留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料在湿-热-载荷作用下的加速老化与自然老化研究综述

秦国锋 秦旺招 糜沛纹 李铭 范秋寒

秦国锋, 秦旺招, 糜沛纹, 李铭, 范秋寒. 复合材料在湿-热-载荷作用下的加速老化与自然老化研究综述[J]. 交通运输工程学报, 2024, 24(5): 173-194. doi: 10.19818/j.cnki.1671-1637.2024.05.012
引用本文: 秦国锋, 秦旺招, 糜沛纹, 李铭, 范秋寒. 复合材料在湿-热-载荷作用下的加速老化与自然老化研究综述[J]. 交通运输工程学报, 2024, 24(5): 173-194. doi: 10.19818/j.cnki.1671-1637.2024.05.012
QIN Guo-feng, QIN Wang-zhao, MI Pei-wen, LI Ming, FAN Qiu-han. Review on accelerated aging and natural aging studies of composites under wet-heat-load conditions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 173-194. doi: 10.19818/j.cnki.1671-1637.2024.05.012
Citation: QIN Guo-feng, QIN Wang-zhao, MI Pei-wen, LI Ming, FAN Qiu-han. Review on accelerated aging and natural aging studies of composites under wet-heat-load conditions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 173-194. doi: 10.19818/j.cnki.1671-1637.2024.05.012

复合材料在湿-热-载荷作用下的加速老化与自然老化研究综述

doi: 10.19818/j.cnki.1671-1637.2024.05.012
基金项目: 

国家自然科学基金项目 52102473

广西科技计划项目 GuikeAD22035023

详细信息
    作者简介:

    秦国锋(1990-),男,四川广安人,广西师范大学副教授,工学博士,从事汽车结构设计理论与轻量化技术研究

    通讯作者:

    糜沛纹(1991-),女,广西桂林人,广西师范大学讲师

  • 中图分类号: U463.82

Review on accelerated aging and natural aging studies of composites under wet-heat-load conditions

Funds: 

National Natural Science Foundation of China 52102473

Guangxi Science and Technology Project GuikeAD22035023

More Information
  • 摘要: 针对复合材料在湿-热-载荷作用下的加速老化与自然老化问题,综述了国内外纤维增强树脂基复合材料在加速老化环境(高温环境、湿热环境、湿-热-载荷耦合)和自然老化条件下的微观老化机制(化学性能、表面裂纹)、宏观力学性能(拉伸、剪切、弯曲)的变化规律,总结了耐久性预测方法的一般流程及其应用进展,提出了复合材料老化失效研究的未来发展趋势。研究结果表明:复合材料受湿-热-载荷影响,在微观性能上主要表现为基体、基体与纤维界面、纤维在物质成分或者组织形态损伤等方面的变化,在宏观上主要表现为拉伸、压缩、剪切、弯曲等力学性能的变化;复合材料老化失效预测方法主要包括选择老化性度量参量、建立耐久性预测模型(线性回归、强度中值老化方程、阿伦尼乌斯模型、人工智能模型)、确定加速老化与自然老化等效关系等环节;未来应深入研究复合材料在老化环境中的微观老化机制和宏观老化性能的内在联系、不同老化环境下老化规律的相关性和定量性分析,进一步揭示复合材料在复杂环境下的老化失效机制;在此基础上,积累各种类型复合材料的加速老化和自然老化失效试验数据,建立更为精准的加速老化与自然老化等效关系,从而实现复合材料的耐久性预测。

     

  • 表  1  高温环境对复合材料拉伸性能影响

    Table  1.   Effects of high temperature environment on tensile properties of composites

    材料类型 高温条件/℃ 性能类型 变化规律 文献
    CFRP 110、120、130、140 拉伸强度、拉伸模量 变化幅度小且无规律 [21]
    80 层间拉伸强度 随着高温老化时间的延长而缓慢降低 [22]
    80、-40~80 层间剩余强度 先升高后下降 [23]
    175 杨氏模量、拉伸强度 UD试样略有增加,QI试样均有所降低 [24]
    BFRP 50、100、200、300 拉伸强度 随温度和时间的增加,退化的越快 [25]
    25、40、80、120、160、200 拉伸强度 拉伸强度先小幅度升高后线性下降 [26]
    BFRP、GFRP 20、100、200、300、350 拉伸强度 BFRP筋下降,GFRP筋先升高后下降 [27]
    下载: 导出CSV

    表  2  高温环境对复合材料剪切性能影响

    Table  2.   Effects of high temperature environments on shear properties of composites

    材料类型 高温条件/℃ 性能类型 变化规律 文献
    CFRP 210、230、250 层间剪切强度 层间剪切强度以线性的方式逐渐降低 [28]
    80 层间剪切强度 老化前期层间剪切强度显著提高,后期出现下降趋势 [22]
    20、200、350、420、420、500 层间剪切强度 [0°]14层合板先下降后稍有提高,[±45°/0°/90°/45°/0°]2s与之相反 [29]
    BFRP 120、200 层间剪切强度 先升高后下降 [30]
    25、40、80、120、160、200 层间剪切强度 先升高后下降 [26]
    BFRP、GFRP 20、100、200、300、400、500 剪切强度、最大剪切变形 均呈现先升高后降低的趋势,GFRP下降程度比BFRP大 [27]
    下载: 导出CSV

    表  3  高温环境对复合材料弯曲性能影响的研究

    Table  3.   Effects of high temperature environments on bending properties of composites

    材料类型 高温条件/℃ 性能类型 变化规律 文献
    CFRP 150 弯曲强度 先缓慢下降后明显下降 [18]
    110、120、130、140 弯曲强度 从平稳变化到降低,升高后又下降 [21]
    80 弯曲失效载荷 先升高后降低 [10]
    GFRP 120 弯曲强度 先升高后降低 [9]
    100、500 弯曲强度 温度达到Tg时,下降尤为明显 [31]
    CFRP、GFRP 25~350 弯曲强度 逐渐下降 [32]
    GFRP、BFRP 25~500 弯曲强度、弯曲弹性模量 弯曲强度随温度的升高而降低,弯曲弹性模量无明显退化 [33]
    下载: 导出CSV

    表  4  湿热环境对复合材料拉伸性能影响

    Table  4.   Effects of hygrothermal environments on tensile properties of composite materials

