留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性剂与沥青相容性作用中分子动力学模拟综述

梁波 廖威 郑健龙

梁波, 廖威, 郑健龙. 改性剂与沥青相容性作用中分子动力学模拟综述[J]. 交通运输工程学报, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005
引用本文: 梁波, 廖威, 郑健龙. 改性剂与沥青相容性作用中分子动力学模拟综述[J]. 交通运输工程学报, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005
LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005
Citation: LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005

改性剂与沥青相容性作用中分子动力学模拟综述

doi: 10.19818/j.cnki.1671-1637.2024.05.005
基金项目: 

国家重点研发计划 2022YFB2602601

国家自然科学基金项目 52378434

湖南省自然科学基金项目 2022JJ30599

湖南省教育厅科学研究项目 21A0199

湖南省交通运输厅科技进步与创新项目 202003

湖南省研究生科研创新项目 CX20230858

详细信息
    作者简介:

    梁波(1976-),女,湖南涟源人,长沙理工大学教授,工学博士,从事聚合物功能材料和沥青路面材料研究

    通讯作者:

    郑健龙(1954-),男,湖南邵阳人,中国工程院院士,长沙理工大学教授,工学博士

  • 中图分类号: U414

Review on molecular dynamics simulation for compatibilities of modifiers with asphalt

Funds: 

National Key Research and Development Program of China 2022YFB2602601

National Natural Science Foundation of China 52378434

Natural Science Foundation of Hunan Province 2022JJ30599

Scientific Research Project of Education Department of Hunan Province 21A0199

Science and Technology Progress and Innovation Program of Department of Transportation of Hunan Province 202003

Postgraduate Scientific Research Innovation Project of Hunan Province CX20230858

More Information
  • 摘要: 全面综述了基于分子动力学(MD)模拟的不同类型改性剂与沥青相容性的研究,介绍了MD的基本原理与方法,总结了沥青和改性剂分子模型的建立与环境参数的选取,分析了不同评价指标对相容性结果的影响和MD模拟结果与试验结果的相关性。研究结果表明:MD模拟在研究不同类别改性剂与沥青相容性时,能提供原子水平的理解,在预测性能、探索多种交互作用、优化配比和可视化等方面具有优势,可节省成本和试验时间;对于聚合物类改性剂,主要通过溶解度、扩散系数、均方位移、结合能等指标来评估其与沥青的相容性,对于非聚合物类改性剂,主要通过扩散系数、径向分布函数、结合能等指标进行评价;溶解度对聚合物类改性沥青具有广泛适用性,但非聚合物类改性剂与沥青的热力学性质差异大,评估结果的离散性较大,扩散系数和结合能在评估聚合物类和非聚合物类改性剂与沥青相容性时具有广泛的适用性;由于沥青的化学组成、物理性质、分子之间的相互作用及其在不同条件下的流变行为等多因素的影响,模型参数的准确性需要足够的试验数据来验证,这些因素会影响模拟结果的准确性和可靠性,导致不同模型的适应性和结果具有一定差异;随着计算能力和算法的进步、MD模拟精度和效率的大幅提高,研究者能够更精准地模拟改性沥青在不同温度下的化学结构和动态行为;如果将MD与试验有效结合,实现多尺度研究,有望全面揭示沥青与改性剂相容性的机理,促进材料性能提升与应用领域拓展。

     

  • 图  1  沥青质模型和沥青分子模型发展流程

    Figure  1.  Development processes of asphaltene model and asphalt molecular model

    图  2  MD模拟在沥青性能研究中的流程

    Figure  2.  Flow of MD simulation in asphalt performance research

    图  3  沥青及其SBS改性体系的模型与相互作用研究

    Figure  3.  Models and interaction research of asphalt and its SBS modified system

    图  4  用于结合能分析的橡胶和橡胶改性沥青结构

    Figure  4.  Rubber and rubber modified asphalt structures for binding energy analysis

    图  5  改性沥青模型与扩散系数

    Figure  5.  Modified asphalt models and diffusion coefficients

    图  6  不同温度下AAA-1沥青组分及纳米SiO2的溶解度与Flory-Huggins参数

    Figure  6.  Solubility parameters and Flory-Huggins parameters of AAA-1 asphalt components and nano SiO2 different temperatures

    图  7  增塑剂与沥青相互作用的分子特性

    Figure  7.  Molecular properties of interactions between plasticizers and asphalt

    图  8  纳米ZnO与SBS改性沥青的特性

    Figure  8.  Properties of nano ZnO and SBS modified asphalt

    图  9  PU改性沥青的模型与特性

    Figure  9.  Models characteristics and properties of PU modified asphalt

    图  10  SBR改性沥青与PR改性沥青的老化特性及电子性质

    Figure  10.  Aging characteristics and electronic properties of SBRMA and PRMA

    表  1  沥青质模型的结构特点

    Table  1.   Structural characteristics of asphaltene models

    沥青质模型 结构层次 优点 缺点
    Groenzin模型[59] 考虑了芳香度、杂原子含量、侧链长度等特征 使用核磁共振技术,能够推断沥青质分子中的芳香度、杂原子含量、侧链长度等特征 受核磁共振技术分辨率的限制,对一些微观结构的描述有限
    Artok模型[62] 由多个芳香核堆叠而成的片状结构,通过烷基链和杂原子连接形成三维网络 描述沥青质的胶体性质、溶剂效应、热裂解行为等,提供对沥青质分子结构的三维网络模型 对不同来源的沥青,芳香核数量、大小和分布有较大差异
    Derek模型[63] 由多种复杂的碳氢化合物组成,包括稠合芳环、烷基侧链等 用于研究形态、聚集、相行为、流变性等 由于复杂的碳氢化合物组成,模型较为复杂,计算准确性较差
    Mullins改进模型[67] 在Mullins模型的基础上考虑非芳香部分,如烷基侧链、环烷基 提高了溶解度、流变性和相行为的描述能力 可以更好地描述沥青质的溶解度、流变性和相行为
    Martín-Martínez模型[68] 含有较多芳香片结构和杂原子 基于非接触式原子力显微镜成像技术,更好地描述了沥青质分子的形态、聚集、相行为 主要适用于含有较多芳香片结构和杂原子的重质沥青,对其他类型沥青适用性较差
    AAA-1模型[70] 考虑了芳香族化合物之间的距离和堆积角以及熔融芳香族环之间的折叠角 树脂类分子和沥青质分子之间的堆积以及聚合物对这种堆积的影响 对沥青的室温黏度的模拟效果较差
    Mullins模型[72] 多个苯环并联的结构 描述沥青质的聚集过程,包括动力学、界面现象 对一些微观结构的描述仍有限
    Yen模型[71] 6个层次,包括单元片、缔合束、胶束、集合体、簇状物和絮凝体 提供多层次的结构描述,能解释沥青质的物理和化学现象 对一些微观结构特性的描述相对较粗略
    下载: 导出CSV

