留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

震陷场地大直径变截面群桩基础抗震性能

冯忠居 徐博熙 董建松 张聪 刘旭照 赖德金

冯忠居, 徐博熙, 董建松, 张聪, 刘旭照, 赖德金. 震陷场地大直径变截面群桩基础抗震性能[J]. 交通运输工程学报, 2024, 24(6): 80-91. doi: 10.19818/j.cnki.1671-1637.2024.06.005
引用本文: 冯忠居, 徐博熙, 董建松, 张聪, 刘旭照, 赖德金. 震陷场地大直径变截面群桩基础抗震性能[J]. 交通运输工程学报, 2024, 24(6): 80-91. doi: 10.19818/j.cnki.1671-1637.2024.06.005
FENG Zhong-ju, XU Bo-xi, DONG Jian-song, ZHANG Cong, LIU Xu-zhao, LAI De-jin. Seismic performance of large-diameter and variable cross-section pile group foundation in earthquake-induced subsidence sites[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 80-91. doi: 10.19818/j.cnki.1671-1637.2024.06.005
Citation: FENG Zhong-ju, XU Bo-xi, DONG Jian-song, ZHANG Cong, LIU Xu-zhao, LAI De-jin. Seismic performance of large-diameter and variable cross-section pile group foundation in earthquake-induced subsidence sites[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 80-91. doi: 10.19818/j.cnki.1671-1637.2024.06.005

震陷场地大直径变截面群桩基础抗震性能

doi: 10.19818/j.cnki.1671-1637.2024.06.005
基金项目: 

国家自然科学基金项目 4190070568

福建省交通运输科技项目 JXFZ2020-XM0189

详细信息
    作者简介:

    冯忠居(1965-),男,山西万荣人,长安大学教授,工学博士,从事桥梁桩基与岩土工程研究

  • 中图分类号: U443.15

Seismic performance of large-diameter and variable cross-section pile group foundation in earthquake-induced subsidence sites

Funds: 

National Natural Science Foundation of China 4190070568

Fujian Provincial Transportation Science and Technology Project JXFZ2020-XM0189

More Information
  • 摘要: 采用振动台模型试验,选取不同地震动强度的人工合成5010波,研究了不同地震动强度对群桩基础抗震性能的影响,对比了不同地震动强度下单桩与群桩基础桩顶水平位移、桩身弯矩、桩基损伤等动力响应差异。研究结果表明:在不同地震动强度下,由于群桩基础比单桩基础结构更加稳定,受地震波扰动小,群桩基础桩顶水平位移峰值均显著小于单桩,差值随地震动强度的增大而增大,最大为1.15 mm,并且群桩基础桩顶水平位移峰值出现时刻晚于单桩;群桩基础弯矩沿桩身变化与单桩相同,均是先增大后减小,由于土层震陷导致淤泥质土层与非淤泥质土层力学特性差异更明显,在淤泥质土层分界面处达到峰值;不同地震动强度下群桩基础桩身弯矩峰值均小于单桩基础,差值最大为13.02 kN·m,且桩身弯矩峰值出现时刻均晚于单桩基础,可见,不同地震动强度下群桩基础与单桩基础动力响应差异明显;群桩和单桩基础产生损伤时所能承受的地震动强度分别为0.35g和0.30g,群桩与单桩基础基频降幅分别为27.23%和33.46%,说明震陷场地对群桩基础基频影响较小,群桩基础能承受更大强度的地震动而不至于损伤。综上所述,震陷场地下群桩基础抗震性能较单桩更好,在工程实际中可以考虑通过群桩效应,合理设计桩型来提高桩基础抗震性能。

     

