Stress concentration characteristics of concrete-filled steel tubular truss-rib K-joint with inner studs
-
摘要: 为深入研究设置内栓钉对钢管混凝土桁肋K型节点应力分布的影响,开展应力集中特性试验,对比测试了不设置内栓钉的节点热点应力及应力集中系数;建立内栓钉节点的精细有限元模型,分析了内栓钉布置形式和几何尺寸对应力集中系数的影响;基于试验和有限元参数分析结果,提出了内栓钉的建议布置形式以及节点应力集中系数计算方法。研究结果表明:内栓钉没有改变节点的热点应力分布规律,最大应力集中系数均出现在受拉相贯区域主管侧冠点处,但节点的应力集中程度被有效减小;与不设置内栓钉节点相比,设置内栓钉节点的热点应力最大值降低了17.38%;受拉相贯焊缝区域主管侧、相应支管侧的整体应力集中系数分别平均减小了24.20%和12.30%,主管环向截面应力降低16.2%;内栓钉对受压相贯焊缝区域的应力分布和应力集中程度的影响很小,在7%以内;应力集中系数受内栓钉环向排列角度和轴向排列间距的影响较大,受内栓钉几何尺寸的影响较小;建议内栓钉布置在主管轴向距节点中心至截面两侧各约支管直径的2.7倍范围内,环向布设在连接支管侧的圆心角[-60°, 60°]内,且相邻内栓钉间距不小于内栓钉直径的6倍但不超过400 mm;引入内栓钉轴向排列影响系数及环向排列影响系数的应力集中系数计算公式具有较高计算精度,可用于评估钢管混凝土桁肋内栓钉K型节点的疲劳性能。Abstract: To further study the influence of setting inner studs on the stress distribution of concrete-filled steel tubular truss-rib K-joints, a test on the stress concentration characteristics was conducted. The hot spot stress and stress concentration factor of joints without inner studs were compared and tested. The fine finite element models of the joints with inner studs were established. The influences of the arrangement and geometric dimensions of inner studs on the stress concentration factor were analyzed. Based on the results of the test and the finite element parameter analysis, the recommended layout of the inner stud and the calculation method of the stress concentration factor of the joints were proposed. Research results show that the hot spot stress distribution of the joints is not changed with the inner studs, and the maximum stress concentration factor is found at the crown point of the main tube in the tensile weld area, but the stress concentration degree of the joints effectively reduces. Compared with the joint without inner studs, the maximum hot spot stress of the joint with inner studs reduces by 17.38%. The overall stress concentration factors of the main tube side and the corresponding branch tube side in the tensile weld area decrease by 24.20% and 12.30% on average, respectively, and the circumferential section stress of the main tube decreases by 16.2%. The influence of inner studs on the stress distribution and stress concentration in the compressive weld area is so slight to be within 7%. The stress concentration factors are affected greatly by the circumferential arrangement angle and the axial arrangement spacing of inner studs but less by the geometrical dimension of inner studs. The inner studs are suggested to be arranged within the range of approximately 2.7 times the diameter of the branch tube from the center of the joint to each side section in the axial direction of the main tube. The circumferential arrangement is within the range of [-60°, 60°] of the central angle of connecting branch tube side. At the same time, the interval between adjacent studs should not be less than 6 times the diameter of the inner stud but not more than 400 mm. The calculation formula of the stress concentration factor introduced by the influence coefficient of axial arrangement and circumferential arrangement of inner studs can be used in evaluating the fatigue performance of concrete-filled steel tubular truss-rib K-joints with inner studs with high calculation accuracy.
