留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向融合运行的飞行员在环建模技术综述

魏麟 杨济睿 李秀易 肖越 郑远 李诚龙

魏麟, 杨济睿, 李秀易, 肖越, 郑远, 李诚龙. 面向融合运行的飞行员在环建模技术综述[J]. 交通运输工程学报, 2024, 24(4): 208-227. doi: 10.19818/j.cnki.1671-1637.2024.04.016
引用本文: 魏麟, 杨济睿, 李秀易, 肖越, 郑远, 李诚龙. 面向融合运行的飞行员在环建模技术综述[J]. 交通运输工程学报, 2024, 24(4): 208-227. doi: 10.19818/j.cnki.1671-1637.2024.04.016
WEI Lin, YANG Ji-rui, LI Xiu-yi, XIAO Yue, ZHENG Yuan, LI Cheng-long. Review on pilot-in-the-loop modeling techniques facing integrated operation[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 208-227. doi: 10.19818/j.cnki.1671-1637.2024.04.016
Citation: WEI Lin, YANG Ji-rui, LI Xiu-yi, XIAO Yue, ZHENG Yuan, LI Cheng-long. Review on pilot-in-the-loop modeling techniques facing integrated operation[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 208-227. doi: 10.19818/j.cnki.1671-1637.2024.04.016

面向融合运行的飞行员在环建模技术综述

doi: 10.19818/j.cnki.1671-1637.2024.04.016
基金项目: 

国家重点研发计划 2022YFB4300902

国家自然科学基金项目 U2333214

国家自然科学基金项目 U2133209

民航局安全能力建设项目 MHAQ2024033

民航飞行技术与飞行安全重点实验室开放基金项目 FZ2022KF10

详细信息
    作者简介:

    魏麟(1972-),男,四川资阳人,中国民用航空飞行学院教授,从事人工智能飞行副驾驶与通用航空电子系统研究

    通讯作者:

    李诚龙(1990-),男,四川绵阳人,中国民用航空飞行学院副教授,北京航空航天大学工学博士研究生

  • 中图分类号: V249.1

Review on pilot-in-the-loop modeling techniques facing integrated operation

Funds: 

National Key Research and Development Program of China 2022YFB4300902

National Natural Science Foundation of China U2333214

National Natural Science Foundation of China U2133209

Safety Capability Building Project of Civil Aviation Administration of China MHAQ2024033

Open Fund Project of Key Laboratory of Civil Aviation Flight Technology and Flight Safety FZ2022KF10

More Information
  • 摘要: 研究了面向有人机与无人机融合运行环境的飞行员模型,基于有人机舱内驾驶和无人机远程遥控驾驶2种操纵类型,介绍了飞行员建模技术的发展历程和各模型特点,通过仿真软件研究了有人机与无人机飞行员在环的响应特性,讨论了通信延迟环节对于无人机驾驶回路的影响,总结了各类飞行员模型在不同任务场景下的适用性和不足之处。研究结果表明:面向融合运行环境的飞行员建模瓶颈主要体现在有人机与无人机飞行员所处的操纵回路异构、无人机飞行员缺乏临场情景意识和无人机系统指挥与控制链路(C2链路)存在不确定性延迟等方面;有人机飞行员建模总体上是根据控制理论方法描述人体结构和飞行员的操纵特性,且人工智能方法的发展使得基于智能控制理论的飞行员模型设计方法能够更好地描述飞行员的操纵特性;无人机飞行员由于处于不同的操纵回路位置,远程遥控驾驶通过C2链路实现无人机状态感知和操纵指令上行,因此,无人机飞行员模型建模更趋向于人在环路的表达,需根据应用场景设计相匹配的飞行员模型,才可更真实地反映飞行员在特定场景下的控制与决策行为特性;面向未来的融合运行环境,构建人在环路模型应重点考虑如何描述无人机远程飞行员因临场情景意识缺乏导致的决策差异,如何更好地拟合人机系统操纵特性,以及如何构建具有高效、可靠、低延迟C2链路的飞行员模型等问题。

     