  • 图  1  H04群桩基础示意

    Figure  1.  Schematic of H04 pile group foundation

    图  2  模型箱

    Figure  2.  Model box

    图  3  土的累积曲线

    Figure  3.  Cumulative curve of soil

    图  4  基岩混凝土抗压强度测试值

    Figure  4.  Test values of compressive strength of bedrock concrete

    图  5  单桩、群桩位置示意

    Figure  5.  Schematic of single pile and pile goup locations

    图  6  单桩、群桩基频

    Figure  6.  Fundamental frequencies of single pile and group pile

    图  7  模型桩制作流程

    Figure  7.  Production flow of model pile

    图  8  测试传感器布设

    Figure  8.  Layout of test sensors

    图  9  5010地震波波形

    Figure  9.  5010 seismic waveform

    图  10  不同强度下桩顶最大水平位移

    Figure  10.  Maximum horizontal displacements of pile top under different strengths

    图  11  桩顶水平位移时程曲线

    Figure  11.  Time history curves of horizontal displacement of pile top

    图  12  不同地震动强度下桩身弯矩曲线

    Figure  12.  Pile body bending moment curves under different ground vibration intensities

    图  13  不同地震动强度下桩身弯矩最大值

    Figure  13.  Maximum bending moments of pile body under different ground vibration intensities

    图  14  桩身弯矩时程曲线

    Figure  14.  Time history curves of pile body bending moment

    图  15  单桩基础傅里叶谱

    Figure  15.  Fourier spectra of single pile foundation

    图  16  群桩基础傅里叶谱

    Figure  16.  Fourier spectra of pile group foundation

    图  17  单桩与群桩基础基频

    Figure  17.  Fundamental frequencies of single pile and pile group foundations

    图  18  单桩与群桩基础破坏

    Figure  18.  Single pile and group pile foundation damages

    表  1  振动台技术参数

    Table  1.   Technical parameters of shaking table

    性能 参数
    台面尺寸/mm 5 000×5 000
    振动模式 正弦,随机(地震动)
    频率范围/Hz 0.5~50.0
    最大加速度幅值 满载:水平向为1.0g,竖向为0.7g
    最大位移幅值 水平向为±80 mm,竖向为±50 mm
    下载: 导出CSV

    表  2  模型土的物理力学指标

    Table  2.   Pysical and mechanical indexes of model soil

    土的种类 天然含水量/% 密度/(g·cm-3) 黏聚力/kPa 内摩擦角/(°) 孔压比
    淤泥质土 45.6 1.77 8.0 10 2.15
    强风化花岗岩 11.2 2.56 22.5 43
    下载: 导出CSV

    表  3  土体相似关系

    Table  3.   Similarity relation of soil

    物理量 相似常数
    弹性模量/(N·m-2) 1/3.5
    应力/(N·m-2) 1/3.5
    应变 1
    泊松比 1
    密度/(kg·m-3) 1
    下载: 导出CSV

    表  4  模型桩参数

    Table  4.   Model pile parameters

    模型桩 承台 桩长/cm 桩径/cm 配筋率/%
    长/cm 宽/cm 高/cm 上部 下部
    单桩 11.0 11.0 10.2 90 5.0 4.3 2.4
    群桩 23.1 23.1 10.2
    下载: 导出CSV
  • [1] DONG Yun-xiu, FENG Zhong-ju, HE Jing-bin, et al. Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019, DOI: 10.1155/2019/9726013.
    [2] FENG Zhong-ju, HU Hai-bo, ZHAO Rui-xin, et al. Experiments on reducing negative skin friction of piles[J]. Advances in Civil Engineering, 2019, 2019: 4201842. doi: 10.1155/2019/4201842
    [3] FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021: 8884396. doi: 10.1155/2021/8884396
    [4] CHEN Hui-yun, FENG Zhong-ju, LI Tie, et al. Study on the vertical bearing performance of pile across cave and sensitivity of three parameters[J]. Scientific Reports, 2021, 11: 17342. doi: 10.1038/s41598-021-96883-7
    [5] KHALIL M M, HASSAN A M, ELMAMLOUK H H. Dynamic behavior of pile foundations under vertical and lateral vibrations[J]. HBRC Journal, 2019, 15(1): 55-71. doi: 10.1080/16874048.2019.1676022
    [6] 陈思晓, 冯忠居, 何静斌. 海洋环境基桩海水泥浆工程特性试验研究[J]. 桥梁建设, 2018, 48(6): 70-74. doi: 10.3969/j.issn.1003-4722.2018.06.013

