[1] |
MA Lie, DING Si-yuan, ZHANG Chao, et al. Study on the wear performance of high-speed railway brake materials at low temperatures under continuous braking conditions[J]. Wear, 2023, 512: 204556.
|
[2] |
WANG Jin-nan, CHEN Yun-bo, ZUO Ling-li, et al. Evaluation of thermal fatigue life and crack morphology in brake discs of low-alloy steel for high-speed trains[J]. Materials, 2022, 15(19): 6837. doi: 10.3390/ma15196837
|
[3] |
杨智勇, 臧家俊, 方丹琳, 等. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.YANG Zhi-yong, ZANG Jia-jun, FANG Dan-lin, et al. Thermal fatigue crack propagation mechanism of SiCp/A356 composites for urban rail train brake disc[J]. Journal of Materials Engineering, 2022, 50(7): 165-175. (in Chinese)
|
[4] |
温玉颖, 张晓新, 燕青芝. 高铁制动盘失效原因和改进对策[J]. 机械工程学报, 2023, 59(14): 264-276.WEN Yu-ying, ZHANG Xiao-xin, YAN Qing-zhi. Failure causes and improvement countermeasures on high-speed brake disc[J]. Journal of Mechanical Engineering, 2023, 59(14): 264-276. (in Chinese)
|
[5] |
吴志豪, 吴兵. 地铁列车轴装制动盘热力耦合仿真分析[J]. 机械强度, 2023, 45(1): 190-197.WU Zhi-hao, WU Bing. Thermal-mechanical coupling simulation analysis of axle-mounted brake disc of the subway train[J]. Journal of Mechanical Strength, 2023, 45(1): 190-197. (in Chinese)
|
[6] |
MOGHANLOU M R, GOOGARCHIN H S. Three-dimensional coupled thermo-mechanical analysis for fatigue failure of a heavy vehicle brake disk: simulation of braking and cooling phases[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2020, 234(13): 095440702092171.
|
[7] |
吴射章, 陈鑫, 潘尹, 等. 铸钢轴装制动盘热裂纹形成和扩展机理[J]. 机车车辆工艺, 2018(6): 33-35.WU She-zhang, CHEN Xin, PAN Yin, et al. Mechanism of thermal crack formation and expansion of cast steel axle-mounted brake discs[J]. Locomotive and Rolling Stock Technology, 2018(6): 33-35. (in Chinese)
|
[8] |
WANG Zhi-zhong, HAN Jia-min, DOMBLESKY J P, et al. Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc[J]. Wear, 2019, 428: 45-54.
|
[9] |
冯杰才. 钢厚板激光-GMAW复合双面同步横焊特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.FENG Jie-cai. Research on the characteristics of double-sided hybrid laser-GMAW synchronous horizontal welding of high-strength thicks steel plates[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
|
[10] |
YE Shen, GONG Jian-guo, ZHANG Xian-cheng, et al. Effect of stress ratio on the fatigue crack propagation behavior of the nickel-based GH4169 alloy[J]. Acta Metallurgica Sinica (English Letters), 2017, 30: 809-821. doi: 10.1007/s40195-017-0567-6
|
[11] |
石晓玲. 高速列车锻钢制动盘热疲劳寿命评估研究[D]. 北京: 北京交通大学, 2016.SHI Xiao-ling. Research on thermal fatigue life assessment of forged steel brake discs for high-speed trains[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
|
[12] |
吕雪梅, 王曦, 罗明生. 考虑接触热阻的高速列车制动盘热机耦合行为分析[J]. 机械工程学报, 2021, 57(22): 296-304.LYU Xue-mei, WANG Xi, LUO Ming-sheng. Analysis of thermal-mechanical coupling behavior of brake disc of high speed trains considering thermal contact resistance[J]. Journal of Mechanical Engineering, 2021, 57(22): 296-304. (in Chinese)
|
[13] |
刘禹, 单颖春, 刘献栋, 等. 高温对汽车灰铸铁制动盘热疲劳裂纹萌生寿命的影响[J]. 机械工程学报, 2019, 55(8): 97-105.LIU Yu, SHAN Ying-chun, LIU Xian-dong, et al. Effect of high temperature on thermal fatigue crack initiation life of automotive gray cast iron brake discs[J]. Chinese Journal of Mechanical Engineering, 2019, 55(8): 97-105. (in Chinese)
|
[14] |
QU Jun-sheng, WANG Wen-jing, DONG Zi-yu, et al. Simulation analysis and verification of temperature and stress of wheel-mounted brake disc of a high-speed train[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 99. doi: 10.1186/s10033-022-00786-1
|
[15] |
HE Quan-zhi, SHI Xiao-ling. Characteristics of microscopic crack and propagation life of forged steel brake disc for high-speed train[J]. Materials Express, 2021, 11(3): 434-443.
