留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收费模式重大调整后的高速公路运输量监测方法重构

闫晟煜 孙可欣 温福华 肖润谋

闫晟煜, 孙可欣, 温福华, 肖润谋. 收费模式重大调整后的高速公路运输量监测方法重构[J]. 交通运输工程学报, 2024, 24(5): 259-269. doi: 10.19818/j.cnki.1671-1637.2024.05.017
引用本文: 闫晟煜, 孙可欣, 温福华, 肖润谋. 收费模式重大调整后的高速公路运输量监测方法重构[J]. 交通运输工程学报, 2024, 24(5): 259-269. doi: 10.19818/j.cnki.1671-1637.2024.05.017
YAN Sheng-yu, SUN Ke-xin, WEN Fu-hua, XIAO Run-mou. Monitoring method reconfiguration of expressway transportation volume after significant adjustment of toll collection mode[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 259-269. doi: 10.19818/j.cnki.1671-1637.2024.05.017
Citation: YAN Sheng-yu, SUN Ke-xin, WEN Fu-hua, XIAO Run-mou. Monitoring method reconfiguration of expressway transportation volume after significant adjustment of toll collection mode[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 259-269. doi: 10.19818/j.cnki.1671-1637.2024.05.017

收费模式重大调整后的高速公路运输量监测方法重构

doi: 10.19818/j.cnki.1671-1637.2024.05.017
基金项目: 

国家重点研发计划 2023YFB3209803

交通运输战略规划政策项目 2020-23-3

中央高校基本科研业务费专项资金项目 300102224206

详细信息
    作者简介:

    闫晟煜(1987-),男,黑龙江绥化人,长安大学副教授,工学博士,从事公路运输规划研究

  • 中图分类号: U491.2

Monitoring method reconfiguration of expressway transportation volume after significant adjustment of toll collection mode

Funds: 

National Key Research and Development Program of China 2023YFB3209803

Transportation Strategic and Planning Policy Project 2020-23-3

Fundamental Research Funds for the Central Universities 300102224206

More Information
    Author Bio:

    YAN Sheng-yu(1987-), male, associate professor, PhD, E-mail: Leo9574@163.com

  • 摘要: 阐明了高速公路联网收费数据结构的新变化,改进了运输量监测指标体系;鉴于车货总质量和车型识别数据可靠性严重降低,重构了运输量监测方法;建立了29×29省际客运和货运交流矩阵,分析了京津冀、长三角、珠三角3个经济区的区内运量比;提出了新形势下运输量统计基数调查方法和速度统计中干扰因素的排除方法;通过对比2009~2019年运输量的同比增长率和2019~ 2021年的年均增长率,验证了运输量监测方法的可行性和延续性;分析了旅客行程和货物运距的省内和跨省全路径特征。研究结果表明:2009~2019年货运量、货物周转量的平均同比增长率较2019~2021年的年均增长率分别偏离了2.59%、2.19%;1类客车客运量、旅客周转量分别占总客运量、总旅客周转量的比例在2019~2021年的年均增长率较2009~2019年的平均同比增长率分别提升了0.32%、0.25%,证明重构的运输量监测方法可行,指标延续性良好;限定206 km以内的省内ETC客货车流为约束条件可有效排除速度统计中的干扰因素,客车和货车平均速度分别提升了1.76%、10.38%;根据2021年车辆全路径行驶里程数据,88.86%的旅客行程和81.67%的货物运距分布集中在200 km以内,200 km以内的旅客行程和货物运距集中在50 km以内,集中度为58.09%~67.76%;收费模式调整后,3类货车省内车流的货物运距提升了9.06%,其他车型省内车流的货物运距降低了6.27%~16.81%,6类货车跨省车流的货物运距降低了4.60%,而其他车型跨省车流的货物运距提升了3.21%~8.89%。

     

  • 图  1  2020年前后出省车辆收费数据变化

    Figure  1.  Changes of vehicles leaving province in toll collection data before and after 2020

    图  2  高速公路运输量监测指标体系改进

    Figure  2.  Improvement of monitoring index system of expressway transportation volume

    图  3  2021年高速公路省际交流运输量

    Figure  3.  Interprovincial transportation volumes of expressway in 2021

    图  4  2021年高速公路省内运输量

    Figure  4.  Provincial transportation volumes of expressway in 2021

    图  5  车辆驶入服务区的间隔里程分布

    Figure  5.  Distance distribution between vehicles entering service area

    图  6  2009~2019年高速公路运输量同比增长率

    Figure  6.  Year-on-year growth rates of transportation volume from 2009 to 2019

    图  7  2021年旅客行程与货物运距分布

    Figure  7.  Distribution of passenger trip and freight distance in 2021

    表  1  高速公路运输量基础指标层重构

    Table  1.   Reconfiguration on basic indice set of expressway transportation volume