  • 图  1  飞行员模型的基本组成

    Figure  1.  Basic component of pilot model

    图  2  有人机/无人机飞行员模型分类

    Figure  2.  Classification of MAV/UAV pilot models

    图  3  有人机/无人机协同控制系统结构

    Figure  3.  Structure of MAV/UAV cooperative control system

    图  4  碰撞避免、自分离以及分离保证的互操作性

    Figure  4.  Interoperability of CA, SS, and SA

    图  5  UAS-IN-NAS运行概念概述

    Figure  5.  5 Overview of UAS-IN-NAS operation concept

    图  6  包含结构飞行员模型的人机系统结构

    Figure  6.  Man-machine system structure with structural pilot model

    图  7  Hess结构飞行员模型结构

    Figure  7.  Structure of Hess structure pilot model

    图  8  包含OCM的人机闭环系统

    Figure  8.  Man-machine closed-loop system with OCM

    图  9  包含模糊飞行员模型的人机系统结构

    Figure  9.  Man-machine system structure with fuzzy pilot model

    图  10  BP神经网络结构

    Figure  10.  Structure of BP neural network

    图  11  远程飞行员驾驶系统接口链路架构

    Figure  11.  Architecture of RPAS interface link

    图  12  层级飞行员意图模型

    Figure  12.  Hierarchical pilot intent model

    图  13  延迟飞行员模型架构

    Figure  13.  Architecture of delayed pilot model

    图  14  两架飞机在近空中遭遇的贝叶斯网络模型

    Figure  14.  Bayesian net model of a 2-aircraft mid-air encounter

    图  15  DPZ圆的尺寸、偏置和半径与τDPZ的关系[80]

    Figure  15.  Dimensions, offsets and radius of DPZ circles with respect to τDPZ

    图  16  应用DPZ触发警报[80]

    Figure  16.  Trigger alerts using DPZ

    图  17  非线性决策映射元素的特征

    Figure  17.  Characteristics of nonlinear decision mapping element

    图  18  飞行员和飞机的补偿控制回路

    Figure  18.  Compensatory control loop with pilot and aircraft

    图  19  无人机飞行员在环模型

    Figure  19.  UAV pilot-in-the-loop model

    图  20  有人机/无人机飞行员在环仿真试验对比

    Figure  20.  Comparison of MAV/UAV pilot-in-the-loop simulation experiments

    表  1  飞行员模型固有参数

    Table  1.   Intrinsic parameters of pilot model

    参数 建议值
    飞行员反应时间延迟τd/s 0.1~0.2
    神经肌肉系统的自振频率wn/(rad·s-1) 10
    神经肌肉系统的阻尼比ξn 0.707
    神经肌肉系统的速率反馈系数Vn 1.0
    下载: 导出CSV

    表  2  飞行员模型自适应参数

    Table  2.   Adaptive parameters of pilot model

    f KE Vc Tn/s Tc/s
    0 wcf≈2.5 rad·s-1估计 2.0 5.0 5.0
    1 wcf≈2.5 rad·s-1估计 2.0 5.0
    2 wcf≈1.5 rad·s-1估计 10.0 2.5 2.5
    下载: 导出CSV

    表  3  飞机动力学模型参数

    Table  3.   Parameters of aircraft dynamics model

    参数 数值
    飞机环节的增益 5.622 4
    飞机分子项的时间常数 0.918
    飞机等效短周期模态的无阻尼自振频率/(rad·s-1) 4.601 8
    飞机等效短周期模态的阻尼比 0.707
    飞机反应时间延迟/s 0.153 7
    下载: 导出CSV

    表  4  McRuer飞行员模型参数

    Table  4.   Parameters of McRuer pilot model

    参数 数值
    飞行员增益 1.612 93
    飞行员超前补偿时间常数 2.499 5
    飞行员神经肌肉延迟补偿时间常数 2.819 35
    飞行员反应时间延迟/s 0.3
    下载: 导出CSV