    材料类型 湿热环境 性能类型 变化规律 文献
    CFRP 70 ℃自来水浸泡 拉伸强度 出现轻微的降低 [49]
    70 ℃、25 ℃、85 ℃与烘干、水浴、85%RH组合 拉伸强度 85%RH下,拉伸强度随温度升高而降低,在70℃水浴条件下进一步降低 [50]
    25 ℃、50 ℃水浴 拉伸强度 温度越高,下降幅度越大 [51]
    80 ℃下95%,-40 ℃下30%RH与80 ℃下95%RH湿热循环 层间强度 随老化时间的增加而降低 [23]
    BFRP棒材 20 ℃、40 ℃、60 ℃海水环境 拉伸强度、弹性模量 拉伸强度随温度升高和老化时间的延长而下降愈快,弹性模量下降程度很小 [52]
    BFRP 60 ℃去离子水或碱性溶液 拉伸强度、弹性模量 拉伸强度先迅速下降后较缓慢下降,弹性模量的变化趋势相似,但降解速率较小 [37]
    GFRP (30±1) ℃和(60±1) ℃的去离子水和盐水 拉伸强度 均略有提高后进入降解阶段,在去离水中吸水量更大,拉伸性能下降幅度也更大 [53]
    (50±2) ℃、(90±3)%RH 拉伸强度、伸长率、模量 均先略微增加,后以曲线的趋势急剧下降,至某一阶段后平稳下降 [54]
    GFRP、CFRP 80 ℃水浴 拉伸强度、断裂伸长率 均显著下降,但GFRP比CFRP更容易受到湿热侵蚀 [55]
    下载: 导出CSV

    表  5  湿热环境对复合材料剪切性能影响

    Table  5.   Effects of hygrothermal environments on shear properties of composite materials

    材料类型 湿热条件 性能类型 变化规律 文献
    CFRP 80 ℃、90%RH 层间剪切强度、剪切模量 较大程度的降低 [56]
    100 ℃去离子水 层间剪切强度 先上升后下降,下降幅度很小 [57]
    40 ℃、60 ℃、80 ℃水浴 短梁剪切强度 初期下降相对较快,而后逐渐减慢 [43]
    GFRP (20±5) ℃、(30±1) ℃和(60±1) ℃的去离子水和盐水 层间剪切强度 浸泡温度越高,层间剪切性能的下降幅度越大,而盐水对其影响较小 [53]
    CFRP、GFRP 40 ℃、60 ℃和80 ℃去离子水 界面剪切强度 随着时间和温度的增加显著降低 [58]
    CFRP、BFRP、GFRP 25 ℃、40 ℃、55 ℃的海水溶液环境 水平剪切强度 随着暴露时间和温度的增加而降低,BFRP下降幅度最大 [59]
    下载: 导出CSV

    表  6  v

    Table  6.   Effects of hygrothermal environments on bending properties of composite materials

    材料类型 湿热条件 性能类型 变化规律 文献
    CFRP 25 ℃、50 ℃水浴 弯曲强度、弯曲模量 随着水浴温度的升高下降越显著 [51]
    25 ℃、70 ℃蒸馏水 弯曲强度 前期下降趋势非常剧烈,后期变得较为缓慢 [39]
    90 ℃、30%RH 弯曲强度、弯曲模量 强度先升高后下降最后趋于平缓,模量未发生变化 [60]
    100 ℃去离子水 弯曲强度、弯曲模量 强度先急剧下降后略有升高再显著降低,模量初始阶段保持不变后略有降低 [57]
    60 ℃蒸馏水和碱性溶液 弯曲强度 前期下降较快,后期下降速率较为缓慢,试件厚度越厚弯曲强度保持率越高 [36]
    30 ℃、50 ℃水浴 弯曲强度、弯曲模量 随着水浴温度的升高下降越显著 [61]
    BFRP 35 ℃去离子水 弯曲强度、弯曲模量、弯曲刚度 强度显著降低,模量和刚度未发生明显变化 [62]
    GFRP 60 ℃、95%RH 弯曲强度、弯曲模量 弯曲强度下降幅度较小,弯曲模量变化不大 [63]
    下载: 导出CSV

    表  7  湿-热-载荷耦合作用对纤维增强复合材料力学性能影响

    Table  7.   Effects of moisture-thermal-load coupling on mechanical properties of fiber reinforced composites

    材料类型 耦合作用条件 性能类型 变化规律 文献
    BFRP 25 ℃、40 ℃和55 ℃盐碱性水,冲击载荷 拉伸强度 暴露温度和冲击能量越高,拉伸强度保持率越低 [69]
    GFRP 40 ℃、70 ℃水浴,横向预载荷 拉伸强度 温度越高、预载荷量越大,拉伸强度下降越明显 [70]
    HFRP 25 ℃、40 ℃和55 ℃水浸,弯曲载荷 剪切强度 随着浸泡温度和负载水平的提高而逐渐降低 [73]
    CFRP 湿热循环(-40 ℃下30%RH与80 ℃下95%RH) 和高低温循环(-40 ℃~80 ℃),载荷水平1 MPa 拉伸强度、剪切强度 强度降低,湿热循环的影响更大 [23]
    (37.0±0.5) ℃的蒸馏,弯曲载荷 剪切强度 剪切强度在初期时下降速度加快,后期正好相反 [72]
    70 ℃水浸,弯曲载荷 弯曲强度 负荷水平越高,强度下降幅度越大 [39]
    80 ℃、23 ℃、-35 ℃,80%RH、50%RH,弯曲载荷 弯曲强度 载荷水平越高、孔隙率越大,弯曲强度下降幅度越大 [74]
    下载: 导出CSV

    表  8  自然老化对纤维增强复合材料拉伸性能影响

    Table  8.   Effects of natural aging on tensile properties of fiber reinforced composites

    材料类型 地区选择 性能类型 变化规律 文献
    CFRP 北京 拉伸强度、弹性模量、伸长率 拉伸强度有较小幅度的下降,而弹性模量和伸长率的变化不明显 [80]、[81]
    葡萄牙 拉伸强度、弹性模量 均有所增加,但随着老化时间的继续增加其拉伸性能依旧会降低 [82]
    海南省万宁市 拉伸强度 先升高后降低 [1]
    GFRP 西双版纳 拉伸强度、拉伸弹性模量 拉伸强度和模量先升高后降低 [83]
    马来西亚 拉伸强度 下降较明显 [84]
    里斯本市中心 拉伸强度、拉伸模量 呈现先轻微地下降后升高 [85]
    GFRP、BFRP 郑州 拉伸强度 BFRP筋小幅度下降后升高又出大幅度下降,GFRP筋升高后降低再升高到初始值相近 [86]
    GFRP、CFRP 吉林 拉伸强度 降低后升高再降低,最终下降幅度均较小 [87]
    下载: 导出CSV

    表  9  自然老化对纤维增强复合材料剪切性能影响

    Table  9.   Effects of natural aging on shear properties of fiber reinforced composites