|
[16] |
刘楠, 金星, 史建航, 等. 高速列车盘形制动器热-结构耦合方法研究[J]. 铁道科学与工程学报, 2024, 21(2): 456-464.LIU Nan, JIN Xing, SHI Jian-hang, et al. Study on the thermal-structural coupling method for disc brake of high-speed train[J]. Journal of Railway Science and Engineering, 2024, 21(2): 456-464. (in Chinese)
|
[17] |
李杰, 高紫钰, 王晓燕, 等. 喷丸强化对车辆传动齿轮裂纹扩展影响研究综述[J]. 表面技术, 2024, 53(4): 1-19.LI Jie, GAO Zi-yu, WANG Xiao-yan, et al. A review on the effects of shot peening on crack growth of vehicle transmission gears[J]. Surface Technology, 2024, 53(4): 1-19. (in Chinese)
|
[18] |
PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Transactions of the ASME, 1963, 85(4): 528-533.
|
[19] |
黄益昌, 张继旺, 苏凯新, 等. 高速列车铸钢制动盘表面裂纹应力强度因子分析[J]. 机械科学与技术, 2023, doi: 10.13433/j.cnki.1003-8728.20230262HUANG Yi-chang, ZHANG Ji-wang, SU Kai-xin, et al. Surface crack stress intensity factor analysis of cast steel brake disc for high-speed train[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, https://doi.org/10.13433/j.cnki.1003-8728.20230262. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20230262
|
[20] |
石晓玲, 李强, 杨广雪. 高速列车制动盘表面裂纹的扩展特性[J]. 北京交通大学学报, 2015, 39(4): 55-60.SHI Xiao-ling, LI Qiang, YANG Guang-xue. The fatigue crack propagation characteristic on brake disc surface of high speed train[J]. Journal of Beijing Jiaotong University, 2015, 39(4): 55-60. (in Chinese)
|
[21] |
XIE Xiao-dong, LI Zhi-qiang, DOMBLESKY J P, et al. Analysis of deep crack formation and propagation in railway brake discs[J]. Engineering Failure Analysis, 2021, 128: 105600. doi: 10.1016/j.engfailanal.2021.105600
|
[22] |
LU Chun, SHEN Jia-cheng, FU Qiang, et al. Research on radial crack propagation of railway brake disc under emergency braking conditions[J]. Engineering Failure Analysis, 2023, 143: 106877. doi: 10.1016/j.engfailanal.2022.106877
|
[23] |
FORMAN R G, KEARNEY V E, ENGLER R M. Numerical analysis of crack propagation in cyclic loaded structures[J]. Journal of Basic Engineering, 1967, 89(3): 459-464. doi: 10.1115/1.3609637
|
[24] |
HUANG Xiao-ping, MOAN T. Improved modeling of the effect of R-ratio on crack growth rate[J]. International Journal of Fatigue, 2007, 29(4): 591-602. doi: 10.1016/j.ijfatigue.2006.07.014
|
[25] |
TIAN Fu-zheng, LI Le-yu, LIU Xin-ling. Effect of stress ratio on fatigue crack propagation behavior of single crystal superalloy[J]. Science of Advanced Materials, 2023, 15(1): 33-40. doi: 10.1166/sam.2023.4412
|
[26] |
TANAKA K, AKINIWA Y. Fatigue thresholds of precracked specimens predicted by modified strip-yield model for plasticity-induced crack closure[J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103635. doi: 10.1016/j.tafmec.2022.103635