    表  2  聚合物类沥青改性剂相容性评价指标

    Table  2.   Compatibility evaluation indexes of polymer-based asphalt modifiers

    材料 掺量/% 温度/℃ 内聚能密度/(J·m-3) 溶解度/(J·cm-3)1/2 相互作用能/(kJ·mol-1) 扩散系数/(10-8 m2·s-1) 文献
    SBS 4.83 100 253.492 15.919 3 970.310 [79]
    120 240.534 15.507 4 335.970
    140 236.150 15.365 4 755.710
    160 231.907 15.258 5 170.450
    180 215.321 14.672 5 523.590
    SBS 5.00 25 1 186.440 0.069 [87]
    老化SBS 1 306.330 0.056
    克拉玛依沥青 160 3.821×108 19.540 -2 735.236 [90]
    壳牌沥青 3.542×108 18.820 -3 277.681
    埃索沥青 3.533×108 18.790 -3 369.994
    环西林沥青 3.546×108 18.830 -2 454.904
    天然橡胶(Natural Rubber, NR)/丁苯橡胶(Styrene Butadiene Rubber, SBR) 2.370×108 15.530
    三聚氰胺-甲醛(Melamine-Formaldehyde, MF)树脂 25 3.367 18.349 -7 078.600 [91]
    MF树脂/SBS 3.179 17.829 -6 971.600
    NR 5.00 180 14.835 130.955 [92]
    10.00 356.711
    15.00 614.893
    20.00 846.862
    25.00 253.320
    35.00 -36.544
    顺式聚丁二烯橡胶(Cis-1, 3-Butadiene Rubber, BR) 5.00 15.491 175.761
    10.00 485.507
    15.00 789.784
    20.00 192.505
    25.00 79.483
    35.00 -41.995
    SBR 5.00 14.963 150.942
    10.00 403.220
    15.00 702.711
    20.00 52.321
    25.00 -11.785
    35.00 -66.691
    废旧橡胶粉(Waste Rubber, WR) 5.00 180 -477.020 [96]
    硫化改性橡胶粉(Sulfonated Rubber, SR) -540.240
    机械化学活化橡胶粉(Mechanochemical Modified Rubber Powder, MMRP) -498.650
    机械化学共改性橡胶粉(Mechanochemical Co-Modified Rubber, MR) -563.930
    下载: 导出CSV

    表  3  非聚合物类沥青改性剂相容性评价指标

    Table  3.   Compatibility evaluation indexes of non-polymer asphalt modifiers

    材料 掺量/% 温度/℃ 溶解度/(J·cm-3)1/2 扩散系数/(cm2·s-1) 结合能/(kJ·mol-1) 参考文献
    邻苯二甲酸二辛酯(Dioctyl Phthalate, DOP) 2.00 140 16.310 642.78 [27]
    己二酸二辛酯(Dioctyl Adipate, DOA) 15.650 716.55
    乙酰丁酸三丁酯(Acetyl Tributyl Citrate, ATBC) 16.080 511.03
    三苯甲酸三辛酯(Trioctyl Trimellitate, TOTM) 16.510 931.52
    1.00 150 5.480 0×10-7 [119]
    3.00 1.059 0×10-6
    5.00 2.334 0×10-6
    10.00 3.889 0×10-6
    纳米ZnO/SBS 4.90/3.90 25 5.530 2.256 0×10-5 [120]
    5.10/3.90 5.800 2.185 0×10-5
    5.20/4.00 5.290 2.084 0×10-5
    5.00/4.10 5.640 1.250 4×10-5
    纳米ZnO 4.90 3.368 0×10-5
    5.10 3.284 0×10-5
    5.20 2.931 0×10-5
    5.00 2.580 0×10-5
    RPE 5.00 25 0.604 9×10-5 [121]
    石墨烯/RPE 0.50/5.00 6.484 0×10-6
    氯离子除冰剂 3.00 25 1.210 0×10-6 254.01 [122]
    65 1.340 0×10-6 297.44
    165 1.750 0×10-6 397.68
    沥青质分子间(Asphaltene-Asphaltene, AT-AT) 10.00 25 -249.93 [123]
    树脂分子间(Resin-Resin, R-R) -110.01
    沥青质与胶质分子间(Asphaltene-Resin, AT-R) -59.70
    AT-AT-污泥生物油分子(Bio-oil, B) -296.04
    R-R-B -614.31
    AT-R-B -529.07
    抗冻蛋白(Tenebrio Molitor Antifreeze Protein, TmAFP)-沥青质 -47 -280.50 [124]
    TmAFP-树脂 -288.60
    TmAFP-油分 -103.20
    木质素 0.00 25 15.400 [125]
    10.00
    20.00
    30.00
    聚氨酯(Polyurethane, PU) 5.00 105 5.120 4.400 0×10-3 [126]
    120 6.920 3.800 0×10-3
    135 5.090 6.100 0×10-3
    150 5.380 8.500 0×10-3
    165 5.440 9.800 0×10-3
    PU 16.70 100 21.891 -2 467.17 [127]
    120 21.906 -2 543.12
    140 22.085 -2 562.89
    160 21.892 -2 573.75
    180 21.371 -2 600.28
    PU 18.48 100 -5 344.20 [128]
    110 -5 313.10
    120 -5 286.20
    130 -5 183.10
    140 -5 215.20
    150 -5 116.30
    160 -5 155.70
    环氧树脂(Epoxy Resin, ER) 20.00 25 11.007 -7 713.99 [129]
    下载: 导出CSV