    材料类型 地区选择 性能类型 变化规律 文献
    CFRP 海南省万宁市 层间剪切强度 上下波动,没有明显变化 [1]
    南海 纵横剪切强度 先急剧下降,之后下降幅度较小 [88]
    GFRP 里斯本市中心 层间剪切强度 无明显变化,先下降后上升 [85]
    西弗吉尼亚大学 层间剪切强度 有升高有降低,最终下降幅度较大 [90]
    武汉和三亚 剪切强度 武汉地区的下降程度比三亚地区的小 [91]
    CFRP、BFRP 西班牙北部海岸希洪市 层间剪切强度 先急剧下降,之后下降幅度变小 [89]
    GFRP、BFRP 郑州 剪切强度 GFRP筋,持续下降且降低的程度较大;BFRP筋,升高后降低再升高 [86]
    下载: 导出CSV

    表  10  自然老化对纤维增强复合材料弯曲性能影响

    Table  10.   Effect of natural aging on flexural properties of fiber reinforced composites

    材料类型 地区 性能类型 变化规律 文献
    CFRP 黑龙江省漠河县 挠度 无明显变化 [75]
    海南省万宁市 纵向弯曲强度 呈现逐步升高的趋势 [1]
    GFRP 里斯本市中心 弯曲强度、弯曲模量 VE型材的弯曲性能退化程度较高,UP型材无明显变化 [85]
    西双版纳 弯曲强度、弯曲弹性模量 弯曲强度先小幅度下降后出现较大幅度的下降趋势,弯曲弹性模量无明变化 [83]
    黑龙江省漠河县 剩余弯曲强度 呈现出先逐渐上升后下降的趋势 [92]
    FFRP 南京 弯曲强度、弯曲模量 弯曲模量降低程度比弯曲强度大 [93]
    稻壳-PE复合材料 黑龙江省哈尔滨市 弯曲强度、弹性模量 下降后有所升高,基本上没有变化 [94]
    下载: 导出CSV

    表  11  纤维增强复合材料耐久性预测结果

    Table  11.   Durability prediction results of fiber reinforced composites

    材料类型 加速老化环境 位置 分析方法 文献
    CFRP 加速腐蚀试验 厦门鼓浪屿 强度中值老化方程、老化损伤等效原则 [121]
    紫外-湿热交替循环(60 ℃、5%NaCl溶液) 南中国海海域(实海随舰) 强度中值老化方程、老化损伤等效原则 [122]
    紫外照射试验 南海环境 强度中值老化方程、老化损伤等效原则 [88]
    GFRP 光老化、高温浸水、湿热老化、热空气老化 万宁、拉萨 灰色关联分析、线性回归方程、老化损伤等效原则 [97]
    不同温度(20 ℃、40 ℃、60 ℃)碱溶液及盐溶液环境 湖北武汉 灰色关联分析、线性回归方程、老化损伤等效原则 [101]
    热空气加速老化、光加速老化湿热老化 西双版纳、厦门、济南、万宁、拉萨、漠河 方差分析、二元线性回归方程 [102]
    不同pH环境和不同温度的不同溶液 西弗吉尼亚大学 阿伦尼乌斯模型、时间-温度叠加原理 [90]
    大麻纤维增强PP生物复合材料 人工风化 法国西南部 PCA、老化损伤等效原则 [100]
    FFRP 湿热环境(60 ℃、100%RH) 南京 PCA、老化损伤等效原则 [93]
    下载: 导出CSV
  • [1] 张代军, 刘刚, 包建文, 等. T700碳纤维增强环氧树脂基复合材料自然老化性能与机制[J]. 复合材料学报, 2016, 33(7): 1390-1399.

    ZHANG Dai-jun, LIU Gang, BAO Jian-wen, et al. Environmental aging performance and mechanism of T700 carbon fiber reinforced epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1390-1399. (in Chinese)
    [2] 张亚娟, 齐暑华. 复合材料老化方法研究进展[J]. 工程塑料应用, 2002(1): 39-41.

    ZHANG Ya-juan, QI Shu-hua. Advance in the composite's aging means research[J]. Engineering Plastics Application, 2002(1): 39-41. (in Chinese)
    [3] 王云英, 刘杰, 孟江燕, 等. 纤维增强聚合物基复合材料老化研究进展[J]. 材料工程, 2011(7): 85-89.

    WANG Yun-ying, LIU Jie, MENG Jiang-yan, et al. A review on aging behaviors of fiber reinforced polymer-matrix composites[J]. Journal of Materials Engineering, 2011(7): 85-89. (in Chinese)
    [4] MENG Jiang-yan, WANG Yun-ying. A review on artificial aging behaviors of fiber reinforced polymer-matrix composites[J]. MATEC Web of Conferences, 2016, 67: 06041. doi: 10.1051/matecconf/20166706041
    [5] 冯宇晨, 明璐, 刘延坪. 碳纤维复合材料环境适应性的研究进展[J]. 热加工工艺, 2017, 46(8): 32-33.

    FENG Yu-chen, MING Lu, LIU Yan-ping. Research progress of carbon fiber composite material environment adaptability[J]. Hot Working Technology, 2017, 46(8): 32-33. (in Chinese)
    [6] SHETTAR M, CHAUDHARY A, HUSSAIN Z, et al. Hygrothermal studies on GFRP composites: a review[J]. MATEC Web of Conferences, 2018, 144: 02026. doi: 10.1051/matecconf/201814402026
    [7] BÖER P, HOLLIDAY L, KANG T H K. Interaction of environmental factors on fiber-reinforced polymer composites and their inspection and maintenance: a review[J]. Construction and Building Materials, 2014, 50: 209-218. doi: 10.1016/j.conbuildmat.2013.09.049
    [8] TSOTSIS T K. Thermo-oxidative aging of composite materials[J]. Journal of Composite Materials, 1995, 29: 410-422. doi: 10.1177/002199839502900307
    [9] 王国建. 玻纤增强复合材料紫外线、高温老化性能演变与抗冲击性能分析[D]. 乌鲁木齐: 新疆大学, 2018.

    WANG Guo-jian. Analysis of resistance to impact properties and performance evolution of glass fiber composites after UV, high temperature aging[D]. Urumqi: Xinjiang University, 2018. (in Chinese)
    [10] 任俊铭. 温度与湿度对车用CFRP板层间老化特性的影响研究[D]. 长春: 吉林大学, 2019.

    REN Jun-ming. Effect of temperature and humidity on interlaminar aging characteristics of vehicle CFRP plates[D]. Changchun: Jilin University, 2019. (in Chinese)
    [11] 张艳萍. 碳纤维环氧树脂复合材料的失效行为与机理研究[D]. 北京: 北京化工大学, 2007.