|
[27] |
刘义伦, 何军, 刘驰, 等. 2524铝合金不同应力比下的疲劳裂纹扩展行为[J]. 锻压技术, 2018, 43(6): 134-141.LIU Yi-lun, HE Jun, LIU Chi, et al. Fatigue crack growth of aluminum alloy 2524 under different stress ratios[J]. Forging and Stamping Technology, 2018, 43(6): 134-141. (in Chinese)
|
[28] |
徐礼达, 张瑞金, 赵硕. 基于弹塑性力学的疲劳裂纹扩展速率的研究[J]. 机械强度, 2023, 45(3): 607-612.XU Li-da, ZHANG Rui-jin, ZHAO Shuo. Study on fatigue crack growth rate based on elastic-plastic mechanics[J]. Journal of Mechanical Strength, 2023, 45(3): 607-612. (in Chinese)
|
[29] |
ZHANG Xiao-dong, WANG Tian-jian, GONG Xiu-fang, et al. Low cycle fatigue properties, damage mechanism, life prediction and microstructure of MarBN steel: influence of temperature[J]. International Journal of Fatigue, 2021, 144: 106070. doi: 10.1016/j.ijfatigue.2020.106070
|
[30] |
HUA Jian-min, YANG Zheng-tao, ZHOU Feng, et al. Effects of exposure temperature on low-cycle fatigue properties of Q690 high-strength steel[J]. Journal of Constructional Steel Research, 2022, 190: 107159. doi: 10.1016/j.jcsr.2022.107159
|
[31] |
CHEN Y, PANG J C, ZOU C L, et al. High-temperature fatigue damage mechanism and strength prediction of vermicular graphite iron[J]. International Journal of Fatigue, 2023, 168: 107477. doi: 10.1016/j.ijfatigue.2022.107477
|
[32] |
谢晓东, 李志强, 刘志成, 等. 服役高铁制动盘微观组织演变和力学性能表征[J]. 中南大学学报(自然科学版), 2022, 53(10): 3869-3878. doi: 10.11817/j.issn.1672-7207.2022.10.008XIE Xiao-dong, LI Zhi-qiang, LIU Zhi-cheng, et al. Characterization and evolution of microstructure and mechanical properties of serviced high-speed rail brake discs[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 3869-3878. (in Chinese) doi: 10.11817/j.issn.1672-7207.2022.10.008
|
[33] |
高靖添, 孟繁辉, 姚风龙, 等. CRH5型动车组制动盘异常磨耗原因分析[J]. 城市轨道交通研究, 2022, 25(1): 186-189, 192.GAO Jing-tian, MENG Fan-hui, YAO Feng-long, et al. Cause analysis of abnormal wear of CRH5 EMU brake disc[J]. Urban Mass Transit, 2022, 25(1): 186-189, 192. (in Chinese)
|
[34] |
徐超, 佴启亮, 姚志浩, 等. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460. doi: 10.11900/0412.1961.2017.00169XU Chao, NAI Qi-liang, YAO Zhi-hao, et al. Grain boundary oxidation effect of GH4738 super alloy on fatigue crack growth[J]. Acta Metallurgica Sinica, 2017, 53(11): 1453-1460. (in Chinese) doi: 10.11900/0412.1961.2017.00169
|
[35] |
高飞, 吴波文, 杨俊英. 闸片材料参数与制动盘温度关系[J]. 中国有色金属学报, 2020, 30(4): 837-846.GAO Fei, WU Bo-wen, YANG Jun-ying. Relationship of pad material parameters and brake disk temperature field[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 837-846. (in Chinese)
