-
摘要: 为探究城市自行车交通系统出行品质的影响因素,从道路设施和路网两方面进行评价方法综述;在自行车道路设施评价方面,考虑了自行车交通流、自行车道设计要素、自行车出行环境、骑行者感知等方面因素,建立了自行车道通行能力、自行车道服务水平、自行车道安全性评价、骑行者压力、骑行者满意度等评价方法;在自行车路网评价方面,应用复杂网络、空间句法等拓扑分析方法,建立了自行车可达性、可骑行性等评价方法。研究结果表明:自行车道路设施评价方法中,评价对象从自行车向多模式交通转变,评价指标考虑了机动车、公交车、行人等因素对骑行的影响,评价角度从道路设计者向骑行者转变,逐步以骑行者感知代替设计者经验进行评价等级划分,骑行者感知数据多采用问卷、实验室录像、实地试验和虚拟环境试验等方法获取数据,建模方法以离散选择模型、统计分析、线性回归模型、结构方程模型为主,研究集中于心理感知的量测方法及影响机理,仍需深入研究生理感知对骑行者的影响机理,并结合个体性差异细化感知影响机理;自行车路网评价方法中,以复杂网络、空间句法为主的拓扑分析方法验证了路网拓扑关系对骑行者出行量的影响,自行车可达性考虑了骑行距离、出行目的地对骑行的影响,可骑行性综合考虑了路段设施与路网结构对骑行需求的影响,还需深入研究自行车路段设施与路网特性协同作用机理;未来需完善自行车道路设施全阶段评价体系,建立考虑自行车道路设施和路网结构的协同评价及优化方法,为自行车交通系统出行品质提升提供理论参考。Abstract: In order to investigate the influencing factors of travel quality for urban bicycle traffic system, a comprehensive review of the evaluation methods was carried out from the aspects of both road facilities and road networks. In the evaluation of road facilities, factors such as bicycle traffic flow, bicycle lane design elements, bicycle travel environment, and cyclist perception were considered, and evaluation methods such as bicycle lane passing capacity, bicycle lane service level, bicycle lane safety evaluation, cyclist stress, and cyclist satisfaction were established. In the evaluation of road networks, topological analysis methods such as complex networks and space syntax were applied, and evaluation methods such as bicycle accessibility and bikeability were established. Research results show that in the evaluation method of road facilities, the evaluation subject shifts from bicycles to multimodal transportation, and the evaluation metrics consider the impact of motor vehicles, buses, pedestrians, and other factors on cycling. The evaluation perspective transitions from focusing on road designers to cyclists, progressively substituting designer experiences with cyclist perceptions to determine evaluation levels. The data of cyclist perception is obtained by questionnaires, laboratory videos, field experiments, and virtual environment experiments, and the modeling methods are mainly discrete choice models, statistical analysis, linear regression models, and structural equation models. The research focuses on the measurement method and influencing mechanism of psychological perception. The influencing mechanism of the physiological perception of cyclists still needs to be studied in depth, and the influencing mechanism needs to be refined by taking into account individual differences. In the evaluation method of road network, the topological analysis method mainly based on complex network and spatial syntax verifies the influence of the topological relationship of road networks on the travel frequency of cyclists. Bicycle accessibility takes into account the influence of cycling distance and travel destinations on cycling, and bikeability comprehensively considers the influence of road facilities and road network structure on cycling demand. The synergistic mechanism of road facilities and road network characteristics still needs to be studied in depth. In the future, it is necessary to improve the evaluation system for road facilities of bicycles at all stages and establish synergistic evaluation and optimization methods that consider both road facilities and road network structure, and provide theoretical references for improving the travel quality of bicycle traffic systems.
-
表 1 自行车道服务水平发展及影响因素
Table 1. Level of service development and influencing factors of bicycle lane
年份 研究者 数据来源 感知因素 服务水平分级 影响因素 1995 Botma[37] 现场调查/实验室录像 未考虑 6 障碍、延误、平均行程速度 1996 Dixon[38] 现场调查 出行者经验 6 设施供应、冲突、速度差、机动车服务水平、维护情况、是否存在运输需求管理计划或者过境的多式联运 1997 Landis等[39] 现场骑行 出行者感知 6 机动车交通量、车道数、机动车速度、重型车辆比例、土地利用强度、路侧停车数量、路面状况、外侧车道有效宽度 2000 HCM2000[16] 现场调查/实验室录像 未考虑 6 超车数、控制延误 2003 Landis等[40] 现场调查/实验室录像 出行者感知 6 骑行过街距离、机动车交通量、进口车道数、自行车道与外侧车道宽度 2007 Petritsch等[41] 现场调查/实验室录像 出行者感知 6 机动车交通量、车道数、机动车车速、重型车辆比例、路面状况、道路有效宽度 2008 Dowling [42] 现场调查/实验室录像 出行者感知 6 车道数、机动车交通量、机动车车速、重型车辆比例、路面状况、外侧车道有效宽度、路侧停车数量 2010 Li等[43] 现场调查 未考虑 6 超车数 2010 HCM2010[17] 现场调查/实验室录像 出行者感知 6 车道数、机动车交通量、机动车车速、重型车辆比例、路面状况、外侧车道有效宽度、路侧停车数量 2012 於昊等[44] 现场调查/实验室录像 出行者感知 6 共享道有效宽度、障碍物密度、交通冲突强度、各种非机动车速度和流量比例 2016 HCM2016[18] 现场调查 出行者感知 6 相遇数、主动超车数、道路宽度、中心线有无、延误超车数 2016 方雪丽等[45] 实验室录像 出行者感知 4 机动车流量、助动车混入率、非机动车道宽度、路面铺装质量、路边停车比例、上坡情况、路边遮阳比例、重型车流量 2017 同济大学交通运输工程学院[46] 实验室录像 出行者感知 4 机动车流量、助动车流量、助动车混入率、非机动车道宽度、路面铺装质量、路边停车比例、是否存在上坡、路边遮阳比例、重型车流量、绿视率、植物种类多样性、整洁度 2017 Beura等[47] 现场调查 出行者感知 6 道路宽度、机动车交通量、路面状况、自行车停车延迟、土地利用模式、街道停车周转率 2017 Beura等 [48] 现场调查 出行者感知 6 车道宽度、路面状况、交通量、交通速度、路边商业活动、未经授权中断公共交通、停车车辆启动并入、车道出现高交通量的频率 2018 Majumdar等[49] 现场调查 出行者感知 6 街头停车场数量、机动车辆数量、土地利用类型、路面状况评分、第85分位机动车速度 2019 Okon等[50] 视频调查 出行者感知 6 人行道与自行车道分离方式、自行车速度、机动交通量、与行人的冲突、自行车道宽度、外部车道、路面状况、树木、阳光、性别、骑车者的经验 2019 Zhang等[51] 现场调查/仿真试验 出行者感知 5 车流密度、速度道路宽度、车辆混合比、骑车人特征 2020 Beura等[52] 现场调查 出行者感知 6 引道有效宽度、引道高峰小时交通量、交叉口行人量、直行自行车道路上的转弯车辆交通量、直行自行车道路上的平均停车延误、街道停车周转量、周边发展模式 2022 HCM2022[19] 现场调查 出行者感知 6 相遇数、主动超车数、道路宽度、中心线有无、延误超车数 表 2 骑行安全评价方法
Table 2. Evaluation methods of riding safety
评价方法 评价对象 数据获取方法 研究方法 主要变量 BSIR(1987)[55] 路段 实地调查 多元线性回归 年平均日交通量、限速、车道数、外侧车道宽度、路面因素 RCI(1991)[56] 路段 实地调查 多元线性回归 年平均日交通量、限速、车道数、外侧车道宽度、路面因素、位置因素 MRCI(1994)[56] 路段 实地调查 多元线性回归 年平均日交通量、限速、重型车辆比例、车道数、外侧车道宽度、路面因素、位置因素 IHS(1994)[57] 路段 实地调查 多元线性回归 平均日交通量、限速、重型车辆比例、直行车道数、外侧车道宽度、路面因素、邻近路段的土地利用强度、路缘开口(或路边停车)频率 BCI(1997)[58] 路段 实地调查 多元线性回归 外侧车道宽度、外侧车道机动车交通量、右转交通量、重型车辆交通量、机动车速度、停车占有率是否超过30% CRC(2003)[59] 路段 实地调查 多元线性回归 路肩宽度、骑行空间、小汽车流量、道路材料、重型卡车流量、路侧情况、转向可见度 RBCI(2003)[60] 路段 实地调查 多元线性回归 路肩宽度、小汽车流量、是否有重型卡车、路侧情况 PSC(2023)[61] 路段 实地调查 有序回归模型 自行车道设计形式、道路标线、标志、交通量、车辆停放情况 BRSR(2003)[62] 路段、交叉口 新泽西州交通部数据库 多元Logistic 平均日交通量、车道宽度、竖向坡度、道路分级、单行道、人口密度 BISI(2007)[63] 交叉口 实地调查 多元线性回归 平均日交通量、过街骑手直行道路的转弯车辆、限速、直行车道数、右转车道数、自行车交叉口左转车道数、自行车交叉口右转车道数、是否存在自行车道、是否有路边停车、交叉口交通信号控制 PBIS(2018)[64] 交叉口 在线视觉调查 有序Probit 直行交通量、直行车道数、右转车道数、是否存在自行车道、是否存在人行横道、自行车箱、单行道、交叉口交通信号控制、交叉口类型、绿化 BSSI(2020)[65] 交叉口 实地调查、问卷调查 多元线性回归 自行车流量、是否存在铺装路肩、是否存在路缘匝道、是否存在自行车道、自行车停车站点、自行车等待区、标志标线、自行车租赁计划 表 3 骑行者感知导向的自行车道路设施评价方法对比