    表  4  MD模拟与试验结果的性能对比

    Table  4.   Property comparison between MD simulation and experimental results

    试验评价方法 试验评估结果 MD评估方法 性能相关性分析
    Cole-Cole图[84] 沥青和SBS的相互作用和分散程度 相互作用能 相互作用能与Cole-Cole图的对称性负相关,即相互作用能越大,Cole-Cole图越对称(沥青和SBS的相容性越好)
    复合黏度测试[84] 黏弹性和温度敏感性 扩散系数 添加SBS后,沥青中除沥青质外,其他组分的扩散系数都降低(SBS形成交联网络,增加了沥青的黏度和抗车辙性能);与复合黏度测试结果一致(添加SBS后,沥青的复合黏度增大,而温度敏感性降低)
    FM[84, 87, 98, 106] 相态变化 径向分布函数 添加SBS后,沥青中除沥青质外,其他组分的径向分布函数都出现明显峰值(SBS形成有序的微相结构,增加了沥青的复杂性和稳定性);添加SBS后,沥青中出现了明亮的圆点状结构(SBS在沥青中形成了球形或圆柱形的微相区域)
    SBS双相结构 相对掺量 SBS聚合物和轻组分之间的相互作用下降,沥青质和胶质的含量增加;极性组分与轻组分之间的竞争加剧(相对掺量变化)
    相态变化 结合能 CWTB改性沥青呈现明显的双相结构,随着发育时间的增加,CWTB相的面积增大,说明CWTB吸收了沥青中的轻质组分;CWTB与沥青中的轻质组分结合强度较高
    相态变化 扩散系数 聚乙烯在沥青基质中的分布越均匀,相分离现象越不明显,说明回收聚乙烯与沥青分子之间的相互作用越强,系统越稳定,分子运动越缓慢,扩散系数越小
    DSR[87, 106, 116] 复数模量、阻尼因子、车辙因子、恢复率和不可恢复蠕变应力 玻璃化转变温度和溶解度 复数模量、车辙因子、阻尼因子下降,低温柔韧性下降,玻璃化转变温度、溶解度提升
    复数模量、阻尼因子和车辙因子 结合能、电荷转移数和扩散系数 复数模量和车辙因子与结合能和电荷转移数正相关,阻尼因子与扩散系数负相关;结合能和电荷转移数越大,说明分子间的相互作用越强,系统越稳定,高温下越不易变形;扩散系数越大,说明分子间的相互作用越弱,系统越不稳定,高温下越易变形
    流变性能和抗变形能力 自由体积分数 复数模量和相位角表征沥青在高温下的流变性能和抗变形能力;自由体积分数表征沥青分子间的空隙和活动空间
    AFM[87, 89] 相态变化(蜂窝状结构的形成) 相对掺量 蜂窝状结构数量和面积增加;聚合物和轻组分之间的相互作用下降,沥青质和SBS聚合物主要聚集在模型下部(相对掺量变化)
    表面形貌和微观结构 径向分布函数和回转半径 基质沥青表面较为平滑,而SBS改性沥青表面较为粗糙;基质沥青呈现出蜂窝状相、蜂窝壳相和基质相,而SBS改性沥青中蜂窝状相的含量增加,且分散均匀;径向分布函数反映不同组分分子之间的距离分布,而Rg反映分子链的尺寸和形状;SBS对沥青分子结构有明显的影响,增加了沥青分子的紧密度和支链的延展性,从而增加了沥青中蜂窝状相的含量
    SEM[89] 微观形貌和分散情况 溶解度 SBS改性沥青中SBS以絮状形式分散在沥青中,并没有完全溶解;SBS和沥青的溶解度差值较大,不能达到完全相容的状态
    DMA[98] 抗车辙性能 扩散系数 CWTB吸收沥青中的轻质组分,导致沥青中沥青质和树脂的相对含量增加,改性沥青的抗车辙性能显著提高;引入CWTB后沥青各组分的扩散系数降低(CWTB对沥青分子的运动有阻碍作用)
    傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy, FTIR)[98, 106] 是否发生化学反应 键能 FTIR曲线的波动与基质沥青和CWTB改性沥青一致,说明功能团没有发生变化;CWTB与沥青分子间的键能未变化,说明CWTB与沥青之间是物理作而不是化学作用
    Brookfield旋转黏度[116] 流变性能 动力学剪切黏度 石墨烯的加入能增加沥青的抗流变能力和高温稳定性
    BBR[116] 刚度和蠕变速率 玻璃化转变温度 刚度和蠕变速率表征沥青在低温下的抗裂性能;玻璃化转变温度表征沥青从玻璃态到高黏弹态的转变温度
    下载: 导出CSV
  • [1] ZHANG Tao-li, CHEN Yu-jing, HU Kui, et al. Investigating the compatibility mechanism of bitumen modified with photo-oxidative aging of polyethylene using molecular dynamics simulation[J]. Journal of Materials in Civil Engineering, 2023, 35(11): 04023424. doi: 10.1061/JMCEE7.MTENG-15955
    [2] 钱锦华, 董福营, 陈晓慧, 等. 聚合物改性沥青的高温流变性能研究进展[J]. 材料导报, 2023, 37(增2): 609-613.

    QIAN Jin-hua, DONG Fu-ying, CHEN Xiao-hui, et al. Materials reports research progress on high temperature rheological properties of polymer modified asphalt[J]. Materials Reports, 2023, 37(S2): 609-613. (in Chinese)
    [3] KIM H, LEE S J. Laboratory investigation of different standards of phase separation in crumb rubber modified asphalt binders[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1975-1978. doi: 10.1061/(ASCE)MT.1943-5533.0000751
    [4] LIANG Ming, XIN Xue, FAN Wei-yu, et al. Experimental and simulation study of phase microstructure and storage stability of asphalt modified with ethylene-vinyl acetate[J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019288. doi: 10.1061/(ASCE)MT.1943-5533.0002931
    [5] QIAN Cheng-duo, FAN Wei-yu, REN Fang-yong, et al. Influence of polyphosphoric acid (PPA) on properties of crumb rubber (CR) modified asphalt[J]. Construction and Building Materials, 2019, 227: 117094-117094. doi: 10.1016/j.conbuildmat.2019.117094
    [6] LIU Sheng-jie, ZHOU Sheng-bo, PENG Ai-hong, et al. Analysis of the performance and mechanism of desulfurized rubber and low-density polyethylene compound-modified asphalt[J]. Journal of Applied Polymer Science, 2019, 136(45): 48194. doi: 10.1002/app.48194
    [7] LI Jin, XIAO Fei-peng, AMIRKHANIAN S N. Storage, fatigue and low temperature characteristics of plasma treated rubberized binders[J]. Construction and Building Materials, 2019, 209: 454-462. doi: 10.1016/j.conbuildmat.2019.03.136
    [8] LIN Peng, HUANG Wei-dong, TANG Nai-peng, et al. Performance characteristics of terminal blend rubberized asphalt with SBS and polyphosphoric acid[J]. Construction and Building Materials, 2017, 141: 171-182. doi: 10.1016/j.conbuildmat.2017.02.138
    [9] ZHU Ji-qing, BALIEU R, WANG Hao-peng. The use of solubility parameters and free energy theory for phase behaviour of polymer-modified bitumen: a review[J]. Road Materials and Pavement Design, 2021, 22(4): 757-778. doi: 10.1080/14680629.2019.1645725
    [10] LO PRESTI D, IZQUIERDO M A, JIMÉNEZ DEL BARCO CARRIÓN A. Towards storage-stable high-content recycled tyre rubber modified bitumen[J]. Construction and Building Materials, 2018, 172: 106-111. doi: 10.1016/j.conbuildmat.2018.03.226
    [11] TAUSTE R, MORENO-NAVARRO F, SOL-SÁNCHEZ M, et al. Understanding the bitumen ageing phenomenon: a review[J]. Construction and Building Materials, 2018, 192: 593-609. doi: 10.1016/j.conbuildmat.2018.10.169
    [12] GE Dong-dong, YAN Ke-zhen, YOU Zhan-ping, et al. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene[J]. Construction and Building Materials, 2016, 126: 66-76. doi: 10.1016/j.conbuildmat.2016.09.014
    [13] TANG Jun-cheng, ZHU Chong-zheng, ZHANG Heng-long, et al. Effect of liquid ASAs on the rheological properties of crumb rubber modified asphalt[J]. Construction and Building Materials, 2019, 194: 238-246. doi: 10.1016/j.conbuildmat.2018.11.028
    [14] YAO Hui, YOU Zhan-ping, LI Liang, et al. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy[J]. Construction and Building Materials, 2013, 38: 327-337. doi: 10.1016/j.conbuildmat.2012.08.004
    [15] KAFLE B, BÖCKER U, WUBSHET S G, et al. Fourier-transform infrared spectroscopy for characterization of liquid protein solutions: a comparison of two sampling techniques[J]. Vibrational Spectroscopy, 2023, 124: 103490. doi: 10.1016/j.vibspec.2022.103490
    [16] YIN Long, ZHOU Hong-bing, QUAN Yi-wu, et al. Prompt modification of styrene-butadiene rubber surface with trichloroisocyanuric acid by increasing chlorination temperature[J]. Journal of Applied Polymer Science, 2012, 124(1): 661-668. doi: 10.1002/app.35018
    [17] POLACCO G, FILIPPI S. Vulcanization accelerators as alternative to elemental sulfur to produce storage stable SBS modified asphalts[J]. Construction and Building Materials, 2014, 58: 94-100. doi: 10.1016/j.conbuildmat.2014.02.018
    [18] RASOOL R, SONG Pan, WANG Shi-feng. Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber[J]. Construction and Building Materials, 2018, 182: 134-143. doi: 10.1016/j.conbuildmat.2018.06.104
    [19] ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Numerical investigation on phase separation in polymer-modified bitumen: effect of thermal condition[J]. Journal of Materials Science, 2017, 52(11): 6525-6541. doi: 10.1007/s10853-017-0887-y
    [20] ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Microstructure evaluation of polymer-modified bitumen by image analysis using two-dimensional fast Fourier transform[J]. Materials and Design, 2018, 137: 164-175. doi: 10.1016/j.matdes.2017.10.023
    [21] 汪海年, 郑文华, 尤占平, 等. 聚合物改性剂和石油沥青相容性评价方法研究进展[J]. 交通运输工程学报, 2023, 23(1): 8-26. doi: 10.19818/j.cnki.1671-1637.2023.01.002