    表  5  Hess结构飞行员模型参数

    Table  5.   Parameters of Hess structure pilot model

    参数 数值
    飞行员增益 2.658 37
    神经肌肉系统的自振频率/(rad·s-1) 10
    神经肌肉系统的阻尼比 0.707
    飞行员反应时间延迟/s 0.3
    中枢神经系统的反馈结构参数 2
    神经肌肉系统的速率反馈系数 1.0
    中枢神经系统的速率反馈系数 2.092 46×10-7
    神经肌肉系统的反馈时间常数 10
    中枢神经系统的反馈时间常数 10
    飞行员反应时间延迟/s 0.15
    下载: 导出CSV

    表  6  不同类型有人机、无人机飞行员模型总结

    Table  6.   Summary of different types of MAV and UAV pilot models

    模型 适用 年份 特点 不足
    直觉飞行员模型[16] 有人机 20世纪50年代末 可以很好地运用到目前已经发展比较成熟的线性系统中 只能用于线性系统,无法在非线性系统中描述飞行员行为
    拟线性飞行员模型[20] 有人机 20世纪50年代末 模型结构简单,对于大多数控制任务与实际系统比较吻合 无法体现飞行员内在机理,不能体现飞行员的复杂结构
    结构飞行员模型[30] 有人机无人机 20世纪70年代末到20世纪80年代初 从整体控制效果上描述飞行员的操纵特性,分析解释了人的内在机理,充分考虑了人的各子系统间的生理特性,拟配精度更高 结构飞行员模型形式复杂,没有充分的对人体的感官系统进行描述,对应用于非线性的系统依旧存在不足之处
    最优飞行员模型[40] 有人机 20世纪60年代末到20世纪70年代初 基于现代控制理论设计的时间域模型,描述了训练有素的飞行员在充分了解任务的前提下有目的的操纵行为,且可以用来描述飞行员的多通道控制行为 根本上依旧是线性的或拟线性系统的模型,不能很好地适配于非线性的系统,对飞行员的控制有要求,会在任务要求、生理心理条件下有所限制
    智能飞行员模型[50] 有人机无人机 20世纪90年代 处理了飞行员操纵行为的不精确性和不确定性,实现了更好的人机协同,提高了任务的效率和飞行的安全性,可用于非线性系统 模糊飞行员模型中存在许多设计参数,在设计和调试过程中需要大量的时间;神经网络飞行员模型各参数的物理意义不是很明确,直接用于飞行品质的评估存在困难
    意图预测模型[65] 无人机 20世纪50年代 主要作为入侵机飞行员模型,可以作为飞机飞行员和空中交通管制员感知态势的安全工具 建模方法只能用于计算密集型、提示性、指导性制导算法或用于自主系统的决策
    空战模型[72] 有人机无人机 20世纪60年代到20世纪70年代 根据空中作战体系所设计的用于创建模拟空战的飞机飞行员训练模型 不能表明人工智能的决策与人类的决策相似性;不能处理响应的可变性
    延迟模型[76] 有人机无人机 20世纪50年代末 飞行员在操纵过程中产生的时间延迟是不可避免的,延迟模型是最常使用的比较简单的模型 只有在明确有其他来源提供所需的机动时才能使用,飞行员行为产生的延迟是会发生变化的,对于变化的时间延迟需要进行阈值判断,没有解决机动的选择问题
    贝叶斯网络模型[78] 有人机无人机 20世纪末到21世纪初 用于航空混合动力系统预测预防近空碰撞中的飞机飞行员行为 当飞机采取混合机动方式时,无法提供用于多个机动选择的框架
    启发式模型[80] 有人机无人机 20世纪50年代末 使用启发式决策规则预测飞机飞行员飞行过程中的机动 只用于解决单平面飞机之间的避撞问题
    类脉冲控制模型[83] 有人机无人机 20世纪70年代 针对飞行员的高阶系统控制试验中可观察到类似脉冲的控制行为;应用移动和等待策略用于描述大延迟系统控制过程中的飞行员行为 飞行员控制模型结构复杂,参数众多,调节困难,且部分模型只能用于高阶控制系统,对于小延迟系统的适用性还需研判
    下载: 导出CSV
  • [1] SARIM M, RADMANESH M, DECHERING M, et al. Distributed detect-and-avoid for multiple unmanned aerial vehicles in national air space[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(7): 1-9.
    [2] RASMUSSEN J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983(3): 257-266.
    [3] ZAYCHIK K, CARDULLO F, GEORGE G. A conspectus on operator modeling: past, present and future[C]//AIAA. 2006 AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2006: 6625.
    [4] 曹阳. 基于驾驶员模型的车辆主动转向控制研究[D]. 上海: 上海交通大学, 2016.