Table 3. Comparison of evaluation methods of cyclists' perception oriented bicycle road facilities
方法类别 研究方法 评价对象 调查方法 特点 骑行者压力评价 归纳分析[78-80] 路段、交叉口 调查问卷、实地调查 评价标准基于研究者经验制定,考虑了骑行者类型的影响,评价变量较少,缺乏表征骑行者感知的深度研究 骑行者满意度评价 问卷数据分析[88-89]、结构方程模型[90-91, 94]、线性回归模型[92]、二元有序Probit模型[93] 公共自行车系统、路段 问卷调查 评价标准基于对调查问卷数据的分析,既有对自行车道路的评价也有对公共自行车系统的评价,评价方法较主观,不同研究中的骑行者满意度结果往往不具有可比性 骑行者舒适度评价 有序Probit模型[100]、多维统计分析[101]、多元线性回归[102]、XGBoost方法[103]、逐步回归[104]、遗传聚类[104] 路段 问卷调查、在线调查、实验室录像、骑行试验、实地调查 评价标准基于骑行者评价,研究多学科的角度,从路面属性、自行车结构、人体结构等方面对舒适度进行了评价,综合多学科知识对舒适度进行评价还需进一步探索 骑行者感知疲劳评价 试验数值对比分析[117]、多元线性回归[119-120] 路段 虚拟环境试验、骑行试验 评价标准基于试验测得的骑行者疲劳数值量化了骑行者感知,综合了医学、运动学方面的相关知识,评价角度较为客观,但数据规模较难扩大,数据获取较为困难 表 4 自行车可达性模型对比
Table 4. Comparison of common accessibility models
类别 方法 文献 阻抗 优点 缺点 适用性 集计模型 空间阻隔模型 [157] 骑行距离、骑行出行时间、出行费用等 形式、含义简单 忽略了土地利用与交通需求;过多关注交通因素,应用范围非常有限 地理学、交通网络 累积机会模型 [150]、[153]~[155]、[158] 骑行时间、费用等 可解释性高 未考虑度量点和吸引点之间的作用及其效应随距离的衰减;衰减阈值难确定,取值为无穷大时失去意义 自行车基础设施规划(等时线、等费用线) 空间相互作用模型 [149]、[152] 仅骑行者出行距离 通俗易懂、意义明确,可解释性好、易于理解,同时数据容易获取 无法计算小区本身的可达性;仅考虑目的地对出发点的吸引力,未考虑对起点的需求;仅考虑不同区位的可达性,对个体的因素考虑较少 各种机会和设施的可达性研究 非集计模型 效用模型 [156] 交通因素、土地因素等 可利用非集计模型的结论 所需数据量大并且难于获取;不能有效体现土地利用、供给情况 边际效用分析 时空相互作用模型 [151] 各种机会 考虑了个体之间的差异以及时间、空间的约束情况 未考虑机会供给之间的竞争关系;所需数据量较大 分析骑行者个体效用 -
[1] KRAUS S, KOCH N. Provisional COVID-19 infrastructure induces large, rapid increases in cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2024399118. [2] QIN Y, KARIMI H A. Evolvement patterns of usage in a medium-sized bike-sharing system during the COVID-19 pandemic[J]. Sustainable Cities and Society, 2023, 96: 104669. doi: 10.1016/j.scs.2023.104669 [3] The City of Copenhagen Technical and Environmental Administration Traffic Department. Good, better, best—the city of copenhagen's bicycle strategy 2011-2025[R]. Copenhagen: The City of Copenhagen Technical and Environmental Administration Traffic Department, 2011. [4] French Ministry of Ecological and Inclusive Transition. Bicycle and active mobilities plan[R]. Paris: French Ministry of Ecological and Inclusive Transition, 2018. [5] COLLI E, KÜSTER F, ŽGANEC M. The state of national cycling strategies in Europe[R]. Brussels: European Cyclists' Federation, 2022. [6] SZELL M, MIMAR S, PERLMAN T, et al. Growing urban bicycle networks[J]. Scientific Reports, 2022, 12: 6765. doi: 10.1038/s41598-022-10783-y [7] 杨琪瑶, 蔡军, 黄建中. 面向出行品质提升的自行车路网规划与设计策略研究[J]. 城市规划学刊, 2019, 6(6): 72-80.YANG Qi-yao, CAI Jun, HUANG Jian-zhong. A research on bikeway network planning and design strategies for travel quality improvements[J]. Urban Planning Forum, 2019, 6(6): 72-80. (in Chinese) [8] MA L, ETTEMA D, YE R N. Determinants of bicycling for transportation in disadvantagedneighbourhoods: evidence from Xi'an, China[J]. Transportation Research Part A: Policy and Practice, 2021, 145: 103-117. doi: 10.1016/j.tra.2021.01.009 [9] CHEVALIER A, CHARLEMAGNE M, XU L Q. Bicycle acceptance on campus: influence of the built environment and shared bikes[J]. Transportation Research Part D: Transport and Environment, 2019, 76: 211-235. doi: 10.1016/j.trd.2019.09.011 [10] CONTÒ C, BIANCHI N. E-bike motor drive: a review of configurations and capabilities[J]. Energies, 2022, 16(1): 160. doi: 10.3390/en16010160 [11] KAZEMZADEH K, RONCHI E. From bike to electric bike level-of-service[J]. Transport Reviews, 2022, 42(1): 6-31. doi: 10.1080/01441647.2021.1900450 [12] BAI L, LIU P, CHAN C Y, et al. Estimating level of service of mid-block bicycle lanes considering mixed traffic flow[J]. Transportation Research Part A: Policy and Practice, 2017, 101: 203-217. doi: 10.1016/j.tra.2017.04.031 [13] OESCHGER G, CARROLL P, CAULFIELD B. Micromobility and public transport integration: the current state of knowledge[J]. Transportation Research Part D: Transport and Environment, 2020, 89: 102628. doi: 10.1016/j.trd.2020.102628 [14] BUEHLER R, DILL J. Bikeway networks: a review of effects on cycling[J]. Transport Reviews, 2016, 36(1): 9-27. doi: 10.1080/01441647.2015.1069908 [15] MCLEOD D S. Multimodal arterial level of service[C]//TRB. Transportation Research E-Circular E-C018: 4th International Symposium on Highway Capacity. Washington DC: TRB, 2000: 221-233. [16] TRB. Highway capacity manual 2000[R]. Washington DC: TRB, 2000. [17] TRB. Highway capacity manual 2010[R]. Washington DC: TRB, 2010. [18] TRB. Highway capacity manual 2016[R]. Washington DC: TRB, 2016. [19] TRB. Highway capacity manual 2022[R]. Washington DC: TRB, 2022. [20] 彭锐, 杨佩昆. 自行车交通流基本模型[J]. 同济大学学报: 自然科学版, 1993, 21(4): 463-468.PENG Rui, YANG Pei-kun. The basic model of bicycle traffic flow[J]. Journal of Tongji University (Natural Science), 1993, 21(4): 463-468. (in Chinese) [21] 魏恒, 任福田, 刘小明. 自行车行驶状态与自行车道通行能力关系研究[J]. 中国公路学报, 1993, 6(4): 60-64, 71.WEI Heng, REN Fu-tian, LIU Xiao-ming. Research on the relationship between bicycle traveling state and bicycle road capacity[J]. China Journal of Highway and Transport, 1993, 6(4): 60-64, 71. (in Chinese) [22] 单晓峰, 王炜, 王昊, 等. 非拥挤路段自行车交通流特性研究[J]. 交通与计算机, 2006, 24(6): 41-43, 64.SHAN Xiao-feng, WANG Wei, WANG Hao, et al. Properties of bicycle flow in non-congested road[J]. Computer and Communications, 2006, 24(6): 41-43, 64. (in Chinese) [23] 梁春岩. 