    CHEN Si-xiao, FENG Zhong-ju, HE Jing-bin. Experimental study on engineering characteristics of seawater mortar for bored piles in marine environment[J]. Bridge Construction, 2018, 48(6): 70-74. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.06.013
    [7] 冯忠居, 陈露, 蔡杰, 等. 大直径变截面桩与等截面桩的横向承载特性对比研究[J]. 公路, 2022, 67(9): 189-195.

    FENG Zhong-ju, CHEN Lu, CAI Jie, et al. Difference of lateral bearing characteristics between large diameter variable cross-section pile and constant cross-section pile[J]. Highway, 2022, 67(9): 189-195. (in Chinese)
    [8] 冯忠居, 王逸然, 张俊波, 等. 地震作用下液化场地变截面桩与等截面桩的动力响应对比分析[J]. 世界地震工程, 2022, 38(3): 59-69.

    FENG Zhong-ju, WANG Yi-ran, ZHANG Jun-bo, et al. Comparative analysis of dynamic response between variable section pile and constant section pile in liquefaction site under earthquake action[J]. World Earthquake Engineering, 2022, 38(3): 59-69. (in Chinese)
    [9] 滕延京, 王卫东, 康景文, 等. 基础工程技术的新进展[J]. 土木工程学报, 2016, 49(4): 1-21.

    TENG Yan-jing, WANG Wei-dong, KANG Jing-wen, et al. The new development of the technology of building foundation engineering[J]. China Civil Engineering Journal, 2016, 49(4): 1-21. (in Chinese)
    [10] 冯忠居, 李玉婷, 蔡杰, 等. 地震作用软土震陷特性及变截面群桩动力响应[J]. 湖南大学学报(自然科学版), 2023, 50(9): 109-118.

    FENG Zhong-ju, LI Yu-ting, CAI Jie, et al. Seismic subsidence characteristics of soft soil and dynamic response of pile group with variable cross section[J]. Journal of Hunan University (Natural Sciences), 2023, 50(9): 109-118. (in Chinese)
    [11] 张聪, 冯忠居, 孟莹莹, 等. 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43(5): 1326-1334.

    ZHANG Cong, FENG Zhong-ju, MENG Ying-ying, et al. Shaking table test on the difference of dynamic time-history response between single pile and pile group foundation[J]. Rock and Soil Mechanics, 2022, 43(5): 1326-1334. (in Chinese)
    [12] 汪刚, 景立平, 李嘉瑞, 等. 桩-土-上部结构动力相互作用振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(增2): 3414-3424.

    WANG Gang, JING Li-ping, LI Jia-rui, et al. Shaking table test study on seismic-soil-pile-superstructure-interaction[J]. Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3414-3424. (in Chinese)
    [13] HAMAYOON K, MORIKAWA Y, OKA R, et al. 3D dynamic finite element analyses and 1g shaking table tests on seismic performance of existing group-pile foundation in partially improved grounds under dry condition[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 196-210. doi: 10.1016/j.soildyn.2016.08.032
    [14] 黄雨, 叶为民, 唐益群, 等. 桩基震陷的有效应力动力计算方法[J]. 工程力学, 2001, 18(4): 123-129. doi: 10.3969/j.issn.1000-4750.2001.04.018

    HUANG Yu, YE Wei-min, TANG Yi-qun, et al. Dynamic analysis of effective stress for seismic subsidence of pile foundations[J]. Engineering Mechanics, 2001, 18(4): 123-129. (in Chinese) doi: 10.3969/j.issn.1000-4750.2001.04.018
    [15] 李平, 田兆阳, 肖瑞杰, 等. 基于三轴试验的软土震陷简化计算方法研究[J]. 震灾防御技术, 2017, 12(1): 145-156.

