留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮轨激励对机车含裂纹齿轮接触特性及应力强度因子影响

朱海燕 陶则宇 王宇豪 王梦威 张卫华 肖乾 易勇

朱海燕, 陶则宇, 王宇豪, 王梦威, 张卫华, 肖乾, 易勇. 轮轨激励对机车含裂纹齿轮接触特性及应力强度因子影响[J]. 交通运输工程学报, 2024, 24(4): 148-160. doi: 10.19818/j.cnki.1671-1637.2024.04.011
引用本文: 朱海燕, 陶则宇, 王宇豪, 王梦威, 张卫华, 肖乾, 易勇. 轮轨激励对机车含裂纹齿轮接触特性及应力强度因子影响[J]. 交通运输工程学报, 2024, 24(4): 148-160. doi: 10.19818/j.cnki.1671-1637.2024.04.011
ZHU Hai-yan, TAO Ze-yu, WANG Yu-hao, WANG Meng-wei, ZHANG Wei-hua, XIAO Qian, YI Yong. Influence of wheel-rail excitation on contact characteristics and stress intensity factors of cracked gears for locomotives[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 148-160. doi: 10.19818/j.cnki.1671-1637.2024.04.011
Citation: ZHU Hai-yan, TAO Ze-yu, WANG Yu-hao, WANG Meng-wei, ZHANG Wei-hua, XIAO Qian, YI Yong. Influence of wheel-rail excitation on contact characteristics and stress intensity factors of cracked gears for locomotives[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 148-160. doi: 10.19818/j.cnki.1671-1637.2024.04.011

轮轨激励对机车含裂纹齿轮接触特性及应力强度因子影响

doi: 10.19818/j.cnki.1671-1637.2024.04.011
基金项目: 

国家自然科学基金项目 52162045

江西省自然科学基金项目 20224BAB204040

江西省自然科学基金项目 20232ACB204022

江西省教育厅科技项目 GJJ210633

载运工具与装备教育部重点实验室自主课题 KLCEZ2022-11

轨道交通运载系统全国重点实验室开放课题 RVL2403

详细信息
    作者简介:

    朱海燕(1975-),男,江西新干人,华东交通大学教授,工学博士,从事高速列车系统动力学与疲劳强度研究

  • 中图分类号: U264.4

Influence of wheel-rail excitation on contact characteristics and stress intensity factors of cracked gears for locomotives

Funds: 

National Natural Science Foundation of China 52162045

Natural Science Foundation of Jiangxi Province 20224BAB204040

Natural Science Foundation of Jiangxi Province 20232ACB204022

Science and Technology Project of Jiangxi Provincial Department of Education GJJ210633

Independent Project of Key Laboratory of Conveyance and Equipment of Ministry of Education KLCEZ2022-11

Open Project of State Key Laboratory of Rail Transit Vehicle System RVL2403

More Information
  • 摘要: 使用数值法求解了齿根裂纹故障齿轮的时变啮合刚度,建立了六自由度齿轮动力学模型;采用Newmark法求解裂纹深度为1、2、3 mm齿轮传动系统动态响应,对时域信号进行了分析,计算了不同统计指标对不同故障程度的敏感度;结合多体动力学,建立了机车多体动力学模型,求解了18、19、24阶数车轮多边形激励以及0.5、1.0、1.5 mm波深钢轨波磨激励工况下含齿根裂纹齿轮传动系统接触特性,模拟了不同激励工况下的齿面接触状态。分析结果表明:时变啮合刚度随着裂纹扩展角度和裂纹深度的增加逐渐下降;随着裂纹深度的加深,传动系统的振动冲击愈加剧烈;脉冲因子对裂纹故障特征较为敏感,适合作为裂纹故障特征评价指标;随着车轮多边形阶数和钢轨波磨波深的增加,含裂纹单齿齿面接触力最大值分别约为无激励工况下的3.0和6.4倍,当车轮多边形阶数为24阶时,齿面接触合力和单齿齿面接触力均达到最大值,分别为4 125、1 178 N;Ⅰ型裂纹应力强度因子数量级远大于Ⅱ型裂纹应力强度因子,Ⅰ型裂纹在裂纹扩展中占主导地位,且应力强度因子随着载荷和扩展程度增加而增大,说明轮轨激励的存在会导致含裂纹齿裂纹扩展速率增加,缩短其使用寿命,影响机车的安全运行。

     

  • 图  1  时变啮合刚度数值计算模型

    Figure  1.  Numerical calculation model of time-varying meshing stiffness

    图  2  不同初始裂纹深度的齿轮时变综合啮合刚度

    Figure  2.  Time-varying composite meshing stiffnesses of gears with different initial crack depth

    图  3  不同初始裂纹扩展角度的齿轮时变综合啮合刚度

    Figure  3.  Time-varying composite meshing stiffnesses of gears with different initial crack propagation angles