自行车交通流特性及其应用研究[D]. 长春: 吉林大学, 2007.LIANG Chun-yan. Study on characteristics and application of bicycle traffic flow[D]. Changchun: Jilin University, 2007. (in Chinese) [24] 刘金广, 于泉, 荣建, 等. 信号交叉口行人自行车聚集群交通特性[J]. 北京工业大学学报, 2010, 36(2): 229-234.LIU Jin-guang, YU Quan, RONG Jian, et al. Traffic characteristics research of the pedestrians and bicycles conglomeration at signalized intersection[J]. Journal of Beijing University of Technology, 2010, 36(2): 229-234. (in Chinese) [25] 于泉, 史丽平, 李宁. 信号交叉口自行车群通行阶段划分[J]. 交通运输系统工程与信息, 2011, 11(4): 135-139. doi: 10.3969/j.issn.1009-6744.2011.04.021YU Quan, SHI Li-ping, LI Ning. Passing stage division of bicycle groups at signalized intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(4): 135-139. (in Chinese) doi: 10.3969/j.issn.1009-6744.2011.04.021 [26] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal De Physique I, 1992, 2(12): 2221-2229. doi: 10.1051/jp2:1992262 [27] YAO D Y, ZHANG Y, LI L, et al. Behavior modeling and simulation for conflicts in vehicles-bicycles mixed flow[J]. IEEE Intelligent Transportation Systems Magazine, 2009, 1(2): 25-30. doi: 10.1109/MITS.2009.933863 [28] 张兴强, 汪滢, 胡庆华. 交叉口混合交通流元胞自动机模型及仿真研究[J]. 物理学报, 2014, 63(1): 90-97. doi: 10.3969/j.issn.1000-0364.2014.01.015ZHANG Xing-qiang, WANG Ying, HU Qing-hua. Research and simulation on cellular automaton model of mixed traffic flow at intersection[J]. Acta Physica Sinica, 2014, 63(1): 90-97. (in Chinese) doi: 10.3969/j.issn.1000-0364.2014.01.015 [29] JIN S, QU X B, XU C, et al. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow[J]. Physics Letters A, 2015, 379(39): 2409-2416. doi: 10.1016/j.physleta.2015.07.031 [30] 张晓星. 基于多值元胞自动机的电动车-自行车交通流特性模拟研究[D]. 重庆: 重庆交通大学, 2016.ZHANG Xiao-xing. Based on multi-value electric bicycle-bicycle traffic flow characteristics of cellular automata simulation study[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese) [31] 李黎山, 李冰, 成卫. 基于空间比和感知密度的混合自行车交通流模型[J]. 交通运输系统工程与信息, 2019, 19(1): 104-110, 150.LI Li-shan, LI Bing, CHENG Wei. Mixed bicycle traffic flow model based on space split and perceived density[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1): 104-110, 150. (in Chinese) [32] HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(5): 4282-4286. [33] 梁肖, 毛保华, 许奇. 自行车微观行为的心理生理力模型[J]. 交通运输系统工程与信息, 2012, 12(2): 91-97. doi: 10.3969/j.issn.1009-6744.2012.02.014LIANG Xiao, MAO Bao-hua. XU Qi. Psychological-physical force model for bicycle dynamics[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(2): 91-97. (in Chinese) doi: 10.3969/j.issn.1009-6744.2012.02.014 [34] 董合英. 基于社会力模型的双向自行车交通流仿真研究[D]. 西安: 长安大学, 2021.DONG He-ying. Simulation research on two-way bicycle traffic flow based on social force model[D]. Xi'an: Chang'an University, 2021. (in Chinese) [35] 倪颖, 李逸昕, 李旭红, 等. 机非物理隔离路段非机动车行为建模仿真[J]. 同济大学学报(自然科学版), 2019, 47(6): 778-786.NI Ying, LI Yi-xin, LI Xu-hong, et al. Modeling and simulation of the non-motorized traffic flow on physically separated bicycle roadways[J]. Journal of Tongji University (Natural Sciences), 2019, 47(6): 778-786. (in Chinese) [36] YAN X C, CHEN J, BAI H, et al. Influence factor analysis of bicycle free-flow speed for determining the design speeds of separated bicycle lanes[J]. Information, 2020, 11(10): 459. doi: 10.3390/info11100459 [37] BOTMA H. Method to determine level of service for bicycle paths and pedestrian-bicycle paths[J]. Transportation Research Record, 1995(1502): 38-44. [38] DIXON L B. Bicycle and pedestrian level-of-service performance measures and standards for congestion management systems[J]. Transportation Research Record, 1996(1538): 1-9. [39] LANDIS B W, VATTIKUTI V R, BRANNICK M T. Real-time human perceptions: toward a bicycle level of service[J]. Transportation Research Record, 1997(1578): 119-126. [40] LANDIS B W, VATTIKUTI V R, OTTENBERG R M, et al. Intersection level of service for the bicycle through movement[J]. Transportation Research Record, 2003(1828): 101-106. [41] PETRITSCH T A, LANDIS B W, HUANG H F, et al. Bicycle level of service for arterials[J]. Transportation Research Record, 2007(2031): 34-42. [42] DOWLING R. Multimodal level of service analysis for urban streets: users guide[R]. Washington DC: Transportation Research Board of the National Academies, 2008. [43] LI Zhi-bin, WANG Wei, SHAN Xiao-feng, et al. Analysis of bicycle passing events for LOS evaluation on physically separated bicycle roadways in China[C]//TRB. TRB 2010 Annual Meeting. Washington DC: TRB, 2010: 1-16. [44] 於昊, 陈峻, 谢之权. 自行车-行人共享道服务水平研究[J]. 城市交通, 2012, 10(1): 75-79, 60. doi: 10.3969/j.issn.1672-5328.2012.01.011YU Hao, CHEN Jun, XIE Zhi-quan. Level of service model on urban cycle-pedestrian shared road[J]. Urban Transport of China, 2012, 10(1): 75-79, 60. (in Chinese) doi: 10.3969/j.issn.1672-5328.2012.01.011 [45] 方雪丽, 陈小鸿, 叶建红. 自行车交通服务品质分级方法[J]. 同济大学学报(自然科学版), 2016, 44(10): 1573-1578. doi: 10.11908/j.issn.0253-374x.2016.10.015FANG Xue-li, CHEN Xiao-hong, YE Jian-hong. Method of classification criteria about quality of service for bicycle lanes[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1573-1578. (in Chinese) doi: 10.11908/j.issn.0253-374x.2016.10.015 [46] 同济大学交通运输工程学院. 改善非机动化出行环境的规范流程与方法[J]. 