    统计指标 统计方法 统计依据
    客运量 $P=\sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} c_{j k} Q_{1 j k}+\sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} c_{j k} Q_{3 j k}$ 出入口站、客车车型、终点省份、省界门架、每车平均载客量
    旅客周转量 $T_{\mathrm{P}}=\sum\limits_{i=1}^2 \sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} c_{j k} Q_{i j k} M_{i j k}$ 出入口站、客车车型、终点省份、省界门架、行驶里程、每车平均载客量
    货运量 $F=\sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} f_{j k} Q_{1 j k}+\sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} f_{j k} Q_{3 j k}$ 出入口站、货车车型、终点省份、省界门架、总质量、每车平均载货量
    货物周转量 $T_F=\sum\limits_{i=1}^2 \sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} f_{j k} Q_{i j k} M_{i j k}$ 出入口站、货车车型、终点省份、省界门架、总质量、行驶里程、每车平均载货量
    运输密度 DP=TP/L;DF=TF/L 旅客周转量、货物周转量、通车里程
    旅客行程、货物运距 SP=TP/P;SF=TF/F 旅客周转量、货物周转量、客运量、货运量
    客车平均运行速度 $V_{\mathrm{P}}=\sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} M_{3 j k} / \sum\limits_{j=1}^4 \sum\limits_{k=1}^{29} \Delta t_{3 j k}$ 出入口站、出入口时间、客车车型、行驶里程(206 km以内)、省界门架、ETC标识
    货车平均运行速度 $V_{\mathrm{F}}=\sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} M_{3 j k} / \sum\limits_{j=5}^{10} \sum\limits_{k=1}^{29} \Delta t_{3 j k}$ 出入口站、出入口时间、货车车型、行驶里程(206 km以内)、省界门架、ETC标识
    下载: 导出CSV

    表  2  2012年与2021年京津冀高速公路cjk

    Table  2.   cjk on expressway Jing-Jin-Ji region in 2012 and 2021

    年份 省(市) 不同车型的cjk 平均每站可采集的最低样本数/个
    1 2 3 4
    2012 北京 2.61 11.65 28.22 34.33 788
    天津 2.53 4.97 23.75 41.33 482
    河北 2.91 5.66 27.04 34.47 677
    2021 北京 1.84 3.00 14.00 32.00 730
    天津 2.20 4.51 16.22 31.23 529
    河北 2.05 6.00 15.62 21.00 711
    下载: 导出CSV

    表  3  2019、2021年车辆运行速度统计结果对比

    Table  3.   Comparison of statistical results of vehicle speed in 2019 and 2021

    车辆分类 车型分类 2019年平均速度/(km·h-1) 2021年平均速度/(km·h-1) 同比增长率/%
    客车 1 85.64 87.05 1.65
    2 78.24 80.00 2.25
    3 78.85 80.18 1.69
    4 78.72 78.49 -0.29
    货车 1 74.40 74.76 0.48
    2 66.72 71.17 6.67
    3 63.79 69.83 9.47
    4 62.39 68.86 10.37
    5 61.17 67.62 10.54
    6 62.26 68.84 10.57
    下载: 导出CSV

    表  4  2009~2019年高速公路运输量同比增长率

    Table  4.   Year-on-year growth rates of expressway transportation volume from 2009 to 2019 %

    年份 客运量增长率 旅客周转量增长率 货运量增长率 货物周转量增长率
    2009 15.60 16.47 11.48 12.83
    2010 19.27 16.48 27.90 29.10
    2011 16.76 19.30 13.37 13.46
    2012 12.94 7.48 3.16 2.39
    2013 11.85 10.04 11.46 12.06
    2014 15.00 12.07 5.02 2.35
    2015 8.71 -0.59 10.46 -1.68
    2016 13.01 5.91 16.36 8.07
    2017 11.72 9.13 15.33 16.17
    2018 7.01 4.64 7.98 4.25
    2019 11.87 5.73 8.72 3.62
    下载: 导出CSV

    表  5  2019、2021年省内车流和跨省车流的货物运距对比

    Table  5.   Comparison of provincial and interprovincial transportation distances in 2019 and 2021  km

    车型分类 2019年货物运距 2021年货物运距
    省内车流 跨省车流 省内车流 跨省车流
    1 59.35 414.25 54.04 449.42
    2 71.88 387.48 65.86 421.94
    3 75.61 427.84 82.46 465.37
    4 63.49 536.17 59.37 553.39
    5 73.39 553.79 67.29 601.95
    6 78.21 450.54 73.31 429.83
    下载: 导出CSV
  • [1] 郭沛鑫. 车型收费模式下高速公路货车装载趋势研究[D]. 西安: 长安大学, 2021.