    LI Ping, TIAN Zhao-yang, XIAO Rui-jie, et al. Study of simplified calculation method for seismic settlement of soft soil based on triaxial test[J]. Technology for Earthquake Disaster Prevention, 2017, 12(1): 145-156. (in Chinese)
    [16] 杨石红, 刘静蓉, 刘金珠, 等. 软弱地基土层震陷简化计算方法研究[J]. 世界地震工程, 1997, 13(2): 53-61.

    YANG Shi-hong, LIU Jing-rong, LIU Jin-zhu, et al. Study of simplified method calculating the seismic settlement of foundation on soft soil[J]. World Earthquake Engineering, 1997, 13(2): 53-61. (in Chinese)
    [17] 陈青生, 熊浩, 高广运. 基于R-N非线性疲劳损伤累积模型的砂土震陷计算方法[J]. 岩土工程学报, 2013, 35(12): 2203-2211.

    CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Procedure for evaluating seismic compression in sands based on R-N cumulative damage fatigue nonlinear model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2203-2211. (in Chinese)
    [18] GHAYOOMI M, KHOSRAVI A, MCCARTNEY J S, et al. Challenges in prediction earthquake-induced settlements of partially saturated sands[C]//ASCE. GeoFlorida 2010: Advances in Analysis, Modeling and Design. Reston: ASCE, 2010: 3052-3061.
    [19] 程学磊, 崔春义, 孙宗光. 饱和软土自由场地地震反应特性振动台试验[J]. 地震工程学报, 2019, 41(1): 108-116. doi: 10.3969/j.issn.1000-0844.2019.01.108

    CHENG Xue-lei, CUI Chun-yi, SUN Zong-guang. Shaking table tests on the seismic response characteristics of a free field in saturated soft soil[J]. China Earthquake Engineering Journal, 2019, 41(1): 108-116. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.01.108
    [20] 刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应[J]. 交通运输工程学报, 2018, 18(4): 53-62. doi: 10.3969/j.issn.1671-1637.2018.04.006

    LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, et al. Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53-62. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.006
    [21] FENG Zhong-ju, HU Hai-bo, DONG Yun-xiu, et al. Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019, 9(14): 9142874.
    [22] 冯忠居, 张聪, 何静斌, 等. 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42(12): 3227-3237.

    FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al. Shaking table test of time-history response of rock-socketed single pile under strong earthquake[J]. Rock and Soil Mechanics, 2021, 42(12): 3227-3237. (in Chinese)
    [23] ZHANG Cong, FENG Zhong-ju, GUAN Yun-hui, et al. Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, DOI: 10.1155/2022/5074513.
    [24] 田兆阳, 李平, 朱胜, 等. 强震作用下软土场地桩基负摩阻力振动台试验研究[J]. 岩土工程学报, 2022, 44(3): 550-559.

    TIAN Zhao-yang, LI Ping, ZHU Sheng, et al. Shaking table tests on negative friction of piles in soft soils under strong earthquake motion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 550-559. (in Chinese)
    [25] 邓志华, 曾磊, 林聪煜, 等. 层状地基中桥梁柱墩基础地震响应振动台试验研究[J]. 桥梁建设, 2022, 52(6): 50-57. doi: 10.3969/j.issn.1003-4722.2022.06.007

    DENG Zhi-hua, ZENG Lei, LIN Cong-yu, et al. Shaking table test for evaluating seismic response characteristics of columned bridge foundation in layered stratum[J]. Bridge Construction, 2022, 52(6): 50-57. (in Chinese) doi: 10.3969/j.issn.1003-4722.2022.06.007
    [26] 辜俊儒, 李平, 田兆阳, 等. 基于OpenSees的地震动对软土震陷影响研究[J]. 地震工程学报, 2019, 41(5): 1339-1346. doi: 10.3969/j.issn.1000-0844.2019.05.1339

    GU Jun-ru, LI Ping, TIAN Zhao-yang, et al. Influence of ground motions on seismic subsidence of soft soil based on OpenSees[J]. China Earthquake Engineering Journal, 2019, 41(5): 1339-1346. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.05.1339
    [27] 高广运, 聂春晓, 石超, 等. 多向地震荷载作用下砂土场地震陷分析[J]. 哈尔滨工程大学学报, 2017, 38(7): 1100-1106.