    CAO Yang. Study of vehicle active steering control based on driver model[D]. Shanghai: Shanghai Jiaotong University, 2016. (in Chinese)
    [5] SCHOUWENAARS T, VALENTI M, FERON E, et al. Linear programming and language processing for human-unmanned aerial-vehicle team missions[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 303-313. doi: 10.2514/1.13162
    [6] CHEN Jun, ZHANG Qi-lin, HOU Bo. An assessment method of pilot workload in manned/unmanned-aerial-vehicles team[C]//IEEE. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). New York: IEEE, 2017: 1-5.
    [7] JIM G. UAS integration in the NAS project: project overview[C]//IEEE. Proceedings of 2011 Integrated Communications, Navigation, and Surveillance Conference. New York: IEEE, 2011: 1-23.
    [8] MONK K, ROBERTS Z. UAS pilot evaluations of suggestive guidance on detect-and-avoid displays[C]//SAGE Publications. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles: SAGE Publications, 2016: 81-85.
    [9] JOHNSON M, SANTIAGO C, MUELLER E. Characteristics of a well clear definition and alerting criteria for encounters between UAS and manned aircraft in class e airspace[C]//NASA. Air Traffic Management (ATM) Research and Development Seminar (ARC-E-DAA-TN22684). Washington DC: NASA, 2015.
    [10] FERN L. Human factors challenges facing UAS integration into the NAS[C]//CORE Scholar. 16th International Symposium on Aviation Psychology. Dayton: CORE Scholar, 2011: 233-238.
    [11] MURPHY J R, HAYES P S, KIM S K, et al. Flight test overview for UAS integration in the NAS project[C]//AIAA. AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016: 1756.
    [12] MARSTON M L, FLOCK A D, LOERA V M, et al. UAS integration in the NAS project: overview of flight test series 6[R]. Washington DC: NASA, 2020.
    [13] VINCENT M J, RORIE R C, MONK K J, et al. UAS integration in the NAS flight test 6: full mission results[R]. Washington DC: NASA, 2021.
    [14] TUSTIN A. The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems[J]. Journal of the Institution of Electrical Engineers-Part ⅡA: Automatic Regulators and Servo Mechanisms, 1947, 94(1): 143-151.
    [15] TUSTIN A. The nature of the operator's response in manual control, and its implications for controller design[J]. Journal of the Institution of Electrical Engineers-Part ⅡA: Automatic Regulators and Servo Mechanisms, 1947, 94(2): 190-206.
    [16] MCRUER D T, KRENDEL E S. The human operator as a servo system element[J]. Journal of the Franklin Institute, 1959, 267(6): 511-536. doi: 10.1016/0016-0032(59)90072-9
    [17] MCRUER D T, JEX H R. A review of quasi-linear pilot models[J]. IEEE Transactions on Human Factors in Electronics, 1967(3): 231-249.
    [18] 李蕊. 飞行模拟器俯仰模式动感逼真度评价方法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    LI Rui. Research on dynamic fidelity evaluation for pitch mode of flight simulator[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [19] 崔金宝, 高峰. 人-机闭环系统的驾驶员模型研究[J]. 飞行力学, 1994, 12(3): 53-58.

    CUI Jin-bao, GAO Feng. An investigating of pilot model in pilot-aircraft closed loop system[J]. Flight Dynamics, 1994, 12(3): 53-58. (in Chinese)
    [20] MCRUER D T, KRENDEL E S. Mathematical models of human pilot behavior[R]. Paris: Advisory Group for Aerospace Research and Development Neuilly-Sur-Seine, 1974.
    [21] 赵军民, 胡国怀, 段辰璐, 等. "人在回路" 图像制导导弹射手建模技术研究[J]. 弹箭与制导学报, 2012, 32(4): 74-76.