中国公路, 2017(11): 124-125. doi: 10.3969/j.issn.1006-3897.2017.11.047College of Transportation Engineering, Tongji University. Standardized processes and methods to improve the non-motorized travel environment[J]. China Highway, 2017(11): 124-125. (in Chinese) doi: 10.3969/j.issn.1006-3897.2017.11.047 [47] BEURA S K, KUMAR N K, BHUYAN P K. Level of service for bicycle through movement at signalized intersections operating under heterogeneous traffic flow conditions[J]. Transportation in Developing Economies, 2017, 3(2): 21. doi: 10.1007/s40890-017-0051-z [48] BEURA S K, CHELLAPILLA H, BHUYAN P K. Urban road segment level of service based on bicycle users' perception under mixed traffic conditions[J]. Journal of Modern Transportation, 2017, 25(2): 90-105. doi: 10.1007/s40534-017-0127-9 [49] MAJUMDAR B B, MITRA S. Development of level of service criteria for evaluation of bicycle suitability[J]. Journal of Urban Planning and Development, 2018, 144(2): 04018012. doi: 10.1061/(ASCE)UP.1943-5444.0000432 [50] OKON I E, MORENO C A. Bicycle level of service model for the Cycloruta, Bogota, Colombia[J]. Romanian Journal of Transport Infrastructure, 2019, 8(1): 1-33. doi: 10.2478/rjti-2019-0001 [51] ZHANG S, LIANG J, WANG Z W. Evaluation method for bicycle lane level of service based on user perception and capacity simulation[J]. Journal of Applied Science and Engineering, 2019, 22(3): 539-548. [52] BEURA S K, KUMAR K V, SUMAN S, et al. Service quality analysis of signalized intersections from the perspective of bicycling[J]. Journal of Transport and Health, 2020, 16: 100827. doi: 10.1016/j.jth.2020.100827 [53] 柴攀. 城市自行车出行者环境感知与行为研究[D]. 西安: 西安建筑科技大学, 2016.CHAI Pan. Bicyclists' travel environments perception and travel behavior of urban streets[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. (in Chinese) [54] VIVEK A K, MOHAPATRA S S. Level of service analysis of rail road grade crossing from the perspective of walking and bicycling: a perception based study[J]. Transportation Planning and Technology, 2023, 46(4): 499-524. doi: 10.1080/03081060.2023.2201595 [55] WILLIAM JEFFREY D. Bicycle safety evaluation[D]. Auburn: Auburn University. 1987. [56] EPPERSON B. Evaluating suitability of roadways for bicycle use: toward a cycling level-of-service standard[J]. Transportation Research Record, 1994(1438): 9-16. [57] LANDIS B W. Bicycle interaction hazard score: a theoretical model[J]. Transportation Research Record, 1994(1438): 3-8. [58] HARKEY D L, STEWART J R. Evaluation of shared-use facilities for bicycles and motor vehicles[J]. Transportation Research Record, 1997(1578): 111-118. [59] NOËL N, LECLERC C, LEE-GOSSELIN M. CRC index: compatibility of roads for cyclists in rural and urban fringe areas[C]//TRB. TRB 2003 Annual Meeting. Washington DC: TRB, 2003: 1-20. [60] JONES E G, CARLSON T D. Development of bicycle compatibility index for rural roads in Nebraska[J]. Transportation Research Record, 2003(1828): 124-132. [61] RIVERA OLSSON S, ELLDÉR E. Are bicycle streets cyclist-friendly? Micro-environmental factors for improving perceived safety when cycling in mixed traffic[J]. Accident Analysis and Prevention, 2023, 184: 107007. doi: 10.1016/j.aap.2023.107007 [62] ALLEN-MUNLEY C. Development of a multivariate logistic model to predict bicycle route safety in urban areas[D]. Newark: NewJersey Institute of Technology, 2003. [63] CARTER D L, HUNTER W W, ZEGEER C V, et al. Bicyclist intersection safety index[J]. Transportation Research Record, 2007(2031): 18-24. [64] AKAR G, WANG K L. Street intersection characteristics and their impacts on perceived bicycling safety[R]. Columbus: Ohio Department of Transportation, 2018. [65] ADINARAYANA B, MIR M S. Development of bicycle safety index models for safety of bicycle flow at 3-legged junctions on urban roads under mixed traffic conditions[J]. Transportation Research Procedia, 2020, 48: 1227-1243. doi: 10.1016/j.trpro.2020.08.145 [66] ASADI-SHEKARI Z, MOEINADDINI M, ZALY SHAH M. A bicycle safety index for evaluating urban street facilities[J]. Traffic Injury Prevention, 2015, 16(3): 283-288. doi: 10.1080/15389588.2014.936010 [67] EREN E, AVSAR E, YILDIRIM Z B, et al. Investigation of urban bicycle roads in terms of bicycle compatibility[C]//ENAR. 2nd International Congress on Engineering and Architecture. Wakefield: ENAR, 2019: 918-926. [68] ABDULLAH Y A, AHMAD RAZI S A, NASRUDIN N, et al. Assessing cycle lanes using the bicycle compatibility index (BCI) in ShahAlam, Selangor, Malaysia[J]. Planning Malaysia, 2020, 18(4): 128-143. [69] TIEDEMAN K A. Do complete streets offer cyclists high levels of service? Applying David Harkey's bicycle compatibility index to Seattle and Copenhagen's complete street networks[D]. Washington DC: University of Washington, 2021. [70] 戴冀峰, 赵贤兰, 林建新, 等. 城市自行车路段服务水平研究[J]. 长安大学学报(自然科学版), 2015, 35(增): 26-31.DAI Ji-feng, ZHAO Xian-lan, LIN Jian-xin, et al. Study on the level of service for urban bicycle road segment[J]. Journal of Chang'an University (Natural Sciences), 2015, 35(S): 26-31. (in Chinese) [71] CHEN C. Crowdsourcing data-driven development of bicycle safety performance functions (SPFs): microscopic and macroscopic scales[D]. Corvallis: Oregon State University, 2017. [72] LI Y, ZHOU W H, NAN S R, et al. Redesign of the cross-section of bicycle lanes considering electric bicycles[J]. Proceedings of the Institution of Civil Engineers—Transport, 2017, 170(5): 255-266. doi: 10.1680/jtran.16.00175 [73] 李岩, 南斯睿, 胡文斌, 等. 机非标线分隔道路电动自行车越线风险模型[J]. 重庆交通大学学报(自然科学版), 2021, 40(2): 13-20. doi: 10.3969/j.issn.1674-0696.2021.02.03LI Yan, NAN Si-rui, HU Wen-bin, et al. Lane transgressing risk model of electric bicycle on marking separation road section[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(2): 13-20. (in Chinese) doi: 10.3969/j.issn.1674-0696.2021.02.03 [74] 陈小鸿, 岳李圣飒, 杨奎. 