. 复合材料学报, 2007, 24(1): 122-126. doi: 10.3321/j.issn:1000-3851.2007.01.021

    HUANG Shi-feng, YE Zheng-mao, WANG Shou-de, et al. Fabrication and properties of 1-3 cement based piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 122-126. (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.021
    [57] 关新春, 刘彦昌, 李惠, 等. 1-3型水泥基压电复合材料的制备与性能研究[J]. 防灾减灾工程学报, 2010, 30(增1): 345-347.

    GUAN Xin-chun, LIU Yan-chang, LI Hui, et al. Preparation and properties of 1-3 cement-based piezoelectric composites[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(S1): 345-347. (in Chinese)
    [58] WANG J, XIAO F, ZHAO H. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111522. doi: 10.1016/j.rser.2021.111522
    [59] BAKER J, ROUNDY S, WRIGHT P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks[C]// AIAA. 3rd International Energy Conversion Engineering Conference. Reston: AIAA, 2005: 5617.
    [60] SODANO H A, PARK G, INMAN D J. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 683-697. doi: 10.1016/S0888-3270(03)00081-5
    [61] 侯志伟, 陈仁文, 刘祥建. 多方向压电振动能量收集装置及其优化设计[J]. 振动与冲击, 2012, 31(16): 33-37. doi: 10.3969/j.issn.1000-3835.2012.16.007

    HOU Zhi-wei, CHEN Ren-wen, LIU Xiang-jian. Optimization design of multi-direction piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2012, 31(16): 33-37. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.16.007
    [62] YANG Zheng-bao, WANG Yan-qing, ZUO Lei, et al. Introducing arc-shaped piezoelectric elements into energy harvesters[J]. Energy Conversion and Management, 2017, 148: 260-266. doi: 10.1016/j.enconman.2017.05.073
    [63] PLATT S R, FARRITOR S, HAIDER H. On low-frequency electric power generation with PZT ceramics[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(2): 240-252. doi: 10.1109/TMECH.2005.844704
    [64] 李琛琛, 赵鸿铎, 马鲁宽, 等. 路用叠堆式压电单元设计及性能分析[J]. 中南大学学报(自然科学版), 2021, 52(7): 2170-2178.

    LI Chen-chen, ZHAO Hong-duo, MA Lu-kuan, et al. Design and performance analysis of stacked piezoelectric units for pavement application[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2170-2178. (in Chinese)
    [65] ZHAO Hong-duo, QIN Lu-yao, LING Jian-ming. Synergistic performance of piezoelectric transducers and asphalt pavement[J]. International Journal of Pavement Research and Technology, 2018, 11(4): 381-387. doi: 10.1016/j.ijprt.2017.09.008
    [66] LIU Peng-fei, ZHAO Qian, YANG Hai-lu, et al. Numerical study on influence of piezoelectric energy harvester on asphalt pavement structural responses[J]. Journal of Materials in Civil Engineering, 2019, 31(3): 04019008. doi: 10.1061/(ASCE)MT.1943-5533.0002640
    [67] ZHAO J, WANG H. Mechanistic modeling and economic analysis of piezoelectric energy harvesting potential in airport pavements[J]. Transportation Research Record, 2020(2674): 64-75.
    [68] 王朝辉, 陈森, 李彦伟, 等. 智能发电路面压电元件保护措施设计及能量输出[J]. 中国公路学报, 2016, 29(5): 41-49. doi: 10.3969/j.issn.1001-7372.2016.05.006

    WANG Chao-Hui, CHEN Sen, LI Yan-wei, et al. Design of piezoelectric elements' protection measures and energy output of intelligent power pavement[J]. China Journal of Highway and Transport, 2016, 29(5): 41-49. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.05.006
    [69] WANG Chao-hui, ZHAO Jian-xiong, LI Qiang, et al. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement[J]. Applied Energy, 2018, 229: 18-30. doi: 10.1016/j.apenergy.2018.07.036
    [70] 仝军令, 王亚栋, 彭玉兴. 集成式压电路面能量收集装置输出性能的实验[J]. 机械设计与研究, 2021, 37(3): 29-32, 37.

    TONG Jun-ling, WANG Ya-dong, PENG Yu-xing. Experimental study on output performance of integrated piezoelectric pavement energy harvester[J]. Machine Design and Research, 2021, 37(3): 29-32, 37. (in Chinese)
    [71] GUO Lu-kai, WANG Hao, SOARES L, et al. Multi-physics modelling of piezoelectric pavement system for energy harvesting under traffic loading[J]. The International Journal of Pavement Engineering, 2022, 23(10): 3647-3661. doi: 10.1080/10298436.2021.1913591
    [72] 李彦伟, 陈森, 王朝辉, 等. 智能发电路面技术现状及发展[J]. 材料导报, 2015, 29(7): 100-106.

    LI Yan-wei, CHEN Sen, WANG Chao-hui, et al. Present situation and development of intelligent power generation pavement technology[J]. Material Reports, 2015, 29(7): 100-106. (in Chinese)
    [73] WANG Yuan, ZHU Xin, ZHANG Ting-sheng, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230: 52-61. doi: 10.1016/j.apenergy.2018.08.080
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  60
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-11
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回