    ZHANG Yan-ping. Durability and aging mechanism of carbon fiber epoxy resin composite[D]. Beijing: Beijing University of Chemical Technology, 2007. (in Chinese)
    [12] LOWE A, FOX B, OTIENO-ALEGO V. Interfacial ageing of high temperature carbon/bismaleimide composites[J]. Composites: Part A, 2002, 33(10): 1289-1292. doi: 10.1016/S1359-835X(02)00163-X
    [13] 肖波. 玄武岩纤维/环氧树脂复合材料的湿热老化及高温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    XIAO Bo. Study on hygrothermal ageing and elevated temperature performances of basalt fiber reinforced epoxy composites[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)
    [14] 李习习, 王涛, 侯锐钢. 玻璃纤维/乙烯基酯树脂复合材料的热老化机理[J]. 热固性树脂, 2020, 35(1): 49-53.

    LI Xi-xi, WANG Tao, HOU Rui-gang. Thermal aging mechanism of glass fiber/vinyl ester resin composites[J]. Thermosetting Resin, 2020, 35(1): 49-53. (in Chinese)
    [15] ZUO Wen, LUO Quan-tiang, LI Qing, et al. Effect of thermal and hydrothermal aging on the crashworthiness of carbon fiber reinforced plastic composite tubes[J]. Composite Structures, 2023, 303: 116136. doi: 10.1016/j.compstruct.2022.116136
    [16] 孙文涛, 黄传军, 李青, 等. 单向玄武岩纤维增强树脂复合材料低温力学性能研究[J]. 低温工程, 2021(1): 54-59.

    SUN Wen-tao, HUANG Chuan-jun, LI Qing, et al. Mechanical properties of unidirectional basalt fiber/epoxy composites at cryogenic temperature[J]. Cryogenics, 2021(1): 54-59. (in Chinese)
    [17] 郭峰, 王哲峰, 王共冬, 等. 低温条件下含孔碳纤维复合材料层合板拉伸损伤特性研究[J]. 复合材料科学与工程, 2022(4): 56-61.

    GUO Feng, WANG Zhe-feng, WANG Gong-dong, et al. Study of tensile damage characteristics of carbon fiber composite laminates containing holes under low temperature conditions[J]. Composites Science and Engineering, 2022(4): 56-61. (in Chinese)
    [18] 肖琳. 高低温循环作用后CFRP层合板力学性能演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    XIAO Lin. Study on mechanical properties evolution of CFRP laminates after high and low temperature cycle[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [19] BECHEL V T, CAMPING J D, KIM R Y. Cryogenic/ elevated temperature cycling induced leakage paths in PMCs[J]. Composites: Part B, 2004, 36(2): 171-182.
    [20] 谭伟, 那景新, 任俊铭, 等. 高低温老化对碳纤维增强复合材料层间力学性能的影响[J]. 吉林大学学报(工学版), 2020, 50(4): 1324-1332.

    TAN Wei, NA Jing-xin, REN Jun-ming, et al. Effect of high and low temperature aging on interlaminar mechanical properties of carbon fiber reinforced composites[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1324-1332. (in Chinese)
    [21] 于倩倩, 侯俊峰, 陈刚, 等. 碳纤维复合材料热老化性能研究及预测[J]. 玻璃钢/复合材料, 2013(增3): 39-43.

    YU Qian-qian, HOU Jun-feng, CHEN Gang, et al. The study and prediction of aging properties of CFRC[J]. Fiber Reinforced Plastics/Composites, 2013(S3): 39-43. (in Chinese)
    [22] 谭伟, 那景新, 任俊铭, 等. 高温环境下碳纤维增强树脂复合材料的层间力学性能老化行为与失效预测[J]. 复合材料学报, 2020, 37(4): 859-868.

    TAN Wei, NA Jing-xin, REN Jun-ming, et al. Aging behavior and failure prediction of interlaminar mechanical properties of carbon fiber reinforced polymer composite at high temperature[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 859-868. (in Chinese)
    [23] 王广彬. 湿热老化对复杂应力状态下CFRP高温层间力学性能影响[D]. 长春: 吉林大学, 2022.

    WANG Guang-bin. Effect of hygrothermal aging on interlaminar mechanical properties of CFRP at high temperature under complex stress sate[D]. Changchun: Jilin University, 2022. (in Chinese)
    [24] MLYNIEC A, KORTA J, KUDELSKI R, et al. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites[J]. Composite Structures, 2014, 118: 208-216.
    [25] MILITKY J, KOVAČIČG V, RUBNEROVÁ J. Influence of thermal treatment on tensile failure of basalt fibers[J]. Engineering Fracture Mechanics, 2002, 69(9): 1025-1033.
    [26] LU Zhong-yu, XIAN Gui-jun, LI Hui. Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates[J]. Construction and Building Materials, 2016, 127: 1029-1036.
    [27] 朱德举, 徐旭锋, 郭帅成, 等. 高温后玄武岩和玻璃纤维增强复合材料筋的力学性能[J]. 湖南大学学报(自然科学版), 2021, 48(7): 151-159.

    ZHU De-ju, XU Xu-feng, GUO Shuai-cheng, et al. Mechanical properties of basalt and glass fiber reinforced polymer tendons after exposed to elevated temperatures[J]. Journal of Hunan University (Natural Sciences), 2021, 48(7): 151-159. (in Chinese)
    [28] AKAY M, SPRATT G R, MEENAN B. The effects of long-term exposure to high temperatures on the ILSS and impact performance of carbon fibre reinforced bismaleimide[J]. Composites Science and Technology, 2003, 63(7): 1053-1059.
    [29] 高艺航, 石玉红, 王鲲鹏, 等. 碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420高温力学性能(Ⅰ)——拉伸和层间剪切性能[J]. 复合材料学报, 2016, 33(6): 1206-1213.

    GAO Yi-hang, SHI Yu-hong, WANG Kun-peng, et al. High-temperature mechanical properties of carbon fiber reinforced polyimide resin matrix composites MT300/KH420 (Ⅰ)—tensile and interlaminar shear properties[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1206-1213. (in Chinese)
    [30] 陆中宇. 玄武岩纤维增强树脂基复合材料的高温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    LU Zhong-yu. The elevated temperature performance of basalt fiber reinforced polymer composites[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [31] MARANAN G B, MANALO A C, KARUNASENA W, et al. Flexural behaviour of glass fibre reinforced polymer (GFRP) bars subjected to elevated temperature[C]//ACMSM. Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23). Hobart: ACMSM, 2014: 9-12.
    [32] SHEKARCHI M, FARAHANI E M, YEKRANGNIA M, et al. Mechanical strength of CFRP and GFRP composites filled with APP fire retardant powder exposed to elevated temperature[J]. Fire Safety Journal, 2020, 115: 103178.
    [33] 徐可, 陆春华, 宣广宇, 等. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.

