Seismic performance of large-diameter and variable cross-section pile group foundation in earthquake-induced subsidence sites
-
摘要: 采用振动台模型试验,选取不同地震动强度的人工合成5010波,研究了不同地震动强度对群桩基础抗震性能的影响,对比了不同地震动强度下单桩与群桩基础桩顶水平位移、桩身弯矩、桩基损伤等动力响应差异。研究结果表明:在不同地震动强度下,由于群桩基础比单桩基础结构更加稳定,受地震波扰动小,群桩基础桩顶水平位移峰值均显著小于单桩,差值随地震动强度的增大而增大,最大为1.15 mm,并且群桩基础桩顶水平位移峰值出现时刻晚于单桩;群桩基础弯矩沿桩身变化与单桩相同,均是先增大后减小,由于土层震陷导致淤泥质土层与非淤泥质土层力学特性差异更明显,在淤泥质土层分界面处达到峰值;不同地震动强度下群桩基础桩身弯矩峰值均小于单桩基础,差值最大为13.02 kN·m,且桩身弯矩峰值出现时刻均晚于单桩基础,可见,不同地震动强度下群桩基础与单桩基础动力响应差异明显;群桩和单桩基础产生损伤时所能承受的地震动强度分别为0.35g和0.30g,群桩与单桩基础基频降幅分别为27.23%和33.46%,说明震陷场地对群桩基础基频影响较小,群桩基础能承受更大强度的地震动而不至于损伤。综上所述,震陷场地下群桩基础抗震性能较单桩更好,在工程实际中可以考虑通过群桩效应,合理设计桩型来提高桩基础抗震性能。Abstract: The model test on shaking table was used to select synthetic 5010 waves with different ground motion intensities. The effect of different ground motion intensities on the seismic performance of pile group foundation was studied. The differences in dynamic responses of horizontal displacement of pile top, bending moment of pile body, and pile foundation damage between single pile and pile group foundations under different ground motion intensities were compared. Research results indicate that under different ground motion intensities, pile group foundation is more stable than single pile foundation and less disturbed by seismic waves. The peak horizontal displacement of pile top of pile group foundation is significantly smaller than that of single pile, and the difference increases with the increase in ground motion intensity, with a maximum of 1.15 mm. Moreover, the peak horizontal displacement of pile top of pile group foundation occurs later than that of single pile. The bending moment change of pile group foundation along the pile body is the same as that of single pile, which increases first and then decreases. The difference in mechanical properties between silty soil layer and non-silty soil layer is more obvious due to earthquake-induced subsidence, so the peak value reaches at the interface of silty soil layer. The peak bending moments of pile body of pile group foundation under different ground motion intensities are smaller than those of single pile foundation, and the maximum difference is 13.02 kN·m. The peak bending moment of pile body of pile group foundation occurs later than that of single pile foundation. It can be concluded that there is a significant difference in the dynamic response between pile group foundation and single pile foundation under different ground motion intensities. The ground motion intensity that pile group foundation can withstand when damage occurs 0.35g, while that for single pile is 0.30g. The fundamental frequency drop of pile group foundation is 27.23%, while that of single pile is 33.46%. It indicates that earthquake-induced subsidence site has less influence on the fundamental frequency of pile group foundation, and pile group foundation can withstand greater ground motion intensity without damage. In summary, the seismic performance of pile group foundation is better than that of single pile in earthquake-induced subsidence sites. In engineering practice, the seismic performance of pile foundation can be improved by considering pile group effect and reasonable design of pile type.