|
[36] |
熊缨, 陈冰冰, 郑三龙, 等. 16MnR钢在不同条件下的疲劳裂纹扩展规律[J]. 金属学报, 2009, 45(7): 849-855. doi: 10.3321/j.issn:0412-1961.2009.07.013XIONG Ying, CHEN Bing-bing, ZHENG San-long, et al. Fatigue crack propagation behavior of 16MnR steel under different conditions[J]. Acta Metallurgica Sinica, 2009, 45(7): 849-855. (in Chinese) doi: 10.3321/j.issn:0412-1961.2009.07.013
|
[37] |
佴启亮, 董建新, 张麦仓, 等. GH4720Li合金疲劳裂纹扩展速率的温度敏感性[J]. 稀有金属材料与工程, 2017(10): 167-173.NAI Qi-liang, DONG Jian-xin, ZHANG Mai-cang, et al. Temperature sensitivity of fatigue crack extension rate of GH4720Li alloy[J]. Rare Metal Materials and Engineering, 2017(10): 167-173. (in Chinese)
|
[38] |
陈年金, 高增梁, 雷月葆. 316L钢高温疲劳蠕变规律研究[J]. 压力容器, 2006(6): 6-9, 26. doi: 10.3969/j.issn.1001-4837.2006.06.002CHEN Nian-jin, GAO Zeng-liang, LEI Yue-bao. Studies on the law of fatigue and creep of 316L stainless steel at elevated temperature[J]. Pressure Vessel Technology, 2006(6): 6-9, 26. (in Chinese) doi: 10.3969/j.issn.1001-4837.2006.06.002
|
[39] |
江河, 佴启亮, 徐超, 等. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.JIANG He, NAI Qi-liang, XU Chao, et al. Sensitive temperature and reason of rapid fatigue crack propagation in nickel-based superalloy[J]. Acta Metallurgica Sinica, 2023, 59(9): 1190-1200. (in Chinese)
|
[40] |
钱坤才, 吴射章, 乔青锋, 等. 高寒雨雪气候下高速动车组盘片摩擦副摩擦性能[J]. 西南交通大学学报, 2017, 52(6): 1188-1192. doi: 10.3969/j.issn.0258-2724.2017.06.020QIAN Kun-cai, WU She-zhang, QIAO Qing-feng, et al. Friction performance of brake disks and blocks for high speed EMU trains in cold, rainy and snowy weather[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1188-1192. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.06.020
|
[41] |
张超, 马蕾, 丁昊昊, 等. 低温环境下制动参数对列车制动材料摩擦性能的影响[J]. 机械工程学报, 2021, 57(8): 230-239.ZHANG Chao, MA Lei, DING Hao-hao, et al. Effect of brake parameters on friction properties of brake materials in low temperature environment[J]. Journal of Mechanical Engineering, 2021, 57(8): 230-239. (in Chinese)
|
[42] |
MA Lie, SHI Han-bo, DING Si-yuan, et al. Study on temperature field and surface damage characteristics of railway brake disc/pad at low temperatures[J]. Industrial Lubrication and Tribology, 2022, 74(5): 472-480. doi: 10.1108/ILT-11-2021-0440
|
[43] |
RACKWITZ J, YU Qin, YANG Yang, et al. Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy[J]. Acta Materialia, 2020, 200: 351-365. doi: 10.1016/j.actamat.2020.09.021
|
[44] |
ZHAO Wei-dong, FENG Guo-qing, ZHANG Ming, et al. Effect of low temperature on fatigue crack propagation rates of DH36 steel and its butt weld[J]. Ocean Engineering, 2020, 196(1): 1068031.