    XU Ke, LU Chun-hua, XUAN Guang-yu, et al. Effect of temperature aging on residual bending performance of GFRP/BFRP bars[J]. Materials Reports, 2021, 35(4): 4053-4060. (in Chinese)
    [34] LOOS A C, SPRINGER G S. Effects of thermal spiking on graphite-epoxy composites[J]. Journal of Composite Materials, 1979, 13(1): 17-34.
    [35] 孙博, 李岩. 复合材料湿热老化行为研究及其耐久性预测[J]. 玻璃钢/复合材料, 2013(4): 29-35.

    SUN Bo, LI Yan. The study on hygrothermal aging behavior of composites and the prediction model of durability[J]. Fiber Reinforced Plastics/Composites, 2013(4): 29-35. (in Chinese)
    [36] ZHANG Xue, WANG Yan-lei, WAN Bao-lin, et al. Effect of specimen thicknesses on water absorption and flexural strength of CFRP laminates subjected to water or alkaline solution immersion[J]. Construction and Building Materials, 2019, 208: 314-325.
    [37] WANG Yan-lei, ZHU Wan-xin, ZHANG Xue, et al. Influence of thickness on water absorption and tensile strength of BFRP Laminates in water or alkaline solution and a thickness-dependent accelerated ageing method for BFRP laminates[J]. Applied Sciences, 2020, 10(10): 3618.
    [38] 吕小军, 张琦, 马兆庆, 等. 湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J]. 材料工程, 2005(11): 50-53.

    LYU Xiao-jun, ZHANG Qi, MA Zhao-qing, et al. Study of hydrothermal aging effect on mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering, 2005(11): 50-53. (in Chinese)
    [39] 南田田. 湿热环境下弯曲载荷对CFRP性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    NAN Tian-tian. Influence of bending load on the properties of CFRP under hygrothermal environment[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
    [40] 周晓东, 戴干策. 玻璃纤维毡增强聚丙烯复合材料的湿热稳定性[J]. 玻璃钢/复合材料, 1999(1): 16-19.

    ZHOU Xiao-dong, DAI Gan-ce. Moisture stability of glass fiber mat reinforced polypropylene[J]. Fiber Reinforced Plastics/Composites, 1999(1): 16-19. (in Chinese)
    [41] LIU Lu-lu, ZHAO Zhen-hua, CHEN Wei, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J]. Composite Structures, 2018, 204: 645-657.
    [42] 马少华, 许赞, 许良, 等. 湿热-高温循环老化对碳纤维增强双马树脂基复合材料界面性能的影响[J]. 高分子材料科学与工程, 2018, 34(3): 54-59.

    MA Shao-hua, XU Zan, XU Liang, et al. Influence of cyclic hygrothermal-thermal aging on the interfacial property of carbon fiber reinforced bismaleimide resin matrix composite[J]. Polymer Materials Science and Engineering, 2018, 34(3): 54-59. (in Chinese)
    [43] LIU Xiao-dong, SU Qing-yong, ZHU Jing, et al. The aging behavior and life prediction of CFRP rods under a hygrothermal environment[J]. Polymers, 2023, 15(11): 2490.
    [44] 魏程, 王威力, 李刚, 等. 环氧树脂/玻璃纤维复合材料加速湿热老化机理研究[J]. 纤维复合材料, 2023, 40(2): 58-62.

    WEI Cheng, WANG Wei-li, LI Gang, et al. Study on the mechanism of accelerated hydrothermal aging of epoxy/glass fiber composites[J]. Fiber Composites, 2023, 40(2): 58-62. (in Chinese)
    [45] KRAUKLIS A E, STARKOVA O, GIBHARDT D, et al. Reversible and irreversible effects on the epoxy GFRP fiber-matrix interphase due to hydrothermal aging[J]. Composites Part C: Open Access, 2023, 12: 100395.
    [46] 王威力, 纪丹阳, 陈春露. 国内外复合材料湿热老化研究进展[J]. 纤维复合材料, 2019, 36(1): 35-37.

    WANG Wei-li, JI Dan-yang, CHEN Chun-lu. Research progress on wet-heat aging of composites internal and abroad[J]. Fiber Composites, 2019, 36(1): 35-37. (in Chinese)
    [47] ROY R, SARKAR B K, BOSE N R. Effects of moisture on the mechanical properties of glass fibre reinforced vinylester resin composites[J]. Bulletin of Materials Science, 2001, 24(1): 87-94.
    [48] WU Pan-gang, XU Long-jun, LUO Jian-lin, et al. Influences of long-term immersion of water and alkaline solution on the fatigue performances of unidirectional pultruded CFRP plate[J]. Construction and Building Materials, 2019, 205: 344-356.
    [49] BEHERA A, THAWRE M M, BALLAL A. Hygrothermal aging effect on physical and mechanical properties of carbon fiber/epoxy cross-ply composite laminate[J]. Materials Today: Proceedings, 2020, 28: 940-943.
    [50] 贾少澎, 纪乾, 秦嘉徐, 等. 湿热环境对CFRP层板力学性能影响预测[J]. 现代塑料加工应用, 2018, 30(5): 23-27.

    JIA Shao-peng, JI Qian, QIN Jia-xu, et al. Prediction of influence of hygrothermal environment on mechanical properties of CFRP laminates[J]. Modern Plastics Processing and Applications, 2018, 30(5): 23-27. (in Chinese)
    [51] 余海燕, 吴航宇, 石慧茹. 湿热环境中碳纤维复合材料层合板的强度退化及老化寿命预测[J]. 机械工程材料, 2021, 45(4): 40-45.

    YU Hai-yan, WU Hang-yu, SHI Hui-ru. Strength degradation and aging life prediction for carbon fiber reinforced polymers laminates in hygrothermal environment[J]. Materials for Mechanical Engineering, 2021, 45(4): 40-45. (in Chinese)
    [52] LI Yao, YIN Shi-ping, LU Yi-wen, et al. Experimental investigation of the mechanical properties of BFRP bars in coral concrete under high temperature and humidity[J]. Construction and Building Materials, 2020, 259: 120591.
    [53] YANG Shu-lan, LIU Wei-qing, YUAN Fang, et al. Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites[J]. Journal of Materials Science, 2019, 54(3): 2102-2121.
    [54] 张彦红, 杨勇新, 姚勇, 等. 玻璃纤维增强复合材料在湿热环境下的耐久性试验及性能衰减模型[J]. 工业建筑, 2014, 44(10): 46-50.