    WANG Hai-nian, ZHENG Wen-hua, YOU Zhan-ping, et al. Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 8-26. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.002
    [22] 张恩浩, 刘爽, 单丽岩, 等. 石墨烯微胶囊沥青双机制愈合机理研究[J]. 中国公路学报, 2022, 35(7): 91-99. doi: 10.3969/j.issn.1001-7372.2022.07.007

    ZHANG En-hao, LIU Shuang, SHAN Li-yan, et al. Study on double healing mechanism of graphene microcapsule asphalt binder[J]. China Journal of Highway and Transport, 2022, 35(7): 91-99. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.07.007
    [23] 全秀洁, 孔令云, 王昊敏, 等. 亲水基团对十二烷基阴离子乳化剂在SiO2表面吸附影响的分子动力学模拟与试验研究[J]. 复合材料学报, 2022, 39(6): 2894-2906.

    QUAN Xiu-jie, KONG Ling-yun, WANG Hao-min, et al. Molecular dynamics simulation and experimental study on the influence of hydrophilic group on the adsorption of dodecyl anionic emulsifier on SiO2 surface[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2894-2906. (in Chinese)
    [24] 吕志田, 潘伶, 张晋铭, 等. 沥青-集料界面粘附机理的分子动力学模拟[J]. 材料科学与工程学报, 2022, 40(5): 809-815, 834.

    LYU Zhi-tian, PAN Ling, ZHANG Jin-ming, et al. Molecular dynamics simulation of adhesion mechanism of asphalt-aggregate interface[J]. Journal of Materials Science and Engineering, 2022, 40(5): 809-815, 834. (in Chinese)
    [25] 汪海年, 丁鹤洋, 冯珀楠, 等. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001