    ZHAO Jun-min, HU Guo-huai, DUAN Chen-lu, et al. The research on shooter modeling in the imaged-guided missile of "people-in-the-loop"[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(4): 74-76. (in Chinese)
    [22] 裴彬彬, 徐浩军, 薛源, 等. 基于复杂动力学仿真的结冰情形下飞行安全窗构建方法[J]. 航空学报, 2017, 38(2): 37-50.

    PEI Bin-bin, XU Hao-jun, XUE Yuan, et al. Development of flight safety window in icing conditions based on complex dynamics simulation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 37-50. (in Chinese)
    [23] 孙国庆. 飞行品质软件包设计与开发[D]. 西安: 西安电子科技大学, 2006.

    SUN Guo-qing. Design and development of aircraft handing qualities in software[D]. Xi'an: Xidian University, 2006. (in Chinese)
    [24] 徐秋. 舰载机进舰环境下驾驶员建模与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    XU Qiu. Pilot modeling and simulation in the carrier final approach[D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
    [25] NEAL T P, SMITH R E. A flying qualities criterion for the design of fighter flight-control systems[J]. Journal of Aircraft, 1971, 8(10): 803-809. doi: 10.2514/3.59174
    [26] FORINGER L, LEGGETT D. An analysis of the time-domain Neal-Smith criterion[C]//AIAA. 23rd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1998: 4250.
    [27] LIU Fan, WANG Li-xin, TAN Xiang-sheng. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM[J]. Chinese Journal of Aeronautics, 2015, 28(1): 112-120. doi: 10.1016/j.cja.2014.12.013
    [28] LONE M M, RUSENO N, COOKE A K. Towards understanding effects of non-linear flight control system elements on inexperienced pilots[J]. The Aeronautical Journal, 2012, 116(1185): 1201-1206. doi: 10.1017/S0001924000007569
    [29] 管高智, 谭文倩, 孙立国, 等. 副翼卡死故障下的时变驾驶员模型研究[J]. 飞行力学, 2018, 36(4): 20-24.

    GUAN Gao-zhi, TAN Wen-qian, SUN Li-guo, et al. Research on time-varying pilot model based on stuck of aileron[J]. Flight Dynamics, 2018, 36(4): 20-24. (in Chinese)
    [30] HESS R A. Structural model of the adaptive human pilot[J]. Journal of Guidance and Control, 1980, 3(5): 416-423. doi: 10.2514/3.56015
    [31] 刘晓雨, 孙立国, 谭文倩, 等. 基于相似构型决策的舰载机驾驶员建模与评估[J]. 航空学报, 2023, 44(4): 113-128.

    LIU Xiao-yu, SUN Li-guo, TAN Wen-qian, et al. Modeling and evaluation of carrier aircraft pilots based on similar configuration decisions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 113-128. (in Chinese)
    [32] HESS R A. Effects of time delays on systems subject to manual control[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(4): 416-421. doi: 10.2514/3.19872
    [33] HESS R A. Analyzing manipulator and feel system effects in aircraft flight control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(4): 923-931. doi: 10.1109/21.105091
    [34] HESS R A. Unified theory for aircraft handling qualities and adverse aircraft-pilot coupling[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(6): 1141-1148. doi: 10.2514/2.4169
    [35] HEFFLEY R. Use of a task-pilot-vehicle (TPV) model as a tool for flight simulator math model development[C]// AIAA. AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2010: 1-20.
    [36] EFREMOV A, TJAGLIK M. The development of perspective displays for highly precise tracking tasks[C]//Springer. Advances in Aerospace Guidance, Navigation and Control: Selected Papers of the 1st CEAS Specialist Conference on Guidance, Navigation and Control. Berlin: Springer, 2011: 163-174.
    [37] 徐仲祥, 屈香菊. 结构驾驶员模型与McRuer模型的仿真研究[J]. 飞行力学, 1997, 15(4): 3-8.

    XU Zhong-xiang, QU Xiang-ju. A simulation comparative study on the structural pilot model and McRuer pilot model[J]. Flight Dynamics, 1997, 15(4): 3-8. (in Chinese)
    [38] 张奇, 袁广田, 巩鹏潇. 空中加油机人机闭环系统特性分析[J]. 飞行力学, 2019, 37(3): 26-31, 37.