    ZHANG Yan-hong, YANG Yong-xin, YAO Yong, et al. Durability test and attenuation model of GFRP performance in hot and humid environment[J]. Industrial Construction, 2014, 44(10): 46-50. (in Chinese)
    [55] ZHONG Yu-cheng, CHENG Ming-yang, ZHANG Xin, et al. Hygrothermal durability of glass and carbon fiber reinforced composites—a comparative study[J]. Composite Structures, 2019, 211: 134-143.
    [56] BOTELHO E C, PARDINI L C, REZENDE M C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J]. Journal of Materials Science, 2006, 41(21): 7111-7118.
    [57] NIU Yi-fan, YAN Yan, YAO Jia-wei. Hygrothermal aging mechanism of carbon fiber/epoxy resin composites based on quantitative characterization of interface structure[J]. Polymer Testing, 2021, 94: 107019.
    [58] GUO Rui, XIAN Gui-jun, LI Cheng-gao, et al. Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: effects of hybrid modes[J]. Polymer Degradation and Stability, 2021, 193: 109723.
    [59] WANG Zi-ke, ZHAO Xiao-ling, XIAN Gui-jun, et al. Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment[J]. Construction and Building Materials, 2017, 156: 985-1004.
    [60] 王岩, 李树茂, 景磊, 等. T800碳纤维/环氧复合材料老化性能研究[J]. 纤维复合材料, 2020, 37(2): 12-15.

    WANG Yan, LI Shu-mao, JING Lei, et al. Study on ageing of T800/epoxy composites[J]. Fiber Composites, 2020, 37(2): 12-15. (in Chinese)
    [61] CHEN Dong-dong, MENG Mao-zhou, SUN Xiao-yu, et al. Effects of hygrothermal aging on the flexural properties of cross-ply and angle-ply CFRP composite laminates[J]. Fibers and Polymers, 2024, 25: 257-274.
    [62] CHOWDHURY I R, O'DOWD N P, COMER A J. Experimental study of hygrothermal ageing effects on failure modes of non-crimp basalt fibre-reinforced epoxy composite[J]. Composite Structures, 2021, 275: 114415.
    [63] 高泉喜, 郑威, 孔令美, 等. 温度和湿热对玻纤复合材料力学性能的影响[J]. 玻璃钢/复合材料, 2015(3): 66-69.

    GAO Quan-xi, ZHENG Wei, KONG Ling-mei, et al. Influences of temperature and humid heat environment on mechanical properties of glass fiber reinforced composite[J]. Fiber Reinforced Plastics/Composites, 2015(3): 66-69. (in Chinese)
    [64] 南田田, 赵亮, 孟玲宇, 等. 湿-热-载荷共同作用下碳纤维增强环氧树脂基复合材料老化性能研究[J]. 纤维复合材料, 2020, 37(1): 21-27.

    NAN Tian-tian, ZHAO Liang, MENG Ling-yu, et al. Study on the aging performances of carbon fiber reinforced plastic composite under hygrothermal environment and loading[J]. Fiber Composites, 2020, 37(1): 21-27. (in Chinese)
    [65] WAN Y Z, WANG Y L, LUO H L, et al. Moisture absorption behavior of C3D/EP composite and effect of external stress[J]. Materials Science and Engineering: A, 2002, 326(2): 324-329.
    [66] LIU Xiang, GU Wei-min, LIU Qi-wen, et al. Damage of hygrothermally conditioned carbon epoxy composites under high-velocity impact[J]. Materials, 2018, 11(12): 2525.
    [67] 孙同生, 于存贵, 杨文超, 等. 湿热与拉伸载荷耦合作用下玻纤/环氧复合材料的吸湿特性[J]. 复合材料科学与工程, 2020(5): 25-31.

    SUN Tong-sheng, YU Cun-gui, YANG Wen-chao, et al. The combined effects of hygrothermal and external load on themoisture absorption behavior of e-glass/epoxy composites[J]. Composites Science and Engineering, 2020(5): 25-31. (in Chinese)
    [68] HELBLING C, ABANILLA M, LEE L, et al. Issues of variability and durability under synergistic exposure conditions related to advanced polymer composites in the civil infrastructure[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(8): 1102-1110.
    [69] LI Sheng, GUO Shuai-cheng, YI Yong, et al. Transverse low-velocity impact performance of BFRP bars after exposure to the saline-alkaline environment[J]. Construction and Building Materials, 2021, 307: 124650.
    [70] RAFIEE R, MALEKI M, RAHNAMA S. Experimental study on the effect of hygrothermal environments combined with the sustained mechanical loads on the strength of composite rings[J]. Composite Structures, 2021, 258: 113397.
    [71] UTHAMAN A, XIAN G, THOMAS S, et al. Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions[J]. Polymers, 2020, DOI: 10.3390/polym12030614.
    [72] 王玉林, 万怡灶, 陈桂才, 等. 三维编织碳纤维/环氧复合材料的吸湿特性及外应力的影响[J]. 复合材料学报, 2002(6): 101-105.

    WANG Yu-lin, WAN Yi-zao, CHEN Gui-cai, et al. Moisture absorption behavior of 3-D carbon-fiber-epoxy composites and effect of external stress[J]. Acta Materiae Compositae Sinica, 2002(6): 101-105. (in Chinese)
    [73] LAL H M, UTHAMAN A, LI C, et al. Combined effects of cyclic/sustained bending loading and water immersion on the interface shear strength of carbon/glass fiber reinforced polymer hybrid rods for bridge cable[J]. Construction and Building Materials, 2022, 314: 125587.
    [74] 姜明, 贾近, 肖海英, 等. 温湿场交变环境下外加载荷对不同孔隙率CFRP弯曲力学性能影响[J]. 哈尔滨工业大学学报, 2018, 50(5): 38-43.

    JIANG Ming, JIA Jin, XIAO Hai-ying, et al. Effect of external load on mechanical properties of CFRP bending under different temperatures and humidity[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 38-43. (in Chinese)
    [75] 张海燕, 李根臣, 王义师, 等. 碳纤维复合材料结构件自然老化试验研究[J]. 化工新型材料, 2018, 46(4): 63-65.

    ZHANG Hai-yan, LI Gen-chen, WANG Yi-shi, et al. Study on environmental aging of CFRP structure[J]. New Chemical Materials, 2018, 46(4): 63-65. (in Chinese)
    [76] ZHANG Dai-jun, TANG Bang-ming, BAO Jian-wen, et al. Study of environmental aging of T700/5288 CFRP in Hainan[J]. Journal of Materials Engineering, 2012, 2(11): 31-33.
    [77] GUO Xin-yan, SHU Shen-yun-hao, WANG Yi-lin, et al. Effect of subtropical natural exposure on the bond behavior of FRP-concrete interface[J]. Polymers, 2020, DOI: 10.3390/polym12040967.
    [78] 李新功, 郑霞, 吴义强, 等. 竹纤维/聚乳酸复合材料自然老化性能研究[J]. 功能材料, 2013, 44(11): 1526-1530.