混行非机动车道被超车自行车骑行安全评价[J]. 同济大学学报(自然科学版), 2017, 45(2): 215-222.CHEN Xiao-hong, YUE Li-sheng-sa, YANG Kui. Safety evaluation of overtaken bicycle on a shared bicycle path[J]. Journal of Tongji University (Natural Science), 2017, 45(2): 215-222. (in Chinese) [75] NORDBACK K L, MARSHALL W E. Improving bicycle safety with more bikers: an intersection-level study[C]//ASCE. Proceedings of the Green Streets and Highways 2010 Conference. Reston: ASCE, 2010: 135-146. [76] NAZEMI M, VAN EGGERMOND M A B, ERATH A, et al. Studying bicyclists' perceived level of safety using a bicycle simulator combined with immersive virtual reality[J]. Accident Analysis and Prevention, 2021, 151: 105943. doi: 10.1016/j.aap.2020.105943 [77] BLANC B, FIGLIOZZI M. Modeling the impacts of facility type, trip characteristics, and trip stressors on cyclists' comfort levels utilizing crowdsourced data[J]. Transportation Research Record, 2016, 2587(1): 100-108. doi: 10.3141/2587-12 [78] SCOTT M J C, HURNALL DD, PATTINSON W H. The Geelong bikeplan: practical planning for cyclists real needs[C]//The National Academies of Sciences. Australian Transport Research Forum, Fourth Annual Meeting. Washington DC: The National Academies of Sciences, 1978: 439-473. [79] SORTON A, WALSH T. Bicycle stress level as a tool to evaluate urban and suburban bicycle compatibility[J]. Transportation Research Record, 1994(1438): 17-24. [80] MEKURIA M C, FURTH P G, NIXON H. Low-stress bicycling and network connectivity[R]. San Jose: Mineta Transportation Institute Publications, 2012. [81] WANG H Z, PALM M, CHEN C, et al. Does bicycle network level of traffic stress (LTS) explain bicycle travel behavior? Mixed results from an Oregon case study[J]. Journal of Transport Geography, 2016, 57: 8-18. doi: 10.1016/j.jtrangeo.2016.08.016 [82] BOETTGE B, HALL D M, CRAWFORD T. Assessing the bicycle network in St. Louis: a place-based user-centered approach[J]. Sustainability, 2017, 9(2): 241. doi: 10.3390/su9020241 [83] MORAN S K, TSAY W, LAWRENCE S, et al. Lowering bicycle stress one link at a time: where should we invest in infrastructure?[J]. Transportation Research Record, 2018, 2672(36): 33-41. doi: 10.1177/0361198118783109 [84] RODRIGUES M R, RODRIGUES DA SILVA A N, TEIXEIRA I P. Assessing the applicability of the cyclists' level of traffic stress (LTS) classification to a medium-sized city in a developing country[J]. Journal of Transport and Health, 2022, 24: 101321. doi: 10.1016/j.jth.2021.101321 [85] LIM T, THOMPSON J, TIAN L M, et al. A transactional model of stress and coping applied to cyclist subjective experiences[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 96: 155-170. doi: 10.1016/j.trf.2023.05.013 [86] AVILA-PALENCIA I, DE NAZELLE A, COLE-HUNTER T, et al. The relationship between bicycle commuting and perceived stress: a cross-sectional study[J]. BMJ Open, 2017, 7(6): e013542. doi: 10.1136/bmjopen-2016-013542 [87] CAVIEDES A, FIGLIOZZI M. Modeling the impact of traffic conditions and bicycle facilities on cyclists' on-road stress levels[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58: 488-499. doi: 10.1016/j.trf.2018.06.032 [88] SHAFER C S, LEE B, TURNER S, et al. Evaluation of bicycle and pedestrian facilities: user satisfaction and perceptions on three shared use trails in Texas[R]. College Station: Texas Transportation Institute, 1999. [89] PAIGE WILLIS D, MANAUGH K, EL-GENEIDY A. Uniquely satisfied: exploring cyclist satisfaction[J]. Transportation Research Part F: Traffic Psychology andBehaviour, 2013, 18: 136-147. doi: 10.1016/j.trf.2012.12.004 [90] 钱佳, 汪德根, 牛玉. 城市居民使用市内公共自行车的满意度影响因素分析——以苏州市为例[J]. 地理研究, 2014, 33(2): 358-371.QIAN Jia, WANG De-gen, NIU Yu. Analysis of the influencing factors of urban residents to use urban public bikes: a case study of Suzhou[J]. Geographical Research, 2014, 33(2): 358-371. (in Chinese) [91] 朱彤, 杨晨煊, 郭春琳, 等. 城市道路环境自行车出行者满意度模型研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(2): 102-106. doi: 10.3969/j.issn.1674-0696.2018.02.16ZHU Tong, YANG Chen-xuan, GUO Chun-lin, et al. Satisfaction model of cyclists in urban road environment[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2018, 37(2): 102-106. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.02.16 [92] MAIOLI H C, DE CARVALHO R C, DE MEDEIROS D D. SERVBIKE: riding customer satisfaction of bicycle sharing service[J]. Sustainable Cities and Society, 2019, 50: 101680. doi: 10.1016/j.scs.2019.101680 [93] ZHU Xin. Satisfaction and usage evaluation of city shared bicycle[J]. International Journal of Social Science and Education Research, 2020, 3(9): 227-235. [94] 徐俊, 徐敏, 张丽硕, 等. 自行车骑行者满意度模型构建及活化研究[J]. 