    GUO Pei-xin. Analysis and study on the trend of truck loading on expressway under the toll-by-type mode[D]. Xi'an: Chang'an University, 2021. (in Chinese)
    [2] PEREDERIEIEVA O, RAITH A, SCHMIDT M. Non- additive shortest path in the context of traffic assignment[J]. European Journal of Operational Research, 2018, 268(1): 325-338. doi: 10.1016/j.ejor.2018.01.017
    [3] 徐进, 丁瑞, 李诗佳, 等. 山区高速公路车辆速度特性与区间限速方法[J]. 东南大学学报(自然科学版), 2022, 52(2): 352-361.

    XU Jin, DING Rui, LI Shi-jia, et al. Speed behavior of mountain expressway and determination method of interval speed limit[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 352-361. (in Chinese)
    [4] 陈荫三. 运用经济杠杆长效治理超载超限运输[J]. 中国公路学报, 2004, 17(2): 94-99.

    CHEN Yin-san. Long-term effective solution to the overload transportation with economic lever[J]. China Journal of Highway and Transport, 2004, 17(2): 94-99. (in Chinese)
    [5] AHMED ALKHOORI F, KUMAR MAGHELAL P. Regulating the overloading of heavy commercial vehicles: assessment of land transport operators in Abu Dhabi[J]. Transportation Research Part A: Policy and Practice, 2021, 154(12): 287-299.
    [6] U.S. Census Bureau. 2017 Commodity flow survey methodology[R]. Washinton DC: U.S. Census Bureau, 2020.
    [7] U.S. Department of Transportation. National freight strategic plan[R]. Washinton DC: U.S. Department of Transportation, 2020.
    [8] U.S. Department of Transportation. Transportation statistics annual report[R]. Washinton DC: U.S. Department of Transportation, 2017.
    [9] 梁仁鸿, 仵思燃. 公路货物运输量统计新试行方案问题及完善思路研究[J]. 公路交通科技, 2018, 35(7): 151-158.

    LIANG Ren-hong, WU Si-ran. Study on problems and improvement of highway freight volume statistics trial scheme[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 151-158. (in Chinese)
    [10] 秦芬芬, 王屾, 段新. 利用专项调查修正运输量历史数据的方法[J]. 统计与决策, 2019, 35(5): 17-22.

    QIN Fen-fen, WANG Shen, DUAN Xin. Use of special surveys to revise historical data of transportation volume[J]. Statistics and Decision, 2019, 35(5): 17-22. (in Chinese)
    [11] 陈小叶. 公路运输量抽样误差控制研究[D]. 西安: 长安大学, 2015.

    CHEN Xiao-ye. The research on controlling sampling error of road transportation volume[D]. Xi'an: Chang'an University, 2015. (in Chinese)
    [12] 韩大章, 周军勇, 朱荣, 等. 基于计重收费数据的大跨径桥梁荷载效应评估[J]. 桥梁建设, 2018, 48(4): 27-32.

    HAN Da-zhang, ZHOU Jun-yong, ZHU Rong, et al. Assessment of traffic load effects of long span bridge based on toll-by-weight data[J]. Bridge Construction, 2018, 48(4): 27-32. (in Chinese)
    [13] 赖见辉, 齐悦, 王扬, 等. 基于收费数据的交通运行参数估计方法[J]. 中国公路学报, 2022, 35(3): 205-215.

    LAI Jian-hui, QI Yue, WANG Yang, et al. Estimation method of traffic state parameters based on toll data[J]. China Journal of Highway and Transport, 2022, 35(3): 205-215. (in Chinese)
    [14] 杨铭, 秦华容, 陈荫三. 区域公路货物周转量结构分析与推算方法[J]. 交通运输工程学报, 2011, 11(5): 93-100. doi: 10.19818/j.cnki.1671-1637.2011.05.015

    YANG Ming, QIN Hua-rong, CHEN Yin-san. Structure analysis and calculation method of freight turnover for regional highway[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 93-100. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2011.05.015
    [15] 闫晟煜, 肖润谋. 基于收费数据的高速公路运输量指标特征[J]. 交通运输工程学报, 2018, 18(6): 112-120. doi: 10.3969/j.issn.1671-1637.2018.06.012

    YAN Sheng-yu, XIAO Run-mou. Index characteristics of expressway transportation volume based on toll collection data[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 112-120. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.012
    [16] 张彭, 霍恩泽, 王英平, 等. 自动化公路货物运输量统计方法[J]. 中国公路学报, 2021, 34(12): 302-312.