    WANG Hai-nian, DING He-yang, FENG Po-nan, et al. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.001
    [26] XU Ning, WANG Hai-nian, WANG Hui-min, et al. Research progress on resource utilization of waste cooking oil in asphalt materials: a state-of-the-art review[J]. Journal of Cleaner Production, 2023, 385: 135427. doi: 10.1016/j.jclepro.2022.135427
    [27] GAO Ying-li, TIAN Wei-wei, LI Yue-lin, et al. Study on compatibility mechanism of plasticizer and asphalt based on molecular dynamics[J]. Materials and Design, 2023, 228: 111827. doi: 10.1016/j.matdes.2023.111827
    [28] XU Guang-ji, YAO Yu-shi, MA Tao, et al. Experimental study and molecular simulation on regeneration feasibility of high-content waste tire crumb rubber modified asphalt[J]. Construction and Building Materials, 2023, 369: 130570. doi: 10.1016/j.conbuildmat.2023.130570
    [29] HAN Yan-qiang, ALI I, WANG Zhi-long, et al. Machine learning accelerates quantum mechanics predictions of molecular crystals[J]. Physics Reports, 2021, 934: 1-71. doi: 10.1016/j.physrep.2021.08.002
    [30] KAMACHI T, YOSHIZAWA K. Low-mode conformational search method with semiempirical quantum mechanical calculations: application to enantioselective organocatalysis[J]. Journal of Chemical Information and Modeling, 2016, 56(2): 347-353. doi: 10.1021/acs.jcim.5b00671
    [31] POLKOVNIKOV M, GRAMOLIN A V, KAPLAN D E, et al. Experimental limit on nonlinear state-dependent terms in quantum theory[J]. Physical Review Letters, 2023, 130(4): 040202. doi: 10.1103/PhysRevLett.130.040202
    [32] VAIWALA R, AYAPPA K G. A generic force field for simulating native protein structures using dissipative particle dynamics[J]. Soft Matter, 2021, 17(42): 9772-9785. doi: 10.1039/D1SM01194D
    [33] SUN Huai. COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364. doi: 10.1021/jp980939v
    [34] SUN Huai, JIN Zhao, YANG Chun-wei, et al. COMPASS Ⅱ: extended coverage for polymer and drug-like molecule databases[J]. Journal of Molecular Modeling, 2016, 22(2): 47. doi: 10.1007/s00894-016-2909-0
    [35] SAVIN A V, MAZO M A. The COMPASS force field: validation for carbon nanoribbons[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118: 113937. doi: 10.1016/j.physe.2019.113937
    [36] ASCHE T S, BEHRENS P, SCHNEIDER A M. Validation of the COMPASS force field for complex inorganic-organic hybrid polymers[J]. Journal of Sol-Gel Science and Technology, 2017, 81(1): 195-204. doi: 10.1007/s10971-016-4185-y
    [37] AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. COMPASS Ⅲ: automated fitting workflows and extension to ionic liquids[J]. Molecular Simulation, 2021, 47(7): 540-551. doi: 10.1080/08927022.2020.1808215
    [38] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. doi: 10.1021/ja9621760
    [39] CYGAN R T, LIANG Jian-jie, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
    [40] CIEPLAK P, HOWARD A E, POWERS J P, et al. Elucidating the origin of conformational energy differences in substituted 1, 3-dioxanes: a combined theoretical and experimental study[J]. The Journal of Organic Chemistry, 1996, 61(11): 3662-3668. doi: 10.1021/jo951918p
    [41] BROOKS B R, BROOKS III C L, MACKERELL JR A D, et al. CHARMM: the biomolecular simulation program[J]. Journal of Computational Chemistry, 2009, 30(10): 1545-1614. doi: 10.1002/jcc.21287
    [42] XU Xiang-tian, LI Gao-sheng, ZHAO Yu-qin, et al. Analytical solutions for heat conduction problems with three kinds of periodic boundary conditions and their applications[J]. Applied Mathematics and Computation, 2023, 442: 127735. doi: 10.1016/j.amc.2022.127735
    [43] GREISMAN J B, WILLMORE L, YEH C Y, et al. Discovery and validation of the binding poses of allosteric fragment hits to protein tyrosine phosphatase 1b: from molecular dynamics simulations to X-ray crystallography[J]. Journal of Chemical Information and Modeling, 2023, 63(9): 2644-2650. doi: 10.1021/acs.jcim.3c00236
    [44] JANA G, MENDOZA-CORTES J L. Thermodynamics, kinetics, and optical properties of rotaxane: a first-principles molecular dynamics study[J]. The Journal of Physical Chemistry A, 2023, 127(12): 2671-2687. doi: 10.1021/acs.jpca.2c07774
    [45] KUMAR A, SWAIN S, PRABHUDESAI V S. Inelastic electron scattering induced quantum coherence in molecular dynamics[J]. Nature Communications, 2023, 14(1): 2769. doi: 10.1038/s41467-023-38440-6
    [46] DENG Shao-zhong, XUE Chang-feng, BAUMKETNER A, et al. Generalized image charge solvation model for electrostatic interactions in molecular dynamics simulations of aqueous solutions[J]. Journal of Computational Physics, 2013, 245: 84-106. doi: 10.1016/j.jcp.2013.03.027
    [47] AL-NEMA M, GAURAV A, LEE V S. Designing of 2, 3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach[J]. Computers in Biology and Medicine, 2023, 159: 106869. doi: 10.1016/j.compbiomed.2023.106869
    [48] DITTRICH J, POPARA M, KUBIAK J, et al. Resolution of maximum entropy method-derived posterior conformational ensembles of a flexible system probed by fret and molecular dynamics simulations[J]. Journal of Chemical Theory and Computation, 2023, 19(8): 2389-2409. doi: 10.1021/acs.jctc.2c01090
    [49] ALBERTÍ M, AMAT A, FARRERA L, et al. From the (NH3)2-5 clusters to liquid ammonia: molecular dynamics simulations using the NVE and NpT ensembles[J]. Journal of Molecular Liquids, 2015, 212: 307-315. doi: 10.1016/j.molliq.2015.09.016
    [50] HAMILTON N E, MAHJOUB R, LAWS K J, et al. A blended NPT/NVT scheme for simulating metallic glasses[J]. Computational Materials Science, 2017, 130: 130-137. doi: 10.1016/j.commatsci.2017.01.006
    [51] KIM M, KIM E, LEE S, et al. New method for constant-NPT molecular dynamics[J]. The Journal of Physical Chemistry A, 2019, 123(8): 1689-1699. doi: 10.1021/acs.jpca.8b09082
    [52] INGEBRIGTSEN T, HEILMANN O J, TOXVAERD S, et al. Time reversible molecular dynamics algorithms with holonomic bond constraints in the NPH and NPT ensembles using molecular scaling[J]. The Journal of Chemical Physics, 2010, 132(15): 154106. doi: 10.1063/1.3363609
    [53] HIYAMA M, KINJO T, HYODO S. Angular momentum form of Verlet algorithm for rigid molecules[J]. Journal of the Physical Society of Japan, 2008, 77(6): 064001. doi: 10.1143/JPSJ.77.064001
    [54] BATCHO P F, SCHLICK T. Special stability advantages of position—Verlet over velocity-Verlet in multiple-time step integration[J]. The Journal of Chemical Physics, 2001, 115(9): 4019-4029. doi: 10.1063/1.1389855
    [55] GHAEMI A, ARASTEH B. SFLA-based heuristic method to generate software structural test data[J]. Journal of Software: Evolution and Process, 2020, 32(1): e2228. doi: 10.1002/smr.2228
    [56] REFSON K. Moldy: a portable molecular dynamics simulation program for serial and parallel computers[J]. Computer Physics Communications, 2000, 126(3): 310-329. doi: 10.1016/S0010-4655(99)00496-8
    [57] LIU Yong-sheng, HU Pan-ru, XU Zhi-bo, et al. Tooth surface registration of spiral bevel gear based on improved genetic algorithm[J]. Journal of Physics: Conference Series, 2023, 2562(1): 012020. doi: 10.1088/1742-6596/2562/1/012020
    [58] 郑仕跃, 邹卓民, 周权峰, 等. 基于12成分模型和分子动力学的沥青材料性质模拟研究[J]. 铁道科学与工程学报, 2022, 19(5): 1331-1338.