    ZHANG Qi, YUAN Guang-tian, GONG Peng-xiao. Analysis of the man-machine closed-loop system characteristics of aerial tanker[J]. Flight Dynamics, 2019, 37(3): 26-31, 37. (in Chinese)
    [39] 徐彦军, 屈香菊. 多轴多回路人机控制系统模型与仿真[J]. 飞行力学, 1998, 16(4): 28-32.

    XU Yan-jun, QU Xiang-ju. Model and simulation of pilot-vehicle system in multi-axis and multi-loop task[J]. Flight Dynamics, 1998, 16(4): 28-32. (in Chinese)
    [40] BARON S, KLEINMAN D L. The human as an optimal controller and information processor[J]. IEEE Transactions on Man-Machine Systems, 1969, 10(1): 9-17. doi: 10.1109/TMMS.1969.299875
    [41] WIERENGA R D. An evaluation of a pilot model based on Kalman filtering and optimal control[J]. IEEE Transactions on Man-Machine Systems, 1969, 10(4): 108-117. doi: 10.1109/TMMS.1969.299907
    [42] DOMAN D, ANDERSON M. Fixed order optimal pilot models[C]//AIAA. 1996 Guidance, Navigation, and Control Conference. Reston: AIAA, 1996: 1-12.
    [43] DOMAN D B. Projection methods for order reduction of optimal human operator models[D]. Blacksburg: Virginia Polytechnic Institute and State University, 1998.
    [44] DAVIDSON J, SCHMIDT D. Modified optimal control pilot model for computer-aided design and analysis[R]. Washington DC: NASA, 1992.
    [45] 刘嘉, 向锦武, 张颖, 等. 自适应飞机驾驶员最优控制模型研究及应用[J]. 航空学报, 2016, 37(4): 1127-1138.

    LIU Jia, XIANG Jin-wu, ZHANG Ying, et al. Research and application adaptive optimal control pilot model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1127-1138. (in Chinese)
    [46] ZADEH L A. Information and control[J]. Fuzzy Sets, 1965, 8(3): 338-353.
    [47] 刘芳. 基于模糊神经网络的飞机子系统故障诊断的研究[D]. 武汉: 华中科技大学, 2007.

    LIU Fang. Research on aircraft subsystem fault diagnosis based on fuzzy neural network[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)
    [48] 程建锋, 董新民, 薛建平, 等. 飞机-驾驶员闭环系统模糊预见控制器设计[J]. 航空学报, 2014, 35(3): 807-820.

    CHENG Jian-feng, DONG Xin-min, XUE Jian-ping, et al. Fuzzy preview controller design for aircraft-pilot closed loop system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 807-820. (in Chinese)
    [49] CHEN Chen, TAN Wen-qian, QU Xiang-ju, et al. A fuzzy human pilot model of longitudinal control for a carrier landing task[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 54(1): 453-466.
    [50] ZEYADA Y, HESS R A. Modeling human pilot cue utilization with applications to simulator fidelity assessment[J]. Journal of Aircraft, 2000, 37(4): 588-597. doi: 10.2514/2.2670
    [51] JIANG Hai-tao, SU Xiao-dong, LI Hui. Dynamic multi- attribute decision making based on advantage retention degree[J]. International Journal of Control and Automation, 2014, 7(9): 389-398. doi: 10.14257/ijca.2014.7.9.33
    [52] MORI R, SUZUKI S. Neural network modeling of lateral pilot landing control[J]. Journal of Aircraft, 2009, 46(5): 1721-1726. doi: 10.2514/1.42576
    [53] 谭文倩, 屈香菊, 王维军. 驾驶员神经网络模型与频域拟线性模型的比较研究[J]. 航空学报, 2003, 24(6): 481-485.

    TAN Wen-qian, QU Xiang-ju, WANG Wei-jun. Comparison of neural network model and frequency domain quasi-linear model for human pilots[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 481-485. (in Chinese)
    [54] 刘建娟, 徐晓苏. 遗传优化模糊神经网络在组合导航系统中的应用[J]. 传感技术学报, 2006, 19(6): 2630-2633.