|
[45] |
丁思源, 马蕾, 石含波, 等. 低温环境对高速列车制动盘材料疲劳裂纹扩展性能影响研究[J]. 机械强度, 2022, 44(5): 1082-1090.DING Si-yuan, MA Lei, SHI Han-bo, et al. Study on influence of low temperature environment on fatigue crack growth performance of high-speed railway brake disc material[J]. Journal of Mechanical Strength, 2022, 44(5): 1082-1090. (in Chinese)
|
[46] |
石晓玲, 李强, 赵方伟. 高速列车制动盘在不同制动工况下的残余热应力分布研究[J]. 铁道机车车辆, 2015, 35(4): 7-10, 49. doi: 10.3969/j.issn.1008-7842.2015.04.02SHI Xiao-ling, LI Qiang, ZHAO Fang-wei. Research on residual thermal stress of high speed train brake disk under different braking conditions[J]. Railway Locomotives and Car, 2015, 35(4): 7-10, 49. (in Chinese) doi: 10.3969/j.issn.1008-7842.2015.04.02
|
[47] |
SALVATI E, ZHANG Hong-jia, FONG K S, et al. Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload[J]. Journal of the Mechanics and Physics of Solids, 2017, 98: 222-235. doi: 10.1016/j.jmps.2016.10.001
|
[48] |
洪圆, 李慧芳, 汤岚清, 等. 疲劳裂纹在TA2板中扩展及超载迟滞效应的实验研究[J]. 北京化工大学学报(自然科学版), 2015, 42(3): 100-104.HONG Yuan, LI Hui-fang, TANG Lan-qing, et al. Experimental study of the fatigue crack propagation and overloading retardation in TA2 plate[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2015, 42(3): 100-104. (in Chinese)
|
[49] |
ZHOU Xiang, GAENSER H P, PIPPAN R. The effect of single overloads in tension and compression on the fatigue crack propagation behaviour of short cracks[J]. International Journal of Fatigue, 2016, 89: 77-86. doi: 10.1016/j.ijfatigue.2016.02.001
|
[50] |
李亚智, 耿伟杰, 束一秀, 等. 高载作用下的疲劳裂纹闭合与残余应力作用[J]. 西北工业大学学报, 2014, 32(4): 529-535. doi: 10.3969/j.issn.1000-2758.2014.04.010LI Ya-zhi, GENG Wei-jie, SHU Yi-xiu, et al. Fatigue crack closure and residual stress effect of overload[J]. Journal of Northwestern Polytechnical University, 2014, 32(4): 529-535. (in Chinese) doi: 10.3969/j.issn.1000-2758.2014.04.010
|
[51] |
赵凌燕, 贾文娜, 崔英浩, 等. 一次超载对裂纹前端残余应力重新分布的影响分析[J]. 热加工工艺, 2019, 48(21): 138-142.ZHAO Ling-yan, JIA Wen-na, CUI Ying-hao, et al. Effect analysis of a single overload on the redistribution of residual stress around crack tip[J]. Hot Working Technology, 2019, 48(21): 138-142. (in Chinese)
|
[52] |
刘珏, 董世运, 王东星, 等. 高速列车制动盘设计中若干问题的研究现状[J]. 材料导报, 2023, 37(14): 73-78.LIU Jue, DONG Shi-yun, WANG Dong-xing, et al. Research status of several issues in the design of brake discs for high-speed trains[J]. Materials Reports, 2023, 37(14): 73-78. (in Chinese)
|
[53] |
张吉银, 姚倡锋, 谭靓, 等. 喷丸强化残余应力对疲劳性能和变形控制影响研究进展[J]. 机械工程学报, 2023, 59(6): 46-60.ZHANG Ji-yin, YAO Chang-feng, TAN Liang, et al. Research progress of the effect of shot peening residual stress on fatigue performance and deformation control[J]. Journal of Mechanical Engineering, 2023, 59(6): 46-60. (in Chinese)
|
[54] |
王成, 李开发, 胡兴远, 等. 喷丸强化残余应力对AISI 304不锈钢疲劳裂纹扩展行为的影响[J]. 表面技术, 2021, 50(9): 81-90, 151.WANG Cheng, LI Kai-fa, HU Xing-yuan, et al. Effect of shot peening-induced residual stress on the fatigue crack propagation behavior of AISI 304 stainless steel[J]. Surface Technology, 2021, 50(9): 81-90, 151. (in Chinese)
|
[55] |