-
Key words:
- bridge engineering /
- CFST arch bridges /
- joint /
- inner stud /
- stress concentration factor /
- computing equation
-
表 1 试件参数
Table 1. Parameters of specimens
试件编号 主管尺寸/mm 支管尺寸/mm 是否设置内栓钉 D T L d t l CFST-K 325 8 2 000 168 8 1 020 否 CFST-KS 是 表 2 钢材力学性能
Table 2. Mechanical properties of steels
钢材名称 壁厚/mm 屈服强度/MPa 极限强度/MPa 弹性模量/GPa 主管 8 387.5 559.8 203 支管 8 372.6 541.9 204 内栓钉 13 349.1 486.4 204 表 3 名义应力计算结果和实测结果
Table 3. Calculated and measured results of nominal stress
MPa 试件 名义应力计算结果 实测结果 σC σT σZ σC σT σZ CFST-K -74.6 74.6 -53.3 -72.4 72.0 -51.0 CFST-KS -74.6 74.6 -53.3 -71.5 71.9 -50.5 -
[1] ZHENG Jie-lian, WANG Jian-jun. Concrete-filled steel tube arch bridges in China[J]. Engineering, 2018(4): 143-155. [2] LIU Jun-ping, LI Xiao-fang, LIU Hua-long, et al. Recent application and development of concrete-filled steel tube arch bridges in China[C]//ICACE. The 6th International Conference on Architecture and Civil Engineering. Kuala Lumpur: ICACE, 2022: 263-272. [3] 林春姣, 郑皆连, 秦荣. 钢管混凝土拱肋混凝土脱空研究综述[J]. 中外公路, 2005, 24(6): 54-58.LIN Chun-jiao, ZHENG Jie-lian, QIN Rong. Research review on incompletion filling of concrete-filled steel tubular arch rib[J]. Journal of China and Foreign Highway, 2005, 24(6): 54-58. (in Chinese) [4] 涂光亚. 脱空对钢管混凝土拱桥受力性能影响研究[D]. 长沙: 湖南大学, 2008.TU Guang-ya. Separation effect on mechanical behavior of concrete-filled steel tubular arch bridge[D]. Changsha: Hunan University, 2008. (in Chinese) [5] XUE Jun-qing, BRISEGHELLA B, CHEN Bao-chun. Effects of debonding on circular CFST stub columns[J]. International Journal of Constructional Steel Research, 2012, 69: 64-76. doi: 10.1016/j.jcsr.2011.08.002 [6] SCHNABLS, JELENIC G, PLANINC I. Analytical buckling of slender circular concrete-filled steel tubular columns with compliant interfaces[J]. Journal of Constructional Steel Research, 2015(115): 252-262. [7] MYERS P T, BRENNAN F P, DOVER W D. The effect of rack/rib plate on the stress concentration factors in jack-up chords[J]. Marine Structures, 2001, 14(4/5): 485-505. [8] 刘永健, 姜磊, 熊治华, 等. PBL加劲型矩形钢管混凝土受拉节点热点应力集中系数计算方法[J]. 交通运输工程学报, 2017, 17(5): 1-15. doi: 10.3969/j.issn.1671-1637.2017.05.001LIU Yong-jian, JIANG Lei, XIONG Zhi-hua, et al. Hot spot SCF computation method of concrete-filled and PBL-stiffened rectangular hollow section joint subjected to axial tensions[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 1-15. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.05.001 [9] LIU Yong-jian, XIONG Zhi-hua, FENG Yun-cheng, et al. Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: ultimate and fatigue experimental investigation[J]. Steel and Composite Structures, 2017, 24(4): 455-465. [10] 陈宝春, 陈津凯. 钢管混凝土内栓钉抗剪承载力试验研究[J]. 工程力学, 2016, 33(2): 66-73.CHEN Bao-chun, CHEN Jin-kai. Experimental studies on shear-bearing capacity of headed stud in concrete-filled steel tube[J]. Engineering Mechanics, 2016, 33(2): 66-73. (in Chinese) [11] 刘君平, 陈津凯, 陈宝春. 钢管混凝土桁肋内栓钉相贯节点受力行为试验研究[J]. 