    图  4  六自由度齿轮动力学模型

    Figure  4.  6-DOF gear dynamics model

    图  5  不同裂纹深度齿轮传动系统垂向振动位移

    Figure  5.  Vertical vibration displacements of gear transmission system with different crack depths

    图  6  不同裂纹深度时域统计指标趋势

    Figure  6.  Time domain statistical index trends of different crack depths

    图  7  齿轮有限元模型

    Figure  7.  Finite element model of gear

    图  8  齿根危险截面

    Figure  8.  Tooth root danger section

    图  9  轮齿啮合等效应力

    Figure  9.  Gear tooth meshing equivalent stresses

    图  10  机车动力学模型

    Figure  10.  Locomotive dynamics model

    图  11  不同阶数车轮多边形

    Figure  11.  Wheel polygons of different orders

    图  12  不同车轮多边形激励工况下机车从动齿轮振动位移

    Figure  12.  Vibration displacements of locomotive driven gear under different wheel polygon excitation conditions

    图  13  不同车轮多边形激励工况下齿面接触合力

    Figure  13.  Contact resultant forces of gear tooth surface under different wheel polygon excitation conditions

    图  14  不同车轮多边形激励工况下含裂纹齿的齿面接触力

    Figure  14.  Contact forces of gear tooth surface with crack under different wheel polygon excitation conditions

    图  15  不同车轮多边形激励工况下裂纹尖端应力

    Figure  15.  Crack tip stresses under different wheel polygon excitation conditions

    图  16  钢轨波磨

    Figure  16.  Rail corrugation

    图  17  不同钢轨波磨激励工况下机车从动齿轮垂向振动位移

    Figure  17.  Vertical vibration displacements of locomotive driven gear under different rail corrugation excitation conditions

    图  18  不同钢轨波磨激励工况下齿面接触合力

    Figure  18.  Contact resultant forces of gear tooth surface under different rail corrugation excitation conditions

    图  19  不同钢轨波磨激励工况下含裂纹齿的齿面接触力

    Figure  19.  Contact forces of gear tooth surface with crack under different rail corrugation excitation conditions

    图  20  不同钢轨波磨激励工况下裂纹尖端应力

    Figure  20.  Crack tip stresses under different rail corrugation excitation conditions

    图  21  不同载荷条件下的应力强度因子

    Figure  21.  Stress intensity factors under different load conditions

    图  22  J积分曲线

    Figure  22.  J-integral curves

    表  1  机车齿轮基本几何参数

    Table  1.   Basic geometric parameters of locomotive gear

    基本参数 主动齿轮 从动齿轮
    模数/mm 8 8
    压力角/(°) 20 20
    螺旋角/(°) 0 0
    齿顶高系数 1 1
    顶隙系数 0.25 0.25
    齿宽/mm 140 140
    齿数/个 23 120
    下载: 导出CSV

    表  2  机车齿轮材料参数

    Table  2.   Material parameters of locomotive gear

    密度/(g·cm-3) 弹性模量/GPa 泊松比
    7.85 209 0.3
    下载: 导出CSV
  • [1] 范士娟, 何姗, 徐玉萍, 等. 高速铁路对江西省虹吸效应的影响分析[J]. 华东交通大学学报, 2021, 37(2): 64-71.

    FAN Shi-juan, HE Shan, XU Yu-ping, et al. Analysis of the influence of high speed railway on the siphon effect in Jiangxi Province[J]. Journal of East China Jiaotong University, 2021, 37(2): 64-71. (in Chinese)
    [2] TUPLIN W A. Gear-tooth stresses at high speed[J]. Proceedings of the Institution of Mechanical Engineers, 1950, 163(1950): 162-175.
    [3] HOWARD I, JIA Sheng-xiang, WANG Jian-de. The dynamic modelling of a spur gear in mesh including friction and a crack[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 831-853. doi: 10.1006/mssp.2001.1414
    [4] 王燕, 刘建新. 负载波动激扰的机车牵引齿轮振动特性[J]. 交通运输工程学报, 2015, 15(6): 45-50. doi: 10.19818/j.cnki.1671-1637.2015.06.006

    WANG Yan, LIU Jian-xin. Vibration properties of locomotive traction gear excited by load fluctuation[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 45-50. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.06.006
    [5] ZHANG Hong-wei, ZHAO Qiao-rong, LI Tao-tao. Effect of excitation frequency on nonlinear vibration of crack fault in multi-stage gear transmission system[J]. Journal of Vibroengineering, 2021, 23(3): 603-618. doi: 10.21595/jve.2021.21828
    [6] 时培明, 赵娜, 梁凯, 等. 变载荷激励下齿轮传动系统齿根裂纹故障动力学特性分析[J]. 机械强度, 2017, 39(5): 1001-1006.