    LIU Jian-juan, XU Xiao-su. Application of the fuzzy neural networks based on the genetic algorithms in integrated navigation system[J]. Chinese Journal of Sensors and Actuators, 2006, 19(6): 2630-2633. (in Chinese)
    [55] 徐湖, 潘尔顺. 基于改进人工神经网络的SMT质量智能鉴别[J]. 工业工程与管理, 2009, 14(6): 51-55, 102.

    XU Hu, PAN Er-shun. Intelligently predict the quality of the SMT products based on the artificial neural network[J]. Industrial Engineering and Management, 2009, 14(6): 51-55, 102. (in Chinese)
    [56] 颜世伟, 高正红. 基于人工神经网络的驾驶员操纵行为模型[J]. 飞行力学, 2012, 30(2): 105-109.

    YAN Shi-wei, GAO Zheng-hong. Research on pilot behavior model based on artificial neural network[J]. Flight Dynamics, 2012, 30(2): 105-109. (in Chinese)
    [57] 张同斌, 李体方, 盛又文. 基于BP神经网络的试飞员驾驶技术评估[J]. 计算机仿真, 2012, 29(10): 110-113.

    ZHANG Tong-bin, LI Ti-fang, SHENG You-wen. Test pilot driving skill assessment based on BP neural network[J]. Computer Simulation, 2012, 29(10): 110-113. (in Chinese)
    [58] JANG J S R. ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685. doi: 10.1109/21.256541
    [59] JANG J S R, SUN C T. Neuro-fuzzy modeling and control[J]. Proceedings of the IEEE, 1995, 83(3): 378-406. doi: 10.1109/5.364486
    [60] JANG J S R, SUN C T, MIZUTANI E. Neuro-fuzzy and soft computing—a computational approach to learning and machine intelligence[J]. IEEE Transactions on Automatic Control, 1997, 42(10): 1482-1484. doi: 10.1109/TAC.1997.633847
    [61] 董文瀚, 孙秀霞, 林岩. 驾驶员自适应神经模糊推理模型的建立与仿真[J]. 电光与控制, 2007, 14(5): 102-105, 116.

    DONG Wen-han, SUN Xiu-xia, LIN Yan. Design and simulation of pilot model based on adaptive neural fuzzy inference system[J]. Electronics Optics and Control, 2007, 14(5): 102-105, 116. (in Chinese)
    [62] XU K J. Decisional autonomy of approach and landing phase for civil aviation aircraft using dual fuzzy neural network[J]. Advanced Materials Research, 2012, 476: 936-939.
    [63] ZEITLIN A, LACHER A, KUCHAR J, et al. Collision avoidance for unmanned aircraft: proving the safety case[J]. The MITRE Corporation and MIT Lincoln Laboratory, 2006.
    [64] 罗俊海, 王芝燕. 无人机探测与对抗技术发展及应用综述[J]. 控制与决策, 2022, 37(3): 530-544.

    LUO Jun-hai, WANG Zhi-yan. A review of development and application of UAV detection and counter technology[J]. Control and Decision, 2022, 37(3): 530-544. (in Chinese)
    [65] RORIE R C, FERN L. The impact of integrated maneuver guidance information on UAS pilots performing the detect and avoid task[C]//SAGE Publications. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles: SAGE Publications, 2015: 55-59.
    [66] MUELLER E R, SANTIAGO C, WATZA S. Piloted "well clear" performance evaluation of detect-and-avoid systems with suggestive guidance[R]. Washington DC: NASA, 2016.
    [67] MONK K J, ROBERTS Z. Maintain and regain well clear: maneuver guidance designs for pilots performing the detect-and-avoid task[C]//Springer. Proceedings of the AHFE 2017 International Conference on Human Factors in Robots and Unmanned Systems. Berlin: Springer, 2018: 64-74.
    [68] 许舒婷, 谭文倩, 孙立国, 等. 飞机驾驶员与自动器共享控制系统的原理与方法[J]. 飞行力学, 2022, 40(6): 1-8, 23.