-
表 1 振动台技术参数
Table 1. Technical parameters of shaking table
性能 参数 台面尺寸/mm 5 000×5 000 振动模式 正弦,随机(地震动) 频率范围/Hz 0.5~50.0 最大加速度幅值 满载:水平向为1.0g,竖向为0.7g 最大位移幅值 水平向为±80 mm,竖向为±50 mm 表 2 模型土的物理力学指标
Table 2. Pysical and mechanical indexes of model soil
土的种类 天然含水量/% 密度/(g·cm-3) 黏聚力/kPa 内摩擦角/(°) 孔压比 淤泥质土 45.6 1.77 8.0 10 2.15 强风化花岗岩 11.2 2.56 22.5 43 表 3 土体相似关系
Table 3. Similarity relation of soil
物理量 相似常数 弹性模量/(N·m-2) 1/3.5 应力/(N·m-2) 1/3.5 应变 1 泊松比 1 密度/(kg·m-3) 1 表 4 模型桩参数
Table 4. Model pile parameters
模型桩 承台 桩长/cm 桩径/cm 配筋率/% 长/cm 宽/cm 高/cm 上部 下部 单桩 11.0 11.0 10.2 90 5.0 4.3 2.4 群桩 23.1 23.1 10.2 -
[1] DONG Yun-xiu, FENG Zhong-ju, HE Jing-bin, et al. Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019, DOI: 10.1155/2019/9726013. [2] FENG Zhong-ju, HU Hai-bo, ZHAO Rui-xin, et al. Experiments on reducing negative skin friction of piles[J]. Advances in Civil Engineering, 2019, 2019: 4201842. doi: 10.1155/2019/4201842 [3] FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021: 8884396. doi: 10.1155/2021/8884396 [4] CHEN Hui-yun, FENG Zhong-ju, LI Tie, et al. Study on the vertical bearing performance of pile across cave and sensitivity of three parameters[J]. Scientific Reports, 2021, 11: 17342. doi: 10.1038/s41598-021-96883-7 [5] KHALIL M M, HASSAN A M, ELMAMLOUK H H. Dynamic behavior of pile foundations under vertical and lateral vibrations[J]. HBRC Journal, 2019, 15(1): 55-71. doi: 10.1080/16874048.2019.1676022 [6] 陈思晓, 冯忠居, 何静斌. 海洋环境基桩海水泥浆工程特性试验研究[J]. 桥梁建设, 2018, 48(6): 70-74. doi: 10.3969/j.issn.1003-4722.2018.06.013CHEN Si-xiao, FENG Zhong-ju, HE Jing-bin. Experimental study on engineering characteristics of seawater mortar for bored piles in marine environment[J]. Bridge Construction, 2018, 48(6): 70-74. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.06.013 [7] 冯忠居, 陈露, 蔡杰, 等. 大直径变截面桩与等截面桩的横向承载特性对比研究[J]. 公路, 2022, 67(9): 189-195.FENG Zhong-ju, CHEN Lu, CAI Jie, et al. Difference of lateral bearing characteristics between large diameter variable cross-section pile and constant cross-section pile[J]. Highway, 2022, 67(9): 189-195. (in Chinese) [8] 冯忠居, 王逸然, 张俊波, 等. 地震作用下液化场地变截面桩与等截面桩的动力响应对比分析[J]. 世界地震工程, 2022, 38(3): 59-69.FENG Zhong-ju, WANG Yi-ran, ZHANG Jun-bo, et al. Comparative analysis of dynamic response between variable section pile and constant section pile in liquefaction site under earthquake action[J]. World Earthquake Engineering, 2022, 38(3): 59-69. (in Chinese) [9] 滕延京, 王卫东, 康景文, 等. 基础工程技术的新进展[J]. 土木工程学报, 2016, 49(4): 1-21.TENG Yan-jing, WANG Wei-dong, KANG Jing-wen, et al. The new development of the technology of building foundation engineering[J]. China Civil Engineering Journal, 2016, 49(4): 1-21. (in Chinese) [10] 冯忠居, 李玉婷, 蔡杰, 等. 地震作用软土震陷特性及变截面群桩动力响应[J]. 湖南大学学报(自然科学版), 2023, 50(9): 109-118.FENG Zhong-ju, LI Yu-ting, CAI Jie, et al. Seismic subsidence characteristics of soft soil and dynamic response of pile group with variable cross section[J]. Journal of Hunan University (Natural Sciences), 2023, 50(9): 109-118. (in Chinese) [11] 张聪, 冯忠居, 孟莹莹, 等. 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43(5): 1326-1334.ZHANG Cong, FENG Zhong-ju, MENG Ying-ying, et al. Shaking table test on the difference of dynamic time-history response between single pile and pile group foundation[J]. Rock and Soil Mechanics, 2022, 43(5): 1326-1334. (in Chinese) [12] 汪刚, 景立平, 李嘉瑞, 等. 桩-土-上部结构动力相互作用振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(增2): 3414-3424.WANG Gang, JING Li-ping, LI Jia-rui, et al. Shaking table test study on seismic-soil-pile-superstructure-interaction[J]. Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3414-3424. (in Chinese) [13] HAMAYOON K, MORIKAWA Y, OKA R, et al. 3D dynamic finite element analyses and 1g shaking table tests on seismic performance of existing group-pile foundation in partially improved grounds under dry condition[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 196-210. doi: 10.1016/j.soildyn.2016.08.032 [14] 黄雨, 叶为民, 唐益群, 等. 桩基震陷的有效应力动力计算方法[J]. 工程力学, 2001, 18(4): 123-129. doi: 10.3969/j.issn.1000-4750.2001.04.018HUANG Yu, YE Wei-min, TANG Yi-qun, et al. Dynamic analysis of effective stress for seismic subsidence of pile foundations[J]. Engineering Mechanics, 2001, 18(4): 123-129. (in Chinese) doi: 10.3969/j.issn.1000-4750.2001.04.018 [15] 李平, 田兆阳, 肖瑞杰, 等. 基于三轴试验的软土震陷简化计算方法研究[J]. 震灾防御技术, 2017, 12(1): 145-156.LI Ping, TIAN Zhao-yang, XIAO Rui-jie, et al. Study of simplified calculation method for seismic settlement of soft soil based on triaxial test[J]. Technology for Earthquake Disaster Prevention, 2017, 12(1): 145-156. (in Chinese) [16] 杨石红, 刘静蓉, 刘金珠, 等. 软弱地基土层震陷简化计算方法研究[J]. 世界地震工程, 1997, 13(2): 53-61.YANG Shi-hong, LIU Jing-rong, LIU Jin-zhu, et al. Study of simplified method calculating the seismic settlement of foundation on soft soil[J]. World Earthquake Engineering, 1997, 13(2): 53-61. (in Chinese) [17] 陈青生, 熊浩, 高广运. 基于R-N非线性疲劳损伤累积模型的砂土震陷计算方法[J]. 岩土工程学报, 2013, 35(12): 2203-2211.CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Procedure for evaluating seismic compression in sands based on R-N cumulative damage fatigue nonlinear model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2203-2211. (in Chinese) [18] GHAYOOMI M, KHOSRAVI A, MCCARTNEY J S, et al. Challenges in prediction earthquake-induced settlements of partially saturated sands[C]//ASCE. GeoFlorida 2010: Advances in Analysis, Modeling and Design. Reston: ASCE, 2010: 3052-3061. [19] 程学磊, 崔春义, 孙宗光. 饱和软土自由场地地震反应特性振动台试验[J]. 地震工程学报, 2019, 41(1): 108-116. doi: 10.3969/j.issn.1000-0844.2019.01.108CHENG Xue-lei, CUI Chun-yi, SUN Zong-guang. Shaking table tests on the seismic response characteristics of a free field in saturated soft soil[J]. China Earthquake Engineering Journal, 2019, 41(1): 108-116. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.01.108 [20] 刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应[J]. 交通运输工程学报, 2018, 18(4): 53-62. doi: 10.3969/j.issn.1671-1637.2018.04.006LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, et al. Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53-62. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.006 [21] FENG Zhong-ju, HU Hai-bo, DONG Yun-xiu, et al. Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019, 9(14): 9142874. [22] 冯忠居, 张聪, 何静斌, 等. 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42(12): 3227-3237.FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al. Shaking table test of time-history response of rock-socketed single pile under strong earthquake[J]. Rock and Soil Mechanics, 2021, 42(12): 3227-3237. (in Chinese) [23] ZHANG Cong, FENG Zhong-ju, GUAN Yun-hui, et al. Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, DOI: 10.1155/2022/5074513. [24] 田兆阳, 李平, 朱胜, 等. 强震作用下软土场地桩基负摩阻力振动台试验研究[J]. 岩土工程学报, 2022, 44(3): 550-559.TIAN Zhao-yang, LI Ping, ZHU Sheng, et al. Shaking table tests on negative friction of piles in soft soils under strong earthquake motion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 550-559. (in Chinese) [25] 邓志华, 曾磊, 林聪煜, 等. 层状地基中桥梁柱墩基础地震响应振动台试验研究[J]. 