高国强, 陈金祥, 薛红前, 等. 7B50-T7751铝合金喷丸强化表面形态衍化及其对疲劳性能的影响[J]. 中国表面工程, 2022, 35(4): 187-195.GAO Guo-qiang, CHEN Jin-xiang, XUE Hong-qian, et al. Surface morphology evolution together with its effect on fatigue properties in shot peening of aluminum alloy 7B50-T7751[J]. China Surface Engineering, 2022, 35(4): 187-195. (in Chinese)
|
[56] |
方军, 詹玉婷, 靳凯. 喷丸工艺对1Cr11Ni2W2MoV钢螺母表面性能和显微组织的影响[J]. 机械工程材料, 2022, 46(2): 31-34, 42.FANG Jun, ZHAN Yu-ting, JIN Kai. Effect of shot peening process on surface properties and microstructure of 1Cr11Ni2W2MoV steel nut[J]. Materials for Mechanical Engineering, 2022, 46(2): 31-34, 42. (in Chinese)
|
[57] |
张亚龙, 吴鲁纪, 何肖飞, 等. 喷丸强化对Cr-Ni-Mo系高强钢的摩擦磨损性能影响[J]. 摩擦学学报, 2023, 43(9): 1072-1082.ZHANG Ya-long, WU Lu-ji, HE Xiao-fei, et al. Effect of shot peening on friction and wear behaviors of Cr-Ni-Mo high strength steel[J]. Tribology, 2023, 43(9): 1072-1082. (in Chinese)
|
[58] |
KELLER S, HORSTMANN M, KASHAEV N, et al. Crack closure mechanisms in residual stress fields generated by laser shock peening: a combined experimental-numerical approach[J]. Engineering Fracture Mechanics, 2019, 221: 106630. doi: 10.1016/j.engfracmech.2019.106630
|
[59] |
LIU Jin-xiang. Numerical analysis for effects of shot peening on fatigue crack growth[J]. International Journal of Fatigue, 2013, 50: 101-108. doi: 10.1016/j.ijfatigue.2012.02.010
|
[60] |
吕鹤婷, 王建明, 刘兴睿. 喷丸残余应力对裂纹闭合效应影响的数值仿真[J]. 中国表面工程, 2016, 29(2): 102-110.LYU He-ting, WANG Jian-ming, LIU Xing-rui. Numerical simulation for residual stress fields of shot-peening on crack closure effect[J]. Chinese Surface Engineering, 2016, 29(2): 102-110. (in Chinese)
|
[61] |
侯帅, 朱有利, 邱骥, 等. 喷丸强化对Ti6Al4V半椭圆表面裂纹J积分和裂纹扩展速率的影响[J]. 材料工程, 2019, 47(1): 139-146.HOU Shuai, ZHU You-li, QIU Ji, et al. Effect of shot peening on J-integral and crack progation rate of semi-elliptic surface crack on Ti6Al4V[J]. Journal of Materials Engineering, 2019, 47(1): 139-146. (in Chinese)
|
[62] |
阴晓宁. TC4钛合金喷丸强化表面完整性研究[D]. 大连: 大连理工大学, 2015.YIN Xiao-ning. Surface integrity study on shot peened Ti-6Al-4V titanium alloy[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
|
[63] |
QU Sheng-guan, DUAN Chen-feng, HU Xiong-feng, et al. Effect of shot peening on microstructure and contact fatigue crack growth mechanism of shaft steel[J]. Materials Chemistry and Physics, 2021(9): 125116.
|
[64] |
金宸宇, 葛鸿浩, 张亚周, 等. 激光熔覆316L粉末多层堆积过程中熔覆层Cr元素分布机制研究[J]. 中国激光, 2023, 50(12): 129-141.JIN Chen-yu, GE Hong-hao, ZHANG Ya-zhou, et al. Distribution mechanism of Cr element in laser cladding layer during 316L powder multilayer stacking[J]. Chinese Journal of Lasers, 2023, 50(12): 129-141. (in Chinese)
|
[65] |
TONOLINI P, MONTESANO L, POLA A, et al. The effect of laser-cladding on the wear behavior of gray cast iron brake disc[J]. Procedia Structural Integrity, 2021, 33: 1152-1161. doi: 10.1016/j.prostr.2021.10.129
|
[66] |
RAJAEI H, MENAPACE C, STRAFFELINI G, et al. Characterization, wear and emission properties of MnS containing laser cladded brake disc[J]. Wear, 2022, 504: 204405.