现代城市研究, 2021, 36(5): 77-82. doi: 10.3969/j.issn.1009-6000.2021.05.012XU Jun, XU Min, ZHANG Li-shuo, et al. Research on construction and activation of cyclist satisfaction model[J]. Modern Urban Research, 2021, 36(5): 77-82. (in Chinese) doi: 10.3969/j.issn.1009-6000.2021.05.012 [95] MOURATIDIS K, DE VOS J, YIANNAKOU A, et al. Sustainable transport modes, travel satisfaction, and emotions: evidence from car-dependent compact cities[J]. Travel Behaviour and Society, 2023, 33: 100613. doi: 10.1016/j.tbs.2023.100613 [96] BERGSTRÖM A, MAGNUSSON R. Potential of transferring car trips to bicycle during winter[J]. Transportation Research Part A: Policy and Practice, 2003, 37(8): 649-666. doi: 10.1016/S0965-8564(03)00012-0 [97] BRESSEL E, LARSON B J. Bicycle seat designs and their effect on pelvic angle, trunk angle, and comfort[J]. Medicine and Science in Sports and Exercise, 2003, 35(2): 327-332. doi: 10.1249/01.MSS.0000048830.22964.7c [98] YOSHIDA J, KAWAGOE N, KAWAMURA T. Improvement of bicycle riding comfort by reduction of seat vibration[J]. Journal of System Design and Dynamics, 2013, 7(3): 293-303. doi: 10.1299/jsdd.7.293 [99] LIU Y S, TSAY T S, CHEN C P, et al. Simulation of riding a full suspension bicycle for analyzing comfort and pedaling force[J]. Procedia Engineering, 2013, 60: 84-90. doi: 10.1016/j.proeng.2013.07.061 [100] LI Z B, WANG W, ZHANG Y Y, et al. Exploring factors influencing bicyclists' perception of comfort on bicycle facilities[C]//TRB. TRB 2012 Annual Meeting. Washington DC: TRB, 2012: 718-727. [101] AYACHI F S, DOREY J, GUASTAVINO C. Identifying factors of bicycle comfort: an online survey with enthusiast cyclists[J]. Applied Ergonomics, 2015, 46: 124-136. doi: 10.1016/j.apergo.2014.07.010 [102] APASNORE P, ISMAIL K, KASSIM A. Bicycle-vehicle interactions at mid-sections of mixed traffic streets: examining passing distance and bicycle comfort perception[J]. Accident Analysis and Prevention, 2017, 106: 141-148. doi: 10.1016/j.aap.2017.05.003 [103] ZHU S Y, ZHU F. Cycling comfort evaluation with instrumented probe bicycle[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 217-231. doi: 10.1016/j.tra.2019.08.009 [104] BEURA S K, CHELLAPILLA H, PANDA M, et al. Bicycle comfort level rating (BCLR) model for urban street segments in mid-sized cities of India[J]. Journal of Transport and Health, 2021, 20: 100971. doi: 10.1016/j.jth.2020.100971 [105] YAMAGUCHI R, MEHMOOD F, YOSHIHISA T, et al. A bicycle navigation system for analyzing the comfort level of the cyclist[C]//ACM. 29th International Conference on Intelligent User Interfaces. New York: ACM, 2024: 37-40. [106] HÖLZEL C, HÖCHTL F, SENNER V. Cycling comfort on different road surfaces[J]. Procedia Engineering, 2012, 34: 479-484. doi: 10.1016/j.proeng.2012.04.082 [107] THIGPEN C G, LI H, HANDY S L, et al. Modeling the impact of pavement roughness on bicycle ride quality[J]. Transportation Research Record, 2015, 2520(1): 67-77. doi: 10.3141/2520-09 [108] MIAH S, KAPARIAS I, AYUB N, et al. Measuring cycle riding comfort in Southampton using an instrumented bicycle[C]//IEEE. 6th International Conference on Models and Technologies for Intelligent Transportation Systems. New York: IEEE, 2019: 8883328. [109] QIAN X D, MOORE J K, NIEMEIER D. Predicting bicycle pavement ride quality: sensor-based statistical model[J]. Journal of Infrastructure Systems, 2020, 26(3): 04020033. doi: 10.1061/(ASCE)IS.1943-555X.0000571 [110] WAGE O, FEUERHAKE U, KOETSIER C, et al. Ride vibrations: towards comfort-based bicycle navigation[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43(B4): 367-373. [111] ABBISS C R, LAURSEN P B. Models to explain fatigue during prolonged endurance cycling[J]. Sports Medicine, 2005, 35(10): 865-898. doi: 10.2165/00007256-200535100-00004 [112] PIRES F O, SILVA-JÚNIOR F L, BRIETZKE C, et al. Mental fatigue alters cortical activation and psychological responses, impairing performance in a distance-based cycling trial[J]. Frontiers in Physiology, 2018, 9: 227. doi: 10.3389/fphys.2018.00227 [113] LUCIA A, SAN JUAN A F, MONTILLA M, et al. In professional road cyclists, low pedaling cadences are less efficient[J]. Medicine and Science in Sports and Exercise, 2004, 36(6): 1048-1054. doi: 10.1249/01.MSS.0000128249.10305.8A [114] ABBISS C R, BURNETT A, NOSAKA K, et al. Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial[J]. Journal of Sports Sciences, 2010, 28(2): 117-125. doi: 10.1080/02640410903406216 [115] PRIEGO QUESADA J I, PÉREZ-SORIANO P, LUCAS-CUEVAS A G, et al. Effect of bike-fit in the perception of comfort, fatigue and pain[J]. Journal of Sports Sciences, 2017, 35(14): 1459-1465. doi: 10.1080/02640414.2016.1215496 [116] SALAM H, MARCORA S M, HOPKER J G. The effect of mental fatigue on critical power during cycling exercise[J]. European Journal of Applied Physiology, 2018, 118(1): 85-92. doi: 10.1007/s00421-017-3747-1 [117] ZEUWTS L H R H, ILIANO E, SMITH M, et al. Mental fatigue delays visual searchbehaviour in young cyclists when negotiating complex traffic situations: a study in virtual reality[J]. Accident Analysis and Prevention, 2021, 161: 106387. doi: 10.1016/j.aap.2021.106387 [118] 薛嘉良. 城市自行车交通出行者生理心理特性及环境质量感知机理研究[D]. 西安: 西安建筑科技大学, 2018.XUE Jia-liang. Study on physiological and psychological characteristics and environmental quality perception mechanism of urban bicycle traffic travelers[D]. Xi'an: Xi'an University of Architecture and Technology, 2018. (in Chinese) [119] 李聪颖, 杨云峰, 邵壮壮, 等. 城市自行车骑行者疲劳感知特性[J]. 中国公路学报, 2018, 31(6): 291-298. doi: 10.3969/j.issn.1001-7372.2018.06.016LI Cong-ying, YANG Yun-feng, SHAO Zhuang-zhuang, et al. Characteristics of urban cyclist perception of fatigue[J]. China Journal of Highway and Transport, 2018, 31(6): 291-298. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.016 [120] 李聪颖, 邵壮壮, 封少帅, 等. 自行车骑行者生理、心理与综合负荷感知模型[J]. 交通运输工程学报, 2020, 20(1): 181-191. doi: 10.19818/j.cnki.1671-1637.2020.01.015LI Cong-ying, SHAO Zhuang-zhuang, FENG Shao-shuai, et al. Physiology, psychology and comprehensive loading perception models of cyclists[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 181-191. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.015 [121] CREWE H, TUCKER R, NOAKES T D. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions[J]. European Journal of Applied Physiology, 2008, 103(5): 569-577. doi: 10.1007/s00421-008-0741-7 [122] KAZEMZADEH K, BANSAL P. Electric bike level of service: a review and research agenda[J]. Sustainable Cities and Society, 2021, 75: 103413. doi: 10.1016/j.scs.2021.103413 [123] DILL J, MOHR C, MA L. How can psychological theory help cities increase walking and bicycling?[J]. Journal of the American Planning Association, 2014, 80(1): 36-51. doi: 10.1080/01944363.2014.934651 [124] 张红. 基于复杂网络理论的公共自行车租赁点布局研究[D]. 济南: 山东建筑大学, 2018.ZHANG Hong. Characteristic analysis of urban public bicycle station based on complex network theory[D]. Jinan: Shandong Jianzhu University, 2018. (in Chinese) [125] WEI S, XU J G, MA H T. Exploring public bicycle network structure based on complex network theory and shortest path analysis: the public bicycle system in Yixing, China[J]. Transportation Planning and Technology, 2019, 42(3): 293-307. doi: 10.1080/03081060.2019.1576385 [126] SABERI M, GHAMAMI M, GU Y, et al. Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: a case of Tube strike in London[J]. Journal of Transport Geography, 2018, 66: 154-166. doi: 10.1016/j.jtrangeo.2017.11.018 [127] GAO Z, WEI S, WANG L, et al. Exploring the spatial-temporal characteristics of traditional public bicycle use in Yancheng, China: a perspective of time series cluster of stations[J]. Sustainability, 2020, 12(16): 6370. doi: 10.3390/su12166370 [128] YIN Q Q, WANG Y Q, LIU J M. Importance node analysis of shared bicycle network based on degree and clustering coefficient[C]//ASCE. Proceedings of the 21st COTA International Conference of Transportation Professionals. Reston: ASCE, 2021: 1943-1949. [129] MENG F Y, ZHENG L L, DING T Q, et al. Understanding dockless bike-sharing spatiotemporal travel patterns: evidence from ten cities in China[J]. Computers, Environment and Urban Systems, 2023, 104: 102006. doi: 10.1016/j.compenvurbsys.2023.102006 [130] HILLIER B. Spatial sustainability in cities: organic patterns and sustainable forms[C]//KTH. Proceedings of the 7th International Space Syntax Symposium. Royal Institute of Technology. Stockholm: KTH, 2009: K01. [131] LIU Z C, SONG Z Q, CHEN A, et al. Exploring bicycle route choice behavior with space syntax analysis[R]. Kalamazoo: Western Michigan University, 2016. [132] DAI X L, YU W B. Configurational exploration of pedestrian and cyclist movements: a case study of Hangzhou, China[J]. Journal of the Faculty of Architecture, 2014, 11(2): 119-130. [133] RAFORD N, CHIARADIA A, GIL J. Space syntax: the role of urban form in cyclist route choice in central London[C]//TRB. TRB 2007 Annual Meeting. Washington DC: TRB, 2007: 1-18. [134] LAW S, SAKR F L, MARTINEZ M. Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax perspective[J]. Behavioral Sciences, 2014, 4(3): 278-300. doi: 10.3390/bs4030278 [135] COOPER C H V. Using spatial network analysis to model pedal cycle flows, risk and mode choice[J]. Journal of Transport Geography, 2017, 58: 157-165. doi: 10.1016/j.jtrangeo.2016.12.003 [136] ORELLANA D, GUERRERO M L. Exploring the influence of road network structure on the spatialbehaviour of cyclists using crowdsourced data[J]. Environment and Planning B: Urban Analytics and City Science, 2019, 46(7): 1314-1330. doi: 10.1177/2399808319863810 [137] FERNANDES D, URBANO M R, KANASHIRO M. Routing for safer rides: a space syntax approach to predict bicycle collisions in a Brazilian city[J]. Urbe. Revista Brasileira de Gestão Urbana, 2021, 13: e20200106. doi: 10.1590/2175-3369.013.e20200106 [138] KARCZEWSKI A M. Examining the effects of urban form factors, high-integrated streets, and topological choice on bicycle usage in rotterdam[D]. Groningen: University of Groningen, 2021. [139] WANG L, ZHOU K C, ZHANG S R, et al. Designing bike-friendly cities: interactive effects of built environment factors on bike-sharing[J]. Transportation Research Part D: Transport and Environment, 2023, 117: 103670. doi: 10.1016/j.trd.2023.103670 [140] ZHENG J, BAI X F, WU Z R, et al. Research on the spatial behavior conflict in suburban village communities based on GPS tracking and cognitive mapping[J]. Journal of Asian Architecture and Building Engineering, 2022, 21(6): 2605-2620. doi: 10.1080/13467581.2021.1971680 [141] LERMAN Y, ROFÈ Y, OMER I. Using space syntax to model pedestrian movement in urban transportation planning[J]. Geographical Analysis, 2014, 46(4): 392-410. doi: 10.1111/gean.12063 [142] LUNDBERG B, WEBER J. Non-motorized transport and university populations: an analysis of connectivity and network perceptions[J]. Journal of Transport Geography, 2014, 39: 165-178. doi: 10.1016/j.jtrangeo.2014.07.002 [143] BOISJOLY G, LACHAPELLE U, EL-GENEIDY A. Bicycle network performance: assessing the directness of bicycle facilities through connectivity measures, a Montreal, Canada case study[J]. International Journal of Sustainable Transportation, 2020, 14(8): 620-634. doi: 10.1080/15568318.2019.1595791 [144] SEMLER C, SANDERS M, BUCK D, et al. The keys to connectivity: the district ofcolumbia's innovative approach to unlocking low-stress bicycle networks[J]. Transportation Research Record, 2018, 2672(36): 63-72. doi: 10.1177/0361198118798445 [145] 陈洁, 陆锋, 程昌秀. 可达性度量方法及应用研究进展评述[J]. 