    XU Shu-ting, TAN Wen-qian, SUN Li-guo, et al. Principle and method of shared control system between human pilot and autopilot for aircraft[J]. Flight Dynamics, 2022, 40(6): 1-8, 23. (in Chinese)
    [69] LOWE C, HOW J P. Learning and predicting pilot behavior in uncontrolled airspace[C]//AIAA. AIAA Infotech@Aerospace 2015. Reston: AIAA, 2015: 1199.
    [70] ERNEST N, CARROLL D, SCHUMACHER C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1): 2167-0374.
    [71] 孙盛智, 孟春宁, 侯妍, 等. 有人/无人机协同作战模式及关键技术研究[J]. 航空兵器, 2021, 28(5): 33-37.

    SUN Sheng-zhi, MENG Chun-ning, HOU Yan, et al. Research on the collaborative operational mode and key technologies of manned/unmanned aerial vehicles[J]. Aero Weaponry, 2021, 28(5): 33-37. (in Chinese)
    [72] VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot's sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 665-677.
    [73] KUCHAR J, ANDREWS J, DRUMM A, et al. A safety analysis process for the traffic alert and collision avoidance system (TCAS) and see-and-avoid systems on remotely piloted vehicles[C]//AIAA. AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit. Reston: AIAA, 2004: 6423.
    [74] KOCHENDERFER M J, HOLLAND J E, CHERSSANTHACOPOULOS J P. Next-generation airborne collision avoidance system[J]. Lincoln Laboratory Journal, 2012, 19(1): 17-33.
    [75] LIVADAS C, LYGEROS J, LYNCH N A. High-level modeling and analysis of TCAS[C]//IEEE. Proceeding's 20th IEEE Real-Time Systems Symposium. New York: IEEE, 1999: 115-125.
    [76] LI M, BAI H, KRISHNAMURTHI N. A Markov decision process for the interaction between autonomous collision avoidance and delayed pilot commands[J]. IFAC-Papers Online, 2019, 51(34): 378-383.
    [77] EGOROVA T, DEMETRIOU M A, GATSONIS N A. Plume estimation using static and dynamic formations of unmanned aerial vehicles[C]//IEEE. 2016 IEEE 55th Conference on Decision and Control. New York: IEEE, 2016: 2270-2275.
    [78] LEE R, WOLPERT D. Game theoretic modeling of pilot behavior during mid-air encounters[J]. Intelligent Systems Reference Library, 2012, DOI: 10.1007/978-3-642-24647-0_4.
    [79] KUCHAR J E, DRUMM A C. The traffic alert and collision avoidance system[J]. Lincoln Laboratory Journal, 2007, 16(2): 277.
    [80] MAKI D, PARRY C, NOTH K, et al. Dynamic protection zone alerting and pilot maneuver logic for ground-based sense and avoid of unmanned aircraft systems[C]//AIAA. Infotech@ Aerospace 2012. Reston: AIAA, 2012: 2505.
    [81] YOUNG L, MEIRY J. Bang-bang aspects of manual control in high-order systems[J]. IEEE Transactions on Automatic Control, 1965, 10(3): 336-341.
    [82] HESS R A. A rationale for human operator pulsive control behavior[J]. Journal of Guidance and Control, 1979, 2(3): 221-227.
    [83] FRICKE T. Flight control with large time delays and reduced sensory feedback[D]. Munich: Technische Universität München, 2017.
    [84] GUENDEL R E, KUFFNER M P, MAKI D E. A model of unmanned aircraft pilot detect and avoid maneuver decisions[D]. Lexington: Massachusetts Institute of Technology, 2017.
    [85] LAM T M, MULDER M, VAN P M. Collision avoidance in UAV tele-operation with time delay[C]//IEEE. 2007 IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE, 2007: 997-1002.
    [86] COOPER G E, HARPER R P. The use of pilot rating in the evaluation of aircraft handling qualities[R]. Washington DC: NASA, 1969.
    [87] 张铭扬. 大延迟条件下无人机远程控制技术研究[D]. 成都: 电子科技大学, 2018.

    ZHANG Ming-yang. Research on remote control technology of UAV under large delay condition[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese)
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-02
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回