|
[67] |
时晓宇, 温道胜, 王守仁, 等. 激光熔覆灰铸铁制动盘Fe-Ni-Cr梯度复合涂层微观组织及高温摩擦磨损性能研究[J]. 中国激光, 2022, 49(2): 188-199.SHI Xiao-yu, WEN Dao-sheng, WANG Shou-ren, et al. Microstructure and high-temperature friction-wear performance of Fe-Ni-Cr gradient composite coating on laser-cladded gray cast iron brake disc[J]. Chinese Journal of Lasers, 2022, 49(2): 188-199. (in Chinese)
|
[68] |
LI Jie, GU Jia-ling, ZHANG Yan-xiong, et al. Study on laser cladding process and friction characteristics of friction pairs of copper-based powder metallurgy materials[J]. Tribology International, 2023, 177: 107953. doi: 10.1016/j.triboint.2022.107953
|
[69] |
葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808. doi: 10.11896/j.issn.1005-023X.2018.16.019GE Mao-zhong, XIANG Jian-yun, FAN Zhen. Effect of laser clad repair on crack growth rate of TC4 titanium alloy[J]. Materials Reports, 2018, 32(16): 2803-2808. (in Chinese) doi: 10.11896/j.issn.1005-023X.2018.16.019
|
[70] |
吴影, 刘磊. 激光熔覆钴基涂层制动盘热疲劳及制动性能研究[C]//中国稀土学会. 中国稀土学会2021学术年会论文摘要集. 北京: 清华大学, 2021: 490-524.WU Ying, LIU Lei. Research on thermal fatigue and braking performance of laser-melted cobalt-based coated brake discs[C]//Chinese Society of Rare Earths. Abstracts of the 2021 Annual Conference of the Chinese Society of Rare Earths. Beijing: Tsinghua University, 2021: 490-524. (in Chinese)
|
[71] |
WALKER K F, LOURENCO J M, SUN S, et al. Quantitative fractography and modelling of fatigue crack propagation in high strength AerMet100 steel repaired with a laser cladding process[J]. International Journal of Fatigue, 2017, 94: 288-301. doi: 10.1016/j.ijfatigue.2016.06.031
|
[72] |
李洪玉, 魏连峰, 王泽明, 等. 激光熔覆铁基涂层的热疲劳性能[J]. 激光与光电子学进展, 2021, 58(7): 238-248.LI Hong-yu, WEI Lian-feng, WANG Ze-ming, et al. Thermal fatigue performance of laser cladding Fe-based coating[J]. Laser Optoelectronics Progress, 2021, 58(7): 238-248. (in Chinese)
|
[73] |
陈冠秀, 安立周, 王硕, 等. 激光熔覆技术的研究概况及其发展趋势[J]. 机电产品开发与创新, 2022, 35(5): 15-18, 41.CHEN Guan-xiu, AN Li-zhou, WANG Shuo, et al. Research overview and development trend of laser cladding technology[J]. Development and Innovation of Machinery and Electrical Products, 2022, 35(5): 15-18, 41. (in Chinese)
|
[74] |
于天彪, 宋博学, 郗文超, 等. 激光熔覆工艺参数对熔覆层形貌的影响及优化[J]. 东北大学学报(自然科学版), 2019, 40(4): 537-542.YU Tian-biao, SONG Bo-xue, XI Wen-chao, et al. Influence of laser cladding process parameters on morphology of cladding layer and its optimization[J]. Journal of Northeastern University (Natural Science), 2019, 40(4): 537-542. (in Chinese)
|
[75] |
杨凯欣, 孙文磊, 肖奇, 等. 基于田口灰色关联法对Fe06-15% TiC熔覆层激光工艺参数的优化[J]. 材料导报, 2022, 36(24): 186-194.YANG Kai-xin, SUN Wen-lei, XIAO Qi, et al. Optimization of laser process parameters of Fe06-15% TiC cladding layer based on taguchi grey correlation method[J]. Materials Reports, 2022, 36(24): 186-194. (in Chinese)
|
[76] |
NORHAFZAN B, AQIDA S N, CHIKARAKARA E, et al. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder[J]. Applied Physics A, 2016, 122: 1-6.