地理科学进展, 2007, 26(5): 100-110. doi: 10.3969/j.issn.1007-6301.2007.05.011CHEN Jie, LU Feng, CHENG Chang-xiu. Advance in accessibility evaluation approaches and applications[J]. Progress in Geography, 2007, 26(5): 100-110. (in Chinese) doi: 10.3969/j.issn.1007-6301.2007.05.011 [146] HANSEN W G. How accessibility shapes land use[J]. Journal of the American Institute of Planners, 1959, 25(2): 73-76. doi: 10.1080/01944365908978307 [147] WACHS M, KUMAGAI T G. Physical accessibility as a social indicator[J]. Socio-Economic Planning Sciences, 1973, 7(5): 437-456. doi: 10.1016/0038-0121(73)90041-4 [148] CERVERO R. Paradigm shift: from automobility to accessibility planning[J]. Urban Futures (Canberra), 1997(22): 9-20. [149] IACONO M, KRIZEK K J, EL-GENEIDY A. Measuring non-motorized accessibility: issues, alternatives, and execution[J]. Journal of Transport Geography, 2010, 18(1): 133-140. doi: 10.1016/j.jtrangeo.2009.02.002 [150] CASE R B. Accessibility-based factors of travel odds: performance measures for coordination of transportation and land use to improve nondriver accessibility[J]. Transportation Research Record, 2011, 2242(1): 106-113. doi: 10.3141/2242-13 [151] CHANDRA S, JIMENEZ J, RADHAKRISHNAN R. Accessibility evaluations for nighttime walking and bicycling for low-income shift workers[J]. Journal of Transport Geography, 2017, 64: 97-108. doi: 10.1016/j.jtrangeo.2017.08.010 [152] WU X Y, LU Y, LIN Y Y, et al. Measuring the destination accessibility of cycling transfer trips in metro station areas: a big data approach[J]. International Journal of Environmental Research and Public Health, 2019, 16(15): 2641. doi: 10.3390/ijerph16152641 [153] MURPHY B, OWEN A. Implementing low-stress bicycle routing in national accessibility evaluation[J]. Transportation Research Record, 2019, 2673(5): 240-249. doi: 10.1177/0361198119837179 [154] 王茜莹. 基于出行者生理心理感知的城市自行车交通可达性研究[D]. 西安: 西安建筑科技大学, 2019.WANG Qian-ying. Study on urban bicycle traffic accessibility based on travelers' physiological and psychological perception[D]. Xi'an: Xi'an University of Architecture and Technology, 2019. (in Chinese) [155] LI A Y, HUANG Y Z, AXHAUSEN K W. An approach to imputing destination activities for inclusion in measures of bicycle accessibility[J]. Journal of Transport Geography, 2020, 82: 102566. doi: 10.1016/j.jtrangeo.2019.102566 [156] STANDEN C, CRANE M, GREAVES S, et al. How equitable are the distributions of the physical activity and accessibility benefits of bicycle infrastructure?[J]. International Journal for Equity in Health, 2021, 20(1): 208. doi: 10.1186/s12939-021-01543-x [157] RYAN J, PEREIRA R H M. What are we missing when we measure accessibility? Comparing calculated and self-reported accounts among older people[J]. Journal of Transport Geography, 2021, 93: 103086. doi: 10.1016/j.jtrangeo.2021.103086 [158] WANG J Y, KWAN M P, CAO W P, et al. Assessing changes in job accessibility and commuting time under bike-sharing scenarios[J]. Transportmetrica A: Transport Science, 2024, 20(1): 2043950. doi: 10.1080/23249935.2022.2043950 [159] Pedestrian and Bicycle Information Center. Bikeability checklist: how bikeable is your community?[R]. Washington DC: U.S. Department of Transportation, 2002. [160] KRENN P J, OJA P, TITZE S. Development of abikeability index to assess the bicycle-friendliness of urban environments[J]. Open Journal of Civil Engineering, 2015, 5(4): 451-459. doi: 10.4236/ojce.2015.54045 [161] ARELLANA J, SALTARÍN M, LARRAÑAGA A M, et al. Developing an urbanbikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments[J]. Transportation Research Part A: Policy and Practice, 2020, 139: 310-334. doi: 10.1016/j.tra.2020.07.010 [162] SCHMID-QUERG J, KELER A, GRIGOROPOULOS G. The Munich bikeability index: a practical approach for measuring urban bikeability[J]. Sustainability, 2021, 13(1): 428. doi: 10.3390/su13010428 [163] MCNEIL N. Bikeability and the 20-min neighborhood: how infrastructure and destinations influence bicycle accessibility[J]. Transportation Research Record, 2011, 2247(1): 53-63. doi: 10.3141/2247-07 [164] LOWRY M, CALLISTER D, GRESHAM M, et al. Using bicycle level of service to assess community-wide bikeability[C]//TRB. TRB 2012 Annual Meeting. Washington DC: TRB, 2012: 1-15. [165] WINTERS M, BRAUER M, SETTON E M, et al. Mapping bikeability: a spatial tool to support sustainable travel[J]. Environment and Planning B: Planning and Design, 2013, 40(5): 865-883. doi: 10.1068/b38185 [166] TRAN P T M, ZHAO M S, YAMAMOTO K, et al. Cyclists' personal exposure to traffic-related air pollution and its influence on bikeability[J]. Transportation Research Part D: Transport and Environment, 2020, 88: 102563. doi: 10.1016/j.trd.2020.102563 [167] WYSLING L, PURVES R S. Where to improve cycling infrastructure? Assessing bicycle suitability andbikeability with open data in the city of Paris[J]. Transportation Research Interdisciplinary Perspectives, 2022, 15: 100648. doi: 10.1016/j.trip.2022.100648 [168] FOSGERAU M, ŁUKAWSKA M, PAULSEN M, et al. Bikeability and the induced demand for cycling[J]. Proceedings of the National Academy of Sciences, 2023, 120(16): e2220515120. doi: 10.1073/pnas.2220515120 [169] GREEN O, IVAN J N, FILIPOVSKA M, et al. Using logistic regression to evaluate pedestrian-vehicle interaction severity at side street green and exclusive phase signals[J]. Transportation Research Record, 2023, 2677(9): 438-449. doi: 10.1177/03611981231159120 [170] BIAN Y, LI L, ZHANG H, et al. Categorizing bicycling environment quality based on mobile sensor data and bicycle flow data[J]. Sustainability, 2021, 13(8): 4085. doi: 10.3390/su13084085 [171] BAI Y W, BAI Y H, WANG R Y, et al. Exploring associations between the built environment and cycling behaviour around urban greenways from a human-scale perspective[J]. Land, 2023, 12(3): 619. doi: 10.3390/land12030619 -