    ZHENG Shi-yue, ZOU Zhuo-min, ZHOU Quan-feng, et al. Simulation of asphalt properties based on 12-component model and molecular dynamics[J]. Journal of Railway Science and Engineering, 2022, 19(5): 1331-1338. (in Chinese)
    [59] DING Yong-jie, HUANG Bao-shan, SHU Xiang. Modeling shear viscosity of asphalt through nonequilibrium molecular dynamics simulation[J]. Transportation Research Record, 2018, 2672(28): 235-243. doi: 10.1177/0361198118793316
    [60] DING He-yang, WANG Hai-nian, QU Xin, et al. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation[J]. Journal of Cleaner Production, 2021, 299: 126927. doi: 10.1016/j.jclepro.2021.126927
    [61] FALLAH F, KHABAZ F, KIM Y R, et al. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction[J]. Fuel, 2019, 237: 71-80. doi: 10.1016/j.fuel.2018.09.110
    [62] HANSEN J S, LEMARCHAND C A, NIELSEN E, et al. Four-component united-atom model of bitumen[J]. The Journal of Chemical Physics, 2013, 138(9): 094508. doi: 10.1063/1.4792045
    [63] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. doi: 10.1016/j.fuel.2013.07.012
    [64] PAN Jie-lin, TAREFDER R A, HOSSAIN M I. Study of moisture impact on asphalt before and after oxidation using molecular dynamics simulations[J]. Transportation Research Record, 2016, 2574(1): 38-47. doi: 10.3141/2574-04
    [65] QU Xin, FAN Ze-peng, LI Tian-shuai, et al. Understanding of asphalt chemistry based on the six-fraction method[J]. Construction and Building Materials, 2021, 311: 125241. doi: 10.1016/j.conbuildmat.2021.125241
    [66] SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. doi: 10.1016/j.fuel.2017.09.089
    [67] XU Guang-ji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. doi: 10.1016/j.fuel.2016.10.021
    [68] ZADSHIR M, OLDHAM D J, HOSSEINNEZHAD S, et al. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation[J]. Construction and Building Materials, 2018, 190: 392-402. doi: 10.1016/j.conbuildmat.2018.09.137
    [69] ZHANG Li-qun, GREENFIELD M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. The Journal of Chemical Physics, 2007, 127(19): 194502. doi: 10.1063/1.2799189
    [70] ZHANG Li-qun, GREENFIELD M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy and Fuels, 2008, 22(5): 3363-3375. doi: 10.1021/ef700699p
    [71] DICKIE J P, YEN T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. doi: 10.1021/ac50157a057
    [72] WANG Jiang, FERGUSON A L. Mesoscale simulation of asphaltene aggregation[J]. The Journal of Physical Chemistry B, 2016, 120(32): 8016-8035. doi: 10.1021/acs.jpcb.6b05925
    [73] AIREY G D. Rheological properties of styrene butadiene styrene polymer modified road bitumens[J]. Fuel, 2003, 82(14): 1709-1719. doi: 10.1016/S0016-2361(03)00146-7
    [74] CHEN Ming-yuan, GENG Jiu-guang, XIA Cai-yun, et al. A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements[J]. Construction and Building Materials, 2021, 294: 123610. doi: 10.1016/j.conbuildmat.2021.123610
    [75] GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956. doi: 10.1016/j.conbuildmat.2020.118956
    [76] FAKHRI M, SHAHRYARI E, AHMADI T. Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA)[J]. Construction and Building Materials, 2022, 326: 126780. doi: 10.1016/j.conbuildmat.2022.126780
    [77] ZHENG Wen-hua, WANG Hai-nian, CHEN Yu, et al. A review on compatibility between crumb rubber and asphalt binder[J]. Construction and Building Materials, 2021, 297: 123820. doi: 10.1016/j.conbuildmat.2021.123820
    [78] SUN Guo-qiang, LI Bin, SUN Da-quan, et al. Chemo-rheological and morphology evolution of polymer modified bitumens under thermal oxidative and all-weather aging[J]. Fuel, 2021, 285: 118989. doi: 10.1016/j.fuel.2020.118989
    [79] LI Chi-xuan, FAN Su-ying, XU Tao. Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021207. doi: 10.1061/(ASCE)MT.1943-5533.0003863
    [80] YANG Peng, LIU Dao-sheng, YAN Feng, et al. Application of the compatibility theory and the solubility parameter theory in SBS modification asphalt[J]. Petroleum Science and Technology, 2002, 20(3/4): 367-376.
    [81] WANG Tao, HUANG Xiao-sheng, ZHANG Yu-zhen. Application of Hansen solubility parameters to predict compatibility of SBS-modified bitumen[J]. Journal of Materials in Civil Engineering, 2010, 22: 773-778. doi: 10.1061/(ASCE)MT.1943-5533.0000011
    [82] LI Guan-nan, GU Zhao-jun, TAN Yi-qiu, et al. Research on the phase structure of styrene-butadiene-styrene modified asphalt based on molecular dynamics[J]. Construction and Building Materials, 2022, 326: 126933. doi: 10.1016/j.conbuildmat.2022.126933
    [83] 冯新军, 郝培文. SBS聚合物改性剂与基质沥青的配伍性研究[J]. 公路, 2007, 52(7): 186-190. doi: 10.3969/j.issn.0451-0712.2007.07.045

    FENG Xin-jun, HAO Pei-wen. A study on consistency of SBS polymer modifier and asphalt[J]. Highway, 2007, 52(7): 186-190. (in Chinese) doi: 10.3969/j.issn.0451-0712.2007.07.045
    [84] TANG Jin, WANG Hao, LIANG Ming. Molecular simulation and experimental analysis of interaction and compatibility between asphalt binder and styrene-butadiene-styrene[J]. Construction and Building Materials, 2022, 342: 128028. doi: 10.1016/j.conbuildmat.2022.128028
    [85] LUO Hai-song, ZHENG Chuan-feng, YANG Xue, et al. Development of technology to accelerate SBS-modified asphalts swelling in dry modification mode[J]. Construction and Building Materials, 2022, 314: 125703. doi: 10.1016/j.conbuildmat.2021.125703
    [86] LIANG Ming, HU Yong, KONG Xiang-jun, et al. Effects of SBS configuration on performance of high modulus bitumen based on dynamic mechanical analysis[J]. Kemija U Industriji, 2016, 65(7/8): 379-384.
    [87] YU Cai-hua, HU Kui, YANG Qi-lin, et al. Multi-scale observation of oxidative aging on the enhancement of high-temperature property of SBS-modified asphalt[J]. Construction and Building Materials, 2021, 313: 125478. doi: 10.1016/j.conbuildmat.2021.125478
    [88] LIN Peng, YAN Chuan-qi, HUANG Wei-dong, et al. Rheological, chemical and aging characteristics of high content polymer modified asphalt[J]. Construction and Building Materials, 2019, 207: 616-629. doi: 10.1016/j.conbuildmat.2019.02.086
    [89] SU Man-man, ZHOU Juan-lan, LU Jing-zhou, et al. Using molecular dynamics and experiments to investigate the morphology and micro-structure of SBS modified asphalt binder[J]. Materials Today Communications, 2022, 30: 103082. doi: 10.1016/j.mtcomm.2021.103082
    [90] GAO Ming-xing, CHEN Yao-lu, FAN Cong-hao, et al. Molecular dynamics study on the compatibility of asphalt and rubber powder with different component contents[J]. ACS Omega, 2022, 7(41): 36157-36164. doi: 10.1021/acsomega.2c02813
    [91] DAN Han-cheng, WEN Xiang, CHEN Jia-qi, et al. A molecular dynamics approach to the interfacial characteristics between melamine formaldehyde resin and paving asphalts[J]. Construction and Building Materials, 2023, 365: 130051. doi: 10.1016/j.conbuildmat.2022.130051
    [92] DALY W H, BALAMURUGAN S S, NEGULESCU I, et al. Characterization of crumb rubber modifiers after dispersion in asphalt binders[J]. Energy and Fuels, 2019, 33(4): 2665-2679. doi: 10.1021/acs.energyfuels.8b03559
    [93] GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 435-445. doi: 10.1007/s11709-019-0603-x
    [94] KHALILI M, JADIDI K, KARAKOUZIAN M, et al. Rheological properties of modified crumb rubber asphalt binder and selecting the best modified binder using AHP method[J]. Case Studies in Construction Materials, 2019, 11: e00276. doi: 10.1016/j.cscm.2019.e00276
    [95] NANJEGOWDA V H, BILIGIRI K P. Utilization of high contents of recycled tire crumb rubber in developing a modified-asphalt-rubber binder for road applications[J]. Resources, Conservation and Recycling, 2023, 192: 106909. doi: 10.1016/j.resconrec.2023.106909
    [96] KONG Pei-pei, XU Gang, FU Liu-xu, et al. Chemical structure of rubber powder on the compatibility of rubber powder asphalt[J]. Construction and Building Materials, 2023, 392: 131769. doi: 10.1016/j.conbuildmat.2023.131769
    [97] 李昊, 郭荣鑫, 晏永, 等. 高模量沥青及其混合料低温性能研究进展[J]. 化工进展, 2022, 41(增1): 351-365.