桥梁建设, 2022, 52(6): 50-57. doi: 10.3969/j.issn.1003-4722.2022.06.007DENG Zhi-hua, ZENG Lei, LIN Cong-yu, et al. Shaking table test for evaluating seismic response characteristics of columned bridge foundation in layered stratum[J]. Bridge Construction, 2022, 52(6): 50-57. (in Chinese) doi: 10.3969/j.issn.1003-4722.2022.06.007 [26] 辜俊儒, 李平, 田兆阳, 等. 基于OpenSees的地震动对软土震陷影响研究[J]. 地震工程学报, 2019, 41(5): 1339-1346. doi: 10.3969/j.issn.1000-0844.2019.05.1339GU Jun-ru, LI Ping, TIAN Zhao-yang, et al. Influence of ground motions on seismic subsidence of soft soil based on OpenSees[J]. China Earthquake Engineering Journal, 2019, 41(5): 1339-1346. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.05.1339 [27] 高广运, 聂春晓, 石超, 等. 多向地震荷载作用下砂土场地震陷分析[J]. 哈尔滨工程大学学报, 2017, 38(7): 1100-1106.GAO Guang-yun, NIE Chun-xiao, SHI Chao, et al. Seismic subsidence of sand ground subject to multidirectional earthquake load[J]. Journal of Harbin Engineering University, 2017, 38(7): 1100-1106. (in Chinese) [28] 高广运, 董文悝, 石超, 等. 地震波及砂土特性对震陷的影响分析[C]//中国地质学会工程地质专业委员会. 2016年全国工程地质学术年会论文集. 成都: 中国地质学会工程地质专业委员会, 2016: 110-116.GAO Guang-yun, DONG Wen-xuan, SHI Chao, et al. Effects of seismic waves and properties of sand on seismic compresion[C]//Engineering Geology Committee of Geological Society of China. 2016 Proceedings of the National Engineering Geology Academic Annual Meeting. Chengdu: Engineering Geology Committee of Geological Society of China, 2016: 110-116. (in Chinese) [29] 张海丘, 高广运, 王禹. 地震波类型对砂土震陷影响的数值模拟分析[J]. 地震工程学报, 2015, 37(增1): 95-100.ZHANG Hai-qiu, GAO Guang-yun, WANG Yu. Numerical simulations of the impact of different types of seismic waves on the seismic compression of sands[J]. China Earthquake Engineering Journal, 2015, 37(S1): 95-100. (in Chinese) [30] 陈青生, 熊浩, 高广运. 地震荷载特征及其对砂土震陷影响试验研究[J]. 岩土工程学报, 2014, 36(8): 1483-1489.CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Experimental study on properties of seismic loading and their influence on seismic compression in sands[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1483-1489. (in Chinese) [31] 路沙沙, 赵东旭, 白举科, 等. 隧道-土-桥桩相互作用体系振动台试验与数值模拟研究[J]. 振动工程学报, 2024, 37(1): 168-181.LU Sha-sha, ZHAO Dong-xu, BAI Ju-ke, et al. Shaking table test and numerical simulation of tunnel-soil-bridge pile interaction system[J]. Journal of Vibration Engineering, 2024, 37(1): 168-181. (in Chinese) [32] 李光, 马凤山, 郭捷, 等. 大尺寸工程模型试验中的相似材料配比试验研究[J]. 东北大学学报(自然科学版), 2020, 41(11): 1653-1660. doi: 10.12068/j.issn.1005-3026.2020.11.021LI Guang, MA Feng-shan, GUO Jie, et al. Experimental study on similar materials ratio used in largescale engineering model test[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1653-1660. (in Chinese) doi: 10.12068/j.issn.1005-3026.2020.11.021 [33] 柳春光, 孙国帅, 韩亮, 等. 桥梁水下桩墩结构振动台模型试验相似律验证[J]. 地震工程与工程振动, 2012, 32(4): 13-18.LIU Chun-guang, SUN Guo-shuai, HAN Liang, et al. Validation of similitude laws for shaking table model test of dynamic interaction of water-pile-pier superstructure[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(4): 13-18. (in Chinese) [34] 吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.LYU Xi-lin, CHEN Yue-qing, CHEN Bo, et al. Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(4): 20-29. (in Chinese) [35] 凌贤长, 王东升, 王志强, 等. 液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J]. 土木工程学报, 2004, 37(11): 67-72.LING Xian-zhang, WANG Dong-sheng, WANG Zhi-qiang, et al. Large-scale saking table model test of dynamic soil-pile-bridge structure interaction in ground of liquefaction[J]. China Civil Engineering Journal, 2004, 37(11): 67-72. (in Chinese) -