    LI Xin-gong, ZHENG Xia, WU Yi-qiang. Study on natural aging properties of bamboo fibers/polylactic acid composites[J]. Journal of Functional Materials, 2013, 44(11): 1526-1530. (in Chinese)
    [79] 安琪, 王登霞, 孙岩, 等. 玻纤增强复合材料在厦门地区自然老化及寿命预测研究[J]. 装备环境工程, 2023, 20(3): 141-146.

    AN Qi, WANG Deng-xia, SUN Yan, et al. Natural aging and life prediction of glass fiber reinforced composite material in Xiamen[J]. Equipment Environmental Engineering, 2023, 20(3): 141-146. (in Chinese)
    [80] 危成英, 王全凤, 杨勇新, 等. 不同地区自然环境下CFRP复合材料的自然老化性能试验[J]. 华侨大学学报(自然科学版), 2010, 31(5): 557-561.

    WEI Cheng-ying, WANG Quan-feng, YANG Yong-xin, et al. Experimental investigation on environmental aging durability of CFRP in different regions[J]. Journal of Huaqiao University (Natural Science), 2010, 31(5): 557-561. (in Chinese)
    [81] 岳清瑞, 杨勇新, 沙吾列提·拜开依. 不同环境条件下CFRP自然老化性能试验研究[J]. 工业建筑, 2008(2): 1-3.

    YUE Qing-rui, YANG Yong-xin, SAWULET B. Experimental study on natural aging property of CFRP under different environments[J]. Industrial Construction, 2008(2): 1-3. (in Chinese)
    [82] CRUZ R, CORREIA L, DUSHIMIMANA A, et al. Durability of epoxy adhesives and carbon fibre reinforced polymer laminates used in strengthening systems: accelerated ageing versus natural ageing[J]. Materials, 2021, 14(6): 1533.
    [83] 刘亚平, 刘飞, 王荣华, 等. 基于热带雨林环境的GFRP自然老化性能[J]. 工程塑料应用, 2017, 45(7): 115-118.

    LIU Ya-ping, LIU Fei, WANG Rong-hua, et al. Natural aging properties of GFRP based on tropical rainforest environment[J]. Engineering Plastics Application, 2017, 45(7): 115-118. (in Chinese)
    [84] MOHAMMED M, CHAI Y Y, DOH S I, et al. Degradation of glass fiber reinforced polymer (GFRP) material exposed to tropical atmospheric condition[J]. Key Engineering Materials, 2021, 879: 265-274.
    [85] SOUSA J M, CORREIA J R, CABRAL-FONSECA S. Durability of glass fibre reinforced polymer pultruded profiles: comparison between QUV accelerated exposure and natural weathering in a Mediterranean climate[J]. Experimental Techniques, 2016, 40: 207-219.
    [86] 于爱民. 纤维增强聚合物筋耐久性试验研究[D]. 郑州: 郑州大学, 2011.

    YU Ai-min. Study on durability of fiber reinforced polymer rebar[D]. Zhengzhou: Zhengzhou University, 2011. (in Chinese)
    [87] VINÃ J, CASTRILLO M A, ARGVELLES A, et al. A comparison between the static and fatigue properties of glass-fiber and carbon-fiber reinforced polyetherimide composites after prolonged aging[J]. Polymer Composites, 2002, 23(4): 619-623.
    [88] 王安东, 卞贵学, 张勇, 等. 海洋环境下G814/3233复合材料的老化机理及加速老化与自然老化的相关性[J]. 航空学报, 2021, 42(5): 250-262.

    WANG An-dong, BIAN Gui-xue, ZHANG Yong, et al. Aging mechanism of G814/3233 composite in marine environment and correlation between accelerated aging and natural aging[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 250-262. (in Chinese)
    [89] VIÑA J, BONHOMME J, MOLLÓN V, et al. Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain)[J]. Composites Communications, 2020, 22: 100522.
    [90] HOTA G, BARKER W, MANALO A. Degradation mechanism of glass fiber/vinylester-based composite materials under accelerated and natural aging[J]. Construction and Building Materials, 2020, 256: 119462.
    [91] 张颖军, 朱锡, 梅志远, 等. 海洋环境玻璃纤维增强复合材料自然老化试验[J]. 华中科技大学学报(自然科学版), 2011, 39(3): 14-17.

    ZHANG Ying-jun, ZHU Xi, MEI Zhi-yuan, et al. Experimental study on natural aging of glass fiber reinforced plastic composites under marine environment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(3): 14-17. (in Chinese)
    [92] 高建雄. 纤维增强复合材料剩余强度模型及寿命预测方法研究[D]. 兰州: 兰州理工大学, 2019.

    GAO Jian-xiong. Research on residual strength model and life prediction method of fiber reinforced polymer[D]. Lanzhou: Lanzhou University of Technology, 2019. (in Chinese)
    [93] WANG X, PETRǓ M. Degradation of bending properties of flax fiber reinforced polymer after natural aging and accelerated aging[J]. Construction and Building Materials, 2020, 240: 117909.
    [94] WANG Wei-hong, BU Fan-hua, ZHANG Zheng-ming, et al. Performance of rice-hull-PE composite exposed to natural weathering[J]. Journal of Forestry Research, 2010, 21(2): 219-224.
    [95] 刘旭, 陈跃良, 霍武军, 等. 碳纤维复合材料湿热老化加速关系[J]. 南京航空航天大学学报, 2014, 46(3): 382-388.

    LIU Xu, CHEN Yue-liang, HUO Wu-jun, et al. Accelerated relationship of hygrothermal aging for carbon fiber/polymer composites[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 46(3): 382-388. (in Chinese)
    [96] 张翠欣. 涤纶纤维紫外加速老化及寿命预测研究[D]. 秦皇岛: 燕山大学, 2010.

    ZHANG Cui-xin. Study on UV accelerated aging and lifetime prediction of pet fibres[D]. Qinhuangdao: Yanshan University, 2010. (in Chinese)
    [97] 孙岩, 王登霞, 刘亚平, 等. 玻璃纤维/溴化环氧乙烯基酯加速老化与自然老化的相关性[J]. 复合材料学报, 2014, 31(4): 916-924.