    LI Hao, GUO Rong-xin, YAN Yong, et al. Low temperature performance of high modulus asphalt binder and mixtures: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. (in Chinese)
    [98] HU Kui, YU Cai-hua, CHEN Yu-jing, et al. Multiscale mechanisms of asphalt performance enhancement by crumbed waste tire rubber: insight from molecular dynamics simulation[J]. Journal Molecular Modeling, 2021, 27(6): 170. doi: 10.1007/s00894-021-04786-1
    [99] LIU Qi, LIU Jin-zhou, YU Bin, et al. Study on the properties of waste oil-activated crumb rubber-modified asphalt based on molecular dynamics simulation and rheology[J]. Advances in Materials Science and Engineering, 2022, 2022: 7751479.
    [100] JIAO Bo-zong, PAN Bao-feng, CHE Tian-kai. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation[J]. Construction and Building Materials, 2022, 323: 126360. doi: 10.1016/j.conbuildmat.2022.126360
    [101] QIAN Zhen-dong, CHEN Chun, JIANG Chen-long, et al. Development of a lightweight epoxy asphalt mixture for bridge decks[J]. Construction and Building Materials, 2013, 48: 516-520. doi: 10.1016/j.conbuildmat.2013.06.096
    [102] SUN Yi-fan, ZHANG Yu-ge, XU Ke, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes[J]. Journal of Applied Polymer Science, 2015, 132(12): 41694. doi: 10.1002/app.41694
    [103] CONG Pei-liang, TIAN Yu, LIU Ning, et al. Investigation of epoxy-resin-modified asphalt binder[J]. Journal of Applied Polymer Science, 2016, 133(21): 43401. doi: 10.1002/app.43401
    [104] LI Rong, FENG Feng, CHEN Ze-Zhong, et al. Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification[J]. Talanta, 2015, 140: 143-149. doi: 10.1016/j.talanta.2015.03.041
    [105] WEI Kun, WANG Ya-chuan, MA Biao. Effects of microencapsulated phase change materials on the performance of asphalt binders[J]. Renewable Energy, 2019, 132: 931-940. doi: 10.1016/j.renene.2018.08.062
    [106] YU Cai-hua, HU Kui, CHEN Yu-jing, et al. Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations[J]. Molecular Simulation, 2021, 47(13): 1037-1049. doi: 10.1080/08927022.2021.1944624
    [107] LIANG Ming, XIN Xue, FAN Wei-yu, et al. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: experimental and numerical characterizations[J]. Construction and Building Materials, 2019, 203: 608-620. doi: 10.1016/j.conbuildmat.2019.01.095
    [108] YU Rui-en, FANG Chang-qing, LIU Pei, et al. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite[J]. Applied Clay Science, 2015, 104: 1-7. doi: 10.1016/j.clay.2014.11.033
    [109] YANG Xiao-long, SHEN Ai-qin, GUO Yin-chuan, et al. A review of nano layered silicate technologies applied to asphalt materials[J]. Road Materials and Pavement Design, 2021, 22(8): 1708-1733. doi: 10.1080/14680629.2020.1713199
    [110] GUO Meng, TAN Yi-qiu, WANG Lin-bing, et al. Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation[J]. Road Materials and Pavement Design, 2017, 18(S3): 149-158.
    [111] GUO Meng, TAN Yi-qiu, WEI Jian-ming. Using molecular dynamics simulation to study concentration distribution of asphalt binder on aggregate surface[J]. Journal of Materials in Civil Engineering, 2018, 30(5): 04018075. doi: 10.1061/(ASCE)MT.1943-5533.0002258
    [112] LIU Jin-zhou, YU Bin, HONG Qian-zhe. Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag[J]. Construction and Building Materials, 2020, 255: 119332. doi: 10.1016/j.conbuildmat.2020.119332
    [113] LONG Zheng-wu, ZHOU Si-jia, JIANG Shao-ting, et al. Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation[J]. Journal Molecular Modeling, 2021, 27(3): 81. doi: 10.1007/s00894-021-04697-1
    [114] 张恒龙, 朱崇政, 张葆琳, 等. 表面修饰纳米二氧化硅对沥青性能的影响[J]. 建筑材料学报, 2014, 17(1): 172-176. doi: 10.3969/j.issn.1007-9629.2014.01.031

    ZHANG Heng-long, ZHU Chong-zheng, ZHANG Bao-lin, et al. Effect of nano-SiO2 with modified surface on properties of bitumen[J]. Journal of Building Materials, 2014, 17(1): 172-176. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.01.031
    [115] WANG Li-ming, LI Zhu-ying. Molecular dynamics simulation and experimental analysis of the effect of ultrasonic disposal on the compatibility of nanoasphalt[J]. Coatings, 2022, 12(4): 424-444. doi: 10.3390/coatings12040424
    [116] CAO Xue-juan, DENG Mei, DING Yong-jie, et al. Effect of photocatalysts modification on asphalt: investigations by experiments and theoretical calculation[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021083. doi: 10.1061/(ASCE)MT.1943-5533.0003708
    [117] XIE Yun-lan, YU Pan-deng, ZHAI Ming. Analysis of nano-ZnO-modified asphalt compatibility based on molecular dynamics[J]. Materials, 2023, 16(13): 4710. doi: 10.3390/ma16134710
    [118] 张明祥. 纳米氧化锌改性沥青及其抗老化性能研究[D]. 西安: 长安大学, 2015.