工程力学, 2017, 34(9): 150-157.LIU Jun-ping, CHEN Jin-kai, CHEN Bao-chun. Experimental studies on load-transferring mechanism of CFST directly-welded K-joints with studs[J]. Engineering Mechanics, 2017, 34(9): 150-157. (in Chinese) [12] 陈津凯, 陈宝春, 刘君平. 钢管混凝土多排多列内栓钉受剪性能[J]. 工程力学, 2017, 34(6): 178-189.CHEN Jin-kai, CHEN Bao-chun, LIU Jun-ping. Shear performance of multi-studs between steel tube and core concrete[J]. Engineering Mechanics, 2017, 34(6): 178-189. (in Chinese) [13] 刘新华, 帅少辉, 彭元诚. 总溪河大桥主桥结构设计[J]. 桥梁建设, 2016, 46(5): 95-99.LIU Xin-hua, SHUAI Shao-hui, PENG Yuan-cheng. Structural design of main bridge of Zongxi River Bridge[J]. Bridge Construction, 2016, 46(5): 95-99. (in Chinese) [14] 林新元, 董向前, 刘冠之, 等. 钢管混凝土拱桥内置栓钉的防脱空研究[J]. 施工技术, 2017, 46(增): 854-857.LIN Xin-yuan, DONG Xiang-qian, LIU Guan-zhi, et al. Study on anti-void at interface of concrete filled steel tube arch bridges built-in studs[J]. Construction Technology, 2017, 46(S): 854-857. (in Chinese) [15] 刘琪, 聂尚杰, 丁少凌, 等. 重庆渝湘复线双堡特大桥主桥设计[J]. 桥梁建设, 2023, 53(增1): 16-24.LIU Qi, NIE Shang-jie, DING Shao-ling, et al. Design of main bridge of Shuangbao Bridge of Second Chongqing-Hunan Railway in Chongqing[J]. Bridge Construction, 2023, 53(S1): 16-24. (in Chinese) [16] MUSA I A, MASHIRI F R, ZHU Xin-qun. Fatigue behaviour of concrete-filled steel tubular joints—a review[J]. International Journal of Lifecycle Performance Engineering, 2016, 2(1/2): 22-60. [17] 姜磊, 刘永健, 王康宁, 等. 焊接管节点结构形式发展及疲劳性能对比[J]. 建筑结构学报, 2019, 40(3): 180-191.JIANG Lei, LIU Yong-jian, WANG Kang-ning, et al. Development of welded tubular joints and comparison of fatigue behaviour[J]. Journal of Building Structures, 2019, 40(3): 180-191. (in Chinese) [18] 姜磊, 刘永健, 龙辛, 等. 基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估[J]. 交通运输工程学报, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009 JIANG Lei, LIU Yong-jian, LONG Xin, et al. Fatigue assessment of joints in concrete-filled rectangular hollow section composite truss bridges based on hot spot stress method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 104-116. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.009 [19] 姜磊, 刘永健, 刘彬, 等. 基于热点应力法的钢管混凝土桁式拱桥节点疲劳评估[J]. 桥梁建设, 2022, 52(3): 69-76.JIANG Lei, LIU Yong-jian, LIU Bin, et al. Joint fatigue assessment of concrete-filled steel tubular arch bridge based on hot spot stress method[J]. Bridge Construction, 2022, 52(3): 69-76. (in Chinese) [20] ZHENG Jian, NAKAMURA S, GE Ya-jing, et al. Formulation of stress concentration factors for concrete-filled steel tubular (CFST) T-joints under axial force in the brace[J]. Engineering Structures, 2018, 170: 103-117. [21] TONG L W, CHEN K P, XU G W, et al. Formulae for hot-spot stress concentration factors of concrete-filled CHS T-joints based on experiments and FE analysis[J]. Thin-Walled Structures, 2019, 136: 113-128. [22] XU Fei, CHEN Ju, JIN Wei-liang. Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading[J]. Thin-Walled Structures, 2015, 93: 149-157. http://smartsearch.nstl.gov.cn/paper_detail.html?id=417951e1941ba865805b56f65c522938 [23] KIM I G, CHUNG C H, SHIM C S, et al. Stress concentration factors of N-joints of concrete-filled tubes subjected to axial loads[J]. International Journal of Steel Structures, 2014, 14(1): 1-11. [24] 孙传祺. 钢管混凝土K型间隙焊接节点热点应力与承载力试验研究[D]. 上海: 同济大学, 2008.SUN Chuan-qi. Studies on hot spot stress and ultimate capacity of CFST welded K-joints with gap[D]. Shanghai: Tongji University, 2008. (in Chinese) [25] 姜磊, 刘永健, 龙辛, 等. 矩形钢管混凝土桁架节点应力集中特性试验研究[J]. 建筑结构学报, 2022, 43(2): 184-196, 214.JIANG Lei, LIU Yong-jian, LONG Xin, et al. Experimental study on stress concentration characteristics of joints in concrete-filled rectangular steel tubular truss[J]. Journal of Building Structures, 2022, 43(2): 184-196, 214. (in Chinese) [26] 陈康明, 黄汉辉, 吴庆雄, 等. 钢管混凝土K形节点应力集中系数计算方法[J]. 土木工程学报, 2022, 55(12): 94-104.CHEN Kang-ming, HUANG Han-hui, WU Qing-xiong, et al. Calculation method of stress concentration factor for CFST K-joint[J]. China Civil Engineering Journal, 2022, 55(12): 94-104. (in Chinese) [27] CHEN Kang-ming, WU Qing-xiong, HUANG Han-hui, et al. Fatigue performance test and finite-element analysis of concrete-filled steel-tube K-joints[J]. Journal of Bridge Engineering, 2023, 28(3): 04023003. [28] HUANG Wen-jin, FENU L, CHEN Bao-chun, et al. Experimental study on K-joints of concrete-filled steel tubular truss structures[J]. Journal of Constructional Steel Research, 2015, 107: 182-193. [29] 吴庆雄, 郑樵风, 陈康明, 等. 阵列式布设内栓钉的钢管混凝土K型节点足尺模型疲劳性能研究[J]. 土木工程学报, 2022, 55(2): 31-49, 72.WU Qing-xiong, ZHENG Qiao-feng, CHEN Kang-ming, et al. Study on fatigue performance of full-scale model of concrete-filled steel tubular K-joints with array-aligned internal studs[J]. China Civil Engineering Journal, 2022, 55(2): 31-49, 72. (in Chinese) [30] 袁剑鸣. 钢管混凝土节点内栓钉传力机理及对桁拱受力性能影响研究[D]. 福州: 福州大学, 2018.YUAN Jian-ming. Study on transfer mechanism of inner studs and impact on mechanical behavior of concrete-filled steel tubular truss arch ribs[D]. Fuzhou: Fuzhou University, 2018. (in Chinese) [31] 韩林海, 冯九斌. 混凝土的本构关系模型及其在钢管混凝土数值分析中的应用[J]. 哈尔滨建筑大学学报, 1995(5): 26-32.HAN Lin-hai, FENG Jiu-bin. Constitutive relation model of concrete and the application in numerical analysis of concrete-filled steel tube members[J]. Journal of Harbin University of Civil Engineering and Architecture, 1995(5): 26-32. (in Chinese) [32] 高春彦, 杨卫平, 李斌. 圆钢管混凝土K型焊接相贯节点力学性能数值模拟[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(1): 18-22.GAO Chun-yan, YANG Wei-ping, LI Bin, et al. Numerical simulation on the mechanical behavior of the concrete-filled circular steel tubular welded K-joints[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2018, 50(1): 18-22. (in Chinese) [33] 童乐为, 陈昆鹏, ZHAO Xiao-ling. 钢管混凝土桁架节点疲劳性能研究进展[J]. 钢结构, 2014(增): 60-67.TONG Le-wei, CHEN Kun-peng, ZHAO Xiao-ling. Research advance in fatigue behavior of concrete-filled tubular truss joints[J]. Steel Construction, 2014(S): 60-67. (in Chinese) [34] CHEN Kang-ming, HUANG Han-hui, ZHENG Qiao-