    SUN Yan, WANG Deng-xia, LIU Ya-ping, et al. Correlation of accelerated aging and natural aging of glass fiber reinforced bromide epoxy vinyl ester composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 916-924. (in Chinese)
    [98] 王国华, 张虎, 魏岳嵩. 偏最小二乘回归在SPSS软件中的实现[J]. 统计与决策, 2017(7): 67-71.

    WANG Guo-hua, ZHANG Hu, WEI Yue-song. Implementation of partial least squares regression in SPSS software[J]. Statistics and Decision, 2017(7): 67-71. (in Chinese)
    [99] 王国忠. 融合主成分分析和灰色关联分析的磨粒识别研究[D]. 南京: 南京航空航天大学, 2012.

    WANG Guo-zhong. Wear particles identification based on cooperation of grey relational analysis and principal component analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [100] BADJI C, BEIGBEDER J, GARAY H, et al. Correlation between artificial and natural weathering of hemp fibers reinforced polypropylene biocomposites[J]. Polymer Degradation and Stability, 2018, 148: 117-131.
    [101] 董杰, 何雄君, 章恒, 等. 混凝土梁中GFRP筋加速老化与自然老化相关性分析[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(2): 312-317.

    DONG Jie, HE Xiong-jun, ZHANG Heng, et al. Correlation analysis of accelerated aging and natural aging of GFRP in reinforced concrete beams[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2017, 41(2): 312-317. (in Chinese)
    [102] 李晖, 张录平, 孙岩, 等. 玻璃纤维增强复合材料的寿命预测[J]. 工程塑料应用, 2011, 39(1): 68-73.

    LI Hui, ZHANG Lu-ping, SUN Yan, et al. Prediction of service life of the glass fibre reinforced composite[J]. Engineering Plastics Application, 2011, 39(1): 68-73. (in Chinese)
    [103] GUNYAEV G M. Realization of the mechanical properties of fibers in high-modulus polymer composites[J]. Polymer Mechanics, 1972, 8(6): 991-993.
    [104] KHOTBEHSARA M M, MANALO A, ARAVINTHAN T, et al. Ageing of particulate-filled epoxy resin under hygrothermal conditions[J]. Construction and Building Materials, 2020, 249: 118846.
    [105] ALI A H, BENMOKRANE B, MOHAMED H M, et al. Statistical analysis and theoretical predictions of the tensile-strength retention of glass fiber-reinforced polymer bars based on resin type[J]. Journal of Composite Materials, 2018, 52(21): 2929-2948.
    [106] ELENCHEZHIAN M R P, VADLAMUDI V, RAIHAN R, et al. Artificial intelligence in real-time diagnostics and prognostics of composite materials and its uncertainties—a review[J]. Smart Materials and Structures, 2021, 30(8): 83001.
    [107] 王雅哲, 马其华. 机器学习在复合材料领域中的应用进展[J]. 工程塑料应用, 2023, 51(9): 167-174.

    WANG Ya-zhe, MA Qi-hua. Progress in application of machine learning in field of composite materials[J]. Engineering Plastics Application, 2023, 51(9): 167-174. (in Chinese)
    [108] NAHATO K B, HARICHANDRAN K N, ARPUTHARAJ K. Knowledge mining from clinical datasets using rough sets and backpropagation neural network[J]. Computational and Mathematical Methods in Medicine, 2015, 2015: 460189.
    [109] MACHELLO C, BAZLI M, RAJABIPOUR A, et al. Using machine learning to predict the long-term performance of fibre-reinforced polymer structures: a state-of-the-art review[J]. Construction and Building Materials, 2023, 408: 133692.
    [110] QI Xiao, TIAN Jing-wei, XIAN Gui-jun. Hydrothermal ageing of carbon fiber reinforced polymer composites applied for construction: a review[J]. Journal of Materials Research and Technology, 2023, 27: 1017-1045.
    [111] BABANAJAD S K, GANDOMI A H, ALAVI A H. New prediction models for concrete ultimate strength under true-triaxial stress states: an evolutionary approach[J]. Advances in Engineering Software, 2017, 110: 55-68.
    [112] HEDDAM S, SANIKHANI H, KISI O. Application of artificial intelligence to estimate phycocyanin pigment concentration using water quality data: a comparative study[J]. Applied Water Science, 2019, 9: 1-16.
    [113] KONSTANTOPOULOS G, SEMITEKOLOS D, KOUMOULOS E P, et al. Carbon fiber reinforced composites: study of modification effect on weathering-induced ageing via nanoindentation and deep learning[J]. Nanomaterials, 2021, 11(10): 2631.
    [114] DONG Shao-ce, WU Xu, QI Xiao, et al. Prediction model of long-term tensile strength of glass fiber reinforced polymer bars exposed to alkaline solution based on Bayesian optimized artificial neural network[J]. Construction and Building Materials, 2023, 400: 132885.
    [115] IQBAL M, ZHANG Da-xu, JALAL F E, et al. Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment[J]. Ocean Engineering, 2021, 232: 109134.
    [116] IQBAL M, ELBAZ K, ZHANG Da-xu, et al. Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models[J]. Journal of Ocean Engineering and Science, 2023, 8(5): 546-558.
    [117] KIM Y, OH H. Comparison between multiple regression analysis, polynomial regression analysis, and an artificial neural network for tensile strength prediction of BFRP and GFRP[J]. Materials, 2021, 14(17): 4861.
    [118] 刘兴. FRP拉挤型材在海洋环境中的长期性能及预测方法研究[D]. 北京: 清华大学, 2021.

    LIU Xing. Study on long-term performance and prediction of pultruded FRP in marine environment[D]. Beijing: Tsinghua University, 2021. (in Chinese)
    [119] STARKOVA O, GAGANI A I, KARL C W, et al. Modelling of environmental ageing of polymers and polymer composites— durability prediction methods[J]. Polymers, 2022, 14(5): 907.
    [120] WILLIAMS M L, LANDEL R F, FERRY J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707.
    [121] 栗晓飞, 张琦, 项民. 实验室模拟加速腐蚀与自然大气腐蚀的相关性[J]. 北京航空航天大学学报, 2010, 36(7): 867-870.

    LI Xiao-fei, ZHANG Qi, XIANG Min. Relativity between simulated and accelerated corrosion and natural environment corrosion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 867-870. (in Chinese)
    [122] 陈跃良, 王安东, 卞贵学, 等. 海洋环境下G827/3234复合材料老化机制及当量加速关系[J]. 复合材料学报, 2018, 35(12): 3304-3312.

    CHEN Yue-liang, WANG An-dong, BIAN Gui-xue, et al. Aging mechanism and equivalent acceleration relationship of G827/3234 composite in the marine environment[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3304-3312. (in Chinese)
  • 加载中
表(11)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  26
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回