    GAO Guang-yun, NIE Chun-xiao, SHI Chao, et al. Seismic subsidence of sand ground subject to multidirectional earthquake load[J]. Journal of Harbin Engineering University, 2017, 38(7): 1100-1106. (in Chinese)
    [28] 高广运, 董文悝, 石超, 等. 地震波及砂土特性对震陷的影响分析[C]//中国地质学会工程地质专业委员会. 2016年全国工程地质学术年会论文集. 成都: 中国地质学会工程地质专业委员会, 2016: 110-116.

    GAO Guang-yun, DONG Wen-xuan, SHI Chao, et al. Effects of seismic waves and properties of sand on seismic compresion[C]//Engineering Geology Committee of Geological Society of China. 2016 Proceedings of the National Engineering Geology Academic Annual Meeting. Chengdu: Engineering Geology Committee of Geological Society of China, 2016: 110-116. (in Chinese)
    [29] 张海丘, 高广运, 王禹. 地震波类型对砂土震陷影响的数值模拟分析[J]. 地震工程学报, 2015, 37(增1): 95-100.

    ZHANG Hai-qiu, GAO Guang-yun, WANG Yu. Numerical simulations of the impact of different types of seismic waves on the seismic compression of sands[J]. China Earthquake Engineering Journal, 2015, 37(S1): 95-100. (in Chinese)
    [30] 陈青生, 熊浩, 高广运. 地震荷载特征及其对砂土震陷影响试验研究[J]. 岩土工程学报, 2014, 36(8): 1483-1489.

    CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Experimental study on properties of seismic loading and their influence on seismic compression in sands[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1483-1489. (in Chinese)
    [31] 路沙沙, 赵东旭, 白举科, 等. 隧道-土-桥桩相互作用体系振动台试验与数值模拟研究[J]. 振动工程学报, 2024, 37(1): 168-181.

    LU Sha-sha, ZHAO Dong-xu, BAI Ju-ke, et al. Shaking table test and numerical simulation of tunnel-soil-bridge pile interaction system[J]. Journal of Vibration Engineering, 2024, 37(1): 168-181. (in Chinese)
    [32] 李光, 马凤山, 郭捷, 等. 大尺寸工程模型试验中的相似材料配比试验研究[J]. 东北大学学报(自然科学版), 2020, 41(11): 1653-1660. doi: 10.12068/j.issn.1005-3026.2020.11.021

    LI Guang, MA Feng-shan, GUO Jie, et al. Experimental study on similar materials ratio used in largescale engineering model test[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1653-1660. (in Chinese) doi: 10.12068/j.issn.1005-3026.2020.11.021
    [33] 柳春光, 孙国帅, 韩亮, 等. 桥梁水下桩墩结构振动台模型试验相似律验证[J]. 地震工程与工程振动, 2012, 32(4): 13-18.

    LIU Chun-guang, SUN Guo-shuai, HAN Liang, et al. Validation of similitude laws for shaking table model test of dynamic interaction of water-pile-pier superstructure[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(4): 13-18. (in Chinese)
    [34] 吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.

    LYU Xi-lin, CHEN Yue-qing, CHEN Bo, et al. Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(4): 20-29. (in Chinese)
    [35] 凌贤长, 王东升, 王志强, 等. 液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J]. 土木工程学报, 2004, 37(11): 67-72.

    LING Xian-zhang, WANG Dong-sheng, WANG Zhi-qiang, et al. Large-scale saking table model test of dynamic soil-pile-bridge structure interaction in ground of liquefaction[J]. China Civil Engineering Journal, 2004, 37(11): 67-72. (in Chinese)
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-13
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回