    ZHANG Peng, HUO En-ze, WANG Ying-ping, et al. Automated statistical methods for highway freight volume[J]. China Journal of Highway and Transport, 2021, 34(12): 302-312. (in Chinese)
    [17] 姚振兴, 许心越, 邵海鹏, 等. 基于手机GPS定位数据的交通方式换乘点识别方法研究[J]. 中国公路学报, 2021, 34(12): 276-287.

    YAO Zhen-xing, XU Xin-yue, SHAO Hai-peng, et al. Method for traffic mode transfer behavior identification by using smartphone GPS data[J]. China Journal of Highway and Transport, 2021, 34(12): 276-287. (in Chinese)
    [18] ZHOU C R, JIA H F, JUAN Z C, et al. A data-driven method for trip ends identification using large-scale smartphone-based GPS tracking data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2096-2110. doi: 10.1109/TITS.2016.2630733
    [19] 夏晶, 于丹阳, 郑鑫臻, 等. 基于手机信令的全社会公路旅客出行量测算方法[J]. 交通运输研究, 2021, 7(3): 102-110.

    XIA Jing, YU Dan-yang, ZHENG Xin-zhen, et al. Calculation method of social highway passenger trip volume based on mobile signaling[J]. Transport Research, 2021, 7(3): 102-110. (in Chinese)
    [20] ALEXANDER L, JIANG S, MURGA M, et al. Origin-destination trips by purpose and time of day inferred from mobile phone data[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 240-250. doi: 10.1016/j.trc.2015.02.018
    [21] 余绪金, 许俊. 一种基于有向图的高速公路多义性路径贝叶斯识别方法[J]. 公路交通科技, 2018, 35(11): 110-115.

    YU Xu-jin, XU Jun. A Bayesian recognition method for expressway ambiguity path identification based on digraph[J]. Journal of Highway and Transportation Research and Development, 2018, 35(11): 110-115. (in Chinese)
    [22] SHAYGAN M, MEESE C, LI W X, et al. Traffic prediction using artificial intelligence: review of recent advances and emerging opportunities[J]. Transportation Research Part C: Emerging Technologies, 2022, 145(12): 103921.
    [23] 杨鹏飞. 取消省界收费站对高速公路车辆运行影响分析研究[D]. 西安: 长安大学, 2021.

    YANG Peng-fei. Analysis and research on the influence of canceling provincial border toll stations on expressway vehicle operation[D]. Xi'an: Chang'an University, 2021. (in Chinese)
    [24] 陈荫三, 肖润谋, 闫晟煜, 等. 2019中国高速公路运输量统计调查分析报告[M]. 北京: 人民交通出版社股份有限公司, 2020.

    CHEN Yin-san, XIAO Run-mou, YAN Sheng-yu, et al. Statistics and Analysis Report of Expressway of China in 2019[M]. Beijing: China Communications Press Co., Ltd., 2020. (in Chinese)
    [25] ABUZWIDAH M, ABDEL-ATY M. Safety assessment of the conversion of toll plazas to all-electronic toll collection system[J]. Accident Analysis and Prevention, 2015, 80(7): 153-161.
    [26] 闫晟煜, 肖润谋, 刘继祥, 等. 高速公路货车空驶指标统计与规律分析[J]. 铁道运输与经济, 2022, 44(8): 83-90.

    YAN Sheng-yu, XIAO Run-mou, LIU Ji-xiang, et al. Index statistics and law analysis of unloaded truck on expressways in China[J]. Railway Transport and Economy, 2022, 44(8): 83-90. (in Chinese)
    [27] 徐进, 杨子邈, 陈钦, 等. 基于电子不停车收费数据的山区高速公路车速分布与车型分类研究[J]. 交通运输系统工程与信息, 2022, 22(5): 75-84, 116.

    XU Jin, YANG Zi-miao, CHEN Qin, et al. Speed distribution and vehicle type classification of mountain expressway based on electronic toll collection data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 7 5-84, 116. (in Chinese)
    [28] 王翠, 胡昊天, 邓三鸿. 面向道路交通违法行为的事理图谱构建技术[J]. 交通信息与安全, 2022, 40(1): 36-44.

    WANG Cui, HU Hao-tian, DENG San-hong. Development of a knowledge base for reasoning penalty for traffic violations based on event evolutionary graph[J]. Journal of Transport Information and Safety, 2022, 40(1): 36-44. (in Chinese)
    [29] VALLEJO-BORDA J A, GIESEN R, BASNAK P, et al. Characterising public transport shifting to active and private modes in South American capitals during the COVID-19 pandemic[J]. Transportation Research Part A: Policy and Practice, 2022, 164(10): 186-205.
    [30] MASIERO L, HENSHER D A. Freight transport distance and weight as utility conditioning effects on a stated choice experiment[J]. Journal of Choice Modelling, 2012, 5(1): 64-76.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回