    ZHANG Ming-xiang, Nanometer zinc oxide modified asphalt and its anti-aging properties research[D]. Xi'an: Chang'an University, 2015. (in Chinese)
    [119] SAMIEADEL A, OLDHAM D, FINI E H. Multi-scale characterization of the effect of wax on intermolecular interactions in asphalt binder[J]. Construction and Building Materials, 2017, 157: 1163-1172. doi: 10.1016/j.conbuildmat.2017.09.188
    [120] SU Man-man, SI Chun-di, ZHANG Zeng-ping, et al. Molecular dynamics study on influence of nano-ZnO/SBS on physical properties and molecular structure of asphalt binder[J]. Fuel, 2020, 263: 116777. doi: 10.1016/j.fuel.2019.116777
    [121] HU Kui, YU Cai-hua, YANG Qi-lin, et al. Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: a new observation from molecular dynamics simulation[J]. Construction and Building Materials, 2022, 320: 126263. doi: 10.1016/j.conbuildmat.2021.126263
    [122] LI Li-min, LI Heng-zhen, TAN Yi-qiu, et al. Investigation of chloride release characteristic of chlorine-based anti-icing asphalt mixture[J]. Construction and Building Materials, 2021, 312: 125410. doi: 10.1016/j.conbuildmat.2021.125410
    [123] DENG Mei, CAO Xue-juan, LI Zhi-hao, et al. Investigating properties and intermolecular interactions of sludge bio-oil modified asphalt[J]. Journal of Molecular Liquids, 2022, 360: 119415. doi: 10.1016/j.molliq.2022.119415
    [124] DUAN Shao-chan, HU Jian-ying, MA Tao, et al. Anti-icing mechanism of an environmentally sustainable tenebrio molitor antifreeze protein modified asphalt binder via molecular dynamics simulations[J]. Construction and Building Materials, 2022, 360: 129580. doi: 10.1016/j.conbuildmat.2022.129580
    [125] REN Shi-song, LIU Xue-yan, ZHANG Yi, et al. Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods[J]. Construction and Building Materials, 2021, 287: 123058. doi: 10.1016/j.conbuildmat.2021.123058
    [126] HUANG Ting, ZHANG Zeng-ping, WANG Li, et al. Study on the compatibility between polyurethane and asphalt based on experiment and molecular dynamics simulation[J]. Case Studies in Construction Materials, 2022, 17: e01424. doi: 10.1016/j.cscm.2022.e01424
    [127] LU Peng-zhen, MA Yi-heng, YE Kai, et al. Analysis of high-temperature performance of polymer-modified asphalts through molecular dynamics simulations and experiments[J]. Construction and Building Materials, 2022, 350: 128903. doi: 10.1016/j.conbuildmat.2022.128903
    [128] LU Peng-zhen, HUANG Si-min, SHEN Yang, et al. Mechanical performance analysis of polyurethane-modified asphalt using molecular dynamics method[J]. Polymer Engineering and Science, 2021, 61(9): 2323-2338. doi: 10.1002/pen.25760
    [129] YU Xin, WANG Jun-yan, SI Jing-jing, et al. Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder[J]. Construction and Building Materials, 2020, 250: 118868. doi: 10.1016/j.conbuildmat.2020.118868
    [130] FENG Lei, ZHAO Zhao, CHEN Tong-dan, et al. Comparative study of octavinyl oligomeric sesquisiloxane nanomaterial-modified asphalt using molecular dynamics method[J]. Polymers, 2022, 14(21): 4577-4597. doi: 10.3390/polym14214577
    [131] ABE A A, OLIVIERO ROSSI C, CAPUTO P, et al. Spicy bitumen: curcumin effects on the rheological and adhesion properties of asphalt[J]. Materials, 2021, 14(7): 1622-1638. doi: 10.3390/ma14071622
    [132] SAFAELDEEN G I, AL-MANSOB R A, AL-SABAEEI A M, et al. Investigating the mechanical properties and durability of asphalt mixture modified with epoxidized natural rubber (ENR) under short and long-term aging conditions[J]. Polymers, 2022, 14(21): 4726-4742. doi: 10.3390/polym14214726
    [133] XU Ou-ming, YANG Xing-hao, XIANG Shun-lin, et al. Migration characteristic and model of chloride ions for NaCl-based salt storage asphalt mixtures[J]. Construction and Building Materials, 2021, 280: 122482. doi: 10.1016/j.conbuildmat.2021.122482
    [134] ZHANG Feng-lei, LIU Xiao-dong, ZHANG Lei, et al. Preparation and properties of epoxy asphalt modified by biomimetic graphene oxide nanocomposites[J]. Journal of Materials in Civil Engineering, 2023, 35(1): 04022392. doi: 10.1061/(ASCE)MT.1943-5533.0004569
    [135] LYU Guo-chun, GAO Feng-feng, LIU Guo-kui, et al. The properties of asphaltene at the oil-water interface: a molecular dynamics simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 515: 34-40.
    [136] CAO Jia-wen, LUO Yao, ZHANG Heng-long, et al. Understanding the role of quaternary ammonium cations on the interaction of bitumen with clay: a molecular modeling study[J]. Construction and Building Materials, 2023, 364: 129970. doi: 10.1016/j.conbuildmat.2022.129970
    [137] BEHNOOD A, MODIRI GHAREHVERAN M. Morphology, rheology, and physical properties of polymer-modified asphalt binders[J]. European Polymer Journal, 2019, 112: 766-791. doi: 10.1016/j.eurpolymj.2018.10.049
    [138] GAO Ying-li, XIE Yu-tong, LIAO Mei-jie, et al. Study on the mechanism of the effect of graphene on the rheological properties of rubber-modified asphalt based on size effect[J]. Construction and Building Materials, 2023, 364: 129815. doi: 10.1016/j.conbuildmat.2022.129815
    [139] YU Cai-hua, HU Kui, CHEN Gui-xiang, et al. Molecular dynamics simulation and microscopic observation of compatibility and interphase of composited polymer modified asphalt with carbon nanotubes[J]. Journal of Zhejiang University: Science A, 2021, 22(7): 528-546. doi: 10.1631/jzus.A2000359
    [140] WANG Peng, DONG Ze-jiao, LIU Zhi-yang. Influence of carbon nanotubes on morphology of asphalts modified with styrene-butadiene-styrene[J]. Transportation Research Record, 2017, 2632(1): 130-139. doi: 10.3141/2632-14
    [141] YU Cai-hua, HU Kui, YANG Qi-lin, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations[J]. Polymers, 2021, 13(10): 1658-1679. doi: 10.3390/polym13101658
    [142] LIANG Ming, SU Lin-ping, LI Pei-zhao, et al. Investigating the rheological properties of carbon nanotubes/polymer composites modified asphalt[J]. Materials, 2020, 13(18): 4077-4096. doi: 10.3390/ma13184077
    [143] LIAO Gong-yun, FANG Xin, WANG Hao, et al. Durability improvement of poroelastic road surface with treated rubber: molecular dynamics simulation and experimental observations[J]. Journal of Cleaner Production, 2022, 369: 133334. doi: 10.1016/j.jclepro.2022.133334
    [144] FENG Lei, ZHAO Peng, CHEN Tong-dan, et al. Study on the influence of nano-OvPOSS on the compatibility, molecular structure, and properties of SBS modified asphalt by molecular dynamics simulation[J]. Polymers, 2022, 14(19): 4121-4139. doi: 10.3390/polym14194121
    [145] SONIBARE K, RUCKER G, ZHANG Li-qun. Molecular dynamics simulation on vegetable oil modified model asphalt[J]. Construction and Building Materials, 2021, 270: 121687. doi: 10.1016/j.conbuildmat.2020.121687
    [146] LIU Qi, HAN Bo, WANG Shu-yi, et al. Evaluation and molecular interaction of asphalt modified by rubber particles and used engine oil[J]. Journal of Cleaner Production, 2022, 375: 134222. doi: 10.1016/j.jclepro.2022.134222
    [147] ZHANG Xiao-rui, HAN Chao, OTTO F, et al. Evaluation of properties and mechanisms of waste plastic/rubber-modified asphalt[J]. Coatings, 2021, 11(11): 1365-1378. doi: 10.3390/coatings11111365
    [148] LIU Hao, ZHANG Zeng-ping, ZHU You-xin, et al. Modification of asphalt using polyurethanes synthesized with different isocyanates[J]. Construction and Building Materials, 2022, 327: 126959. doi: 10.1016/j.conbuildmat.2022.126959
    [149] FU Zhen, TANG Yu-jie, PENG Chong, et al. Properties of polymer modified asphalt by polyphosphoric acid through molecular dynamics simulation and experimental analysis[J]. Journal of Molecular Liquids, 2023, 382: 121999. doi: 10.1016/j.molliq.2023.121999
    [150] SAMIEADEL A, FINI E H. Interplay between wax and polyphosphoric acid and its effect on bitumen thermomechanical properties[J]. Construction and Building Materials, 2020, 243: 118194. doi: 10.1016/j.conbuildmat.2020.118194
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回