|
[77] |
王永东, 宫书林, 汤明日, 等. 激光熔覆工艺对高熵合金组织与性能影响[J]. 焊接学报, 2023, 44(8): 116-122.WANG Yong-dong, GONG Shu-lin, TANG Ming-ri, et al. Effects of laser cladding process on the microstructure and properties of high-entropy alloys[J]. Transactions of the China Welding Institution, 2023, 44(8): 116-122. (in Chinese)
|
[78] |
杨俊芬, 曲凯, 杨景林, 等. 冷喷涂试件疲劳裂纹扩展规律试验研究[J]. 应用力学学报, 2022, 39(2): 291-296.YANG Jun-fen, QU Kai, YANG Jing-lin, et al. Experimental study on the fatigue crack growth law of cold sprayed specimens[J]. Chinese Journal of Applied Mechanics, 2022, 39(2): 291-296. (in Chinese)
|
[79] |
邓楠, 董浩, 车洪艳, 等. 冷喷涂制备金属涂层及其在增材制造应用中的研究进展[J]. 表面技术, 2020, 49(3): 57-66.DENG Nan, DONG Hao, CHE Hong-yan, et al. The research progress on preparation of metal coatings by cold spraying and its application in additive manufacturing[J]. Surface Technology, 2020, 49(3): 57-66. (in Chinese)
|
[80] |
熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.XIONG Tian-ying, WANG Ji-qiang. Research progress of cold spray in Institute of Metal Research, Chinese Academy of Sciences[J]. Acta Metallurgica Sinica, 2023, 59(4): 537-546. (in Chinese)
|
[81] |
GOANTA V, MUNTEANU C, MVFTV S, et al. Evaluation of the fatigue behavior and failure mechanisms of 4340 steel coated with WIP-C1 (Ni/CrC) by cold spray[J]. Materials, 2022, 15(22): 8116. doi: 10.3390/ma15228116
|
[82] |
DAYANI S B, SHAHA S K, GHELICHI R, et al. The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy[J]. Surface and Coatings Technology, 2018, 337: 150-158. doi: 10.1016/j.surfcoat.2018.01.008
|
[83] |
CAVALIERE P, SILVELLO A. Crack repair in aerospace aluminum alloy panels by cold spray[J]. Journal of Thermal Spray Technology, 2017, 26: 661-670. doi: 10.1007/s11666-017-0534-9
|
[84] |
韩玮, 孟宪明, 赵杰, 等. 冷喷涂304不锈钢涂层的弯曲力学行为研究[J]. 材料工程, 2011(4): 49-53. doi: 10.3969/j.issn.1001-4381.2011.04.010HAN Wei, MENG Xian-ming, ZHAO Jie, et al. Study on bending behavior of 304 stainless steel coating by cold gas dynamic spraying[J]. Journal of Materials Engineering, 2011(4): 49-53. (in Chinese) doi: 10.3969/j.issn.1001-4381.2011.04.010
|
[85] |
LI Yan-jiao, DONG Tian-shun, FU Bin-guo, et al. Study of the microstructure and properties of cold sprayed NiCr coating[J]. Journal of Materials Engineering and Performance, 2021, 30(12): 9067-9077. doi: 10.1007/s11665-021-06075-7
|
[86] |
CHEN Hao, LIU Cheng-xin, CHU Xing-rong, et al. Corrosion behavior and microstructure of Cu-based composite coatings deposited by cold spraying[J]. Metals, 2022, 12(6): 955. doi: 10.3390/met12060955
|