    SHI Pei-ming, ZHAO Na, LIANG Kai, et al. Analysis on dynamic characteristics of tooth root crack of gear drive system under variable load excitation[J]. Journal of Mechanical Strength, 2017, 39(5): 1001-1006. (in Chinese)
    [7] 孟宗, 石桂霞, 王福林, 等. 基于时变啮合刚度的裂纹故障齿轮振动特征分析[J]. 机械工程学报, 2020, 56(17): 108-115.

    MENG Zong, SHI Gui-xia, WANG Fu-lin, et al. Vibration characteristic analysis of cracked gear based on time-varying meshing stiffness[J]. Journal of Mechanical Engineering, 2020, 56(17): 108-115. (in Chinese)
    [8] AKASH P, PIYUSH S. Spur gear crack modelling and analysis under variable speed conditions using variational mode decomposition[J]. Mechanism and Machine Theory, 2021, 164: 104357. doi: 10.1016/j.mechmachtheory.2021.104357
    [9] YANG Yi, XIA Wen-kai, HAN Jian-ming, et al. Vibration analysis for tooth crack detection in a spur gear system with clearance nonlinearity[J]. International Journal of Mechanical Sciences, 2019, 157/158: 648-661. doi: 10.1016/j.ijmecsci.2019.05.012
    [10] 林腾蛟, 郭松龄, 赵子瑞, 等. 裂纹故障对斜齿轮时变啮合刚度及振动响应的影响分析[J]. 振动与冲击, 2019, 38(16): 29-36, 63.

    LIN Teng-jiao, GUO Song-ling, ZHAO Zi-rui, et al. Influence of crack faults on time-varying mesh stiffness and vibration response of helical gears[J]. Journal of Vibration and Shock, 2019, 38(16): 29-36, 63. (in Chinese)
    [11] WANG Xin. Stability research of multistage gear transmission system with crack fault[J]. Journal of Sound and Vibration, 2018, 434: 63-77. doi: 10.1016/j.jsv.2018.07.037
    [12] MA Hui, PANG Xu, FENG Ran-jiao, et al. Fault features analysis of cracked gear considering the effects of the extended tooth contact[J]. Engineering Failure Analysis, 2015, 48: 105-120. doi: 10.1016/j.engfailanal.2014.11.018
    [13] MA Hui, PANG Xu, ZENG Jin, et al. Effects of gear crack propagation paths on vibration responses of the perforated gear system[J]. Mechanical Systems and Signal Processing, 2015, 62/63: 113-128. doi: 10.1016/j.ymssp.2015.03.008
    [14] 王清峰, 朱才朝, 史春宝, 等. 变载工况下钻机动力头传动系统动态特性[J]. 振动与冲击, 2014, 33(17): 18-23.

    WANG Qing-feng, ZHU Cai-chao, SHI Chun-bao, et al. Dynamic characteristics of a drilling rig's driving head transmission system under varying working environment[J]. Journal of Vibration and Shock, 2014, 33(17): 18-23. (in Chinese)
    [15] 马锐, 陈予恕. 含裂纹故障齿轮系统的非线性动力学研究[J]. 机械工程学报, 2011, 47(21): 84-90.

    MA Rui, CHEN Yu-shu. Nonlinear dynamic research on gear system with cracked failure[J]. Journal of Mechanical Engineering, 2011, 47(21): 84-90. (in Chinese)
    [16] 袁运博, 刘震, 何涛, 等. 波动负载对齿轮系统振动特性及边频调制影响研究[J]. 振动工程学报, 2019, 32(3): 526-533.

    YUAN Yun-bo, LIU Zhen, HE Tao, et al. Influence on dynamic response and modulation sidebands of gear transmission under fluctuating external torque[J]. Journal of Vibration Engineering, 2019, 32(3): 526-533. (in Chinese)
    [17] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45 (5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [18] 万志国, 訾艳阳, 曹宏瑞. 直齿圆柱齿轮齿根裂纹扩展仿真及齿轮时变啮合刚度分析[J]. 应用数学和力学, 2015, 36(增1): 14-20.

    WAN Zhi-guo, ZI Yan-yang, CAO Hong-rui. Gear crack propagation simulation and analysis of mesh stiffness[J]. Applied Mathematics and Mechanics, 2015, 36(S1): 14-20. (in Chinese)
    [19] 肖乾, 王丹红, 陈道云, 等. 考虑齿间滑动影响的高速列车传动齿轮动态接触特性分析[J]. 机械工程学报, 2021, 57(10): 87-94.

    XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Analysis of dynamic contact characteristics of high-speed train transmission gear considering the influence of sliding between the teeth[J]. Journal of Mechanical Engineering, 2021, 57(10): 87-94. (in Chinese)
    [20] 申勇, 章翔峰, 周建星, 等. 多级齿轮传动裂纹故障频率分析与特征提取[J]. 振动、测试与诊断, 2022, 42(2): 328-334, 410.

    SHEN Yong, ZHANG Xiang-feng, ZHOU Jian-xing, et al. Multi-stage gear transmission frequency analysis and feature extraction under crack action[J]. Journal of Vibration, Measurement and Diagnosis, 2022, 42(2): 328-334, 410. (in Chinese)
    [21] 朱海燕, 王梦威, 郑宇轩, 等. 内外激励下机车齿轮磨损仿真分析[J]. 交通运输工程学报, 2024, 24(2): 166-178. doi: 10.19818/j.cnki.1671-1637.2024.02.011

    ZHU Hai-yan, WANG Meng-wei, ZHENG Yu-xuan, et al. Simulation analysis of locomotive gear wear under internal and external excitations[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 166-178. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2024.02.011
    [22] LIU Xin-chang, SUN Qi, CHEN Chun-jun. Damage degree detection of cracks in a locomotive gear transmission system[J]. Shock and Vibration, 2018, 2018(11): 1-14.
    [23] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. Vibration feature evolution of locomotive with tooth root crack propagation of gear transmission system[J]. Mechanical Systems and Signal Processing, 2019, 115: 29-44. doi: 10.1016/j.ymssp.2018.05.038
    [24] 李有堂, 李凤翔. 斜齿轮齿根处裂纹倾角对裂纹扩展特性的影响[J]. 兰州理工大学学报, 2018, 44(1): 155-159.

    LI You-tang, LI Feng-xiang. Effect of crack declination angle at tooth root of helical gear on crack growth characteristics[J]. Journal of Lanzhou University of Technology, 2018, 44(1): 155-159. (in Chinese)
    [25] 蒋建政, 陈再刚, 翟婉明, 等. 基于不同啮合刚度计算模型的直齿圆柱齿轮传动系统动力学特性研究[J]. 中国科学: 技术科学, 2018, 48(8): 863-871.

    JIANG Jian-zheng, CHEN Zai-gang, ZHAI Wan-ming, et al. Study on dynamic characteristics of spur gear transmission system based on different calculation models of time-varying mesh stiffness[J]. Scientia Sinica (Technologica), 2018, 48(8): 863-871. (in Chinese)
    [26] 马登秋, 魏永峭, 叶振环, 等. 圆弧齿线圆柱齿轮啮合接触冲击研究[J]. 振动与冲击, 2018, 37(7): 123-131.

    MA Deng-qiu, WEI Yong-qiao, YE Zhen-huan, et al. Mesh contact impact of circular arc tooth trace cylindrical gears[J]. Journal of Vibration and Shock, 2018, 37(7): 123-131. (in Chinese)
    [27] 祝赫锴, 杨建伟, 李欣. 某地铁齿轮箱齿轮弯曲疲劳裂纹分析[J]. 机械传动, 2018, 42(10): 166-170.

    ZHU He-kai, YANG Jian-wei, LI Xin. Bending fatigue crack analysis of the subway gearbox gear[J]. Journal of Mechanical Transmission, 2018, 42(10): 166-170. (in Chinese)
    [28] 许德涛, 唐进元, 周炜, 等. 基于XFEM的齿轮腹板结构与齿根裂纹扩展关联规律研究[J]. 机械传动, 2016, 40(12): 153-158.

    XU De-tao, TANG Jin-yuan, ZHOU Wei, et al. Related rules study of gear web structure and gear tooth root crack propagation based on extended finite element method[J]. Journal of Mechanical Transmission, 2016, 40(12): 153-158. (in Chinese)
    [29] 陈春俊, 张振, 刘广. 轨道不平顺激扰下机车传动齿轮振动特性研究[J]. 中国测试, 2020, 46(6): 108-115.

    CHEN Chun-jun, ZHANG Zhen, LIU Guang. Research on vibration characteristics of locomotive transmission gear under track irregularity[J]. China Measurement and Test, 2020, 46(6): 108-115. (in Chinese)
    [30] 唐进元, 周炜, 陈思雨. 齿轮传动啮合接触冲击分析[J]. 机械工程学报, 2011, 47(7): 22-30.

    TANG Jin-yuan, ZHOU Wei, CHEN Si-yu. Contact-impact analysis of gear transmission system[J]. Journal of Mechanical Engineering, 2011, 47(7): 22-30. (in Chinese)
    [31] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions[J]. Journal of Sound and Vibration, 2017, 408: 220-233.
    [32] 刘欢. 车轮多边形磨耗激励下电力机车动态响应研究[D]. 成都: 西南交通大学, 2019.

    LIU Huan. Study on dynamic response of electric locomotive under wheel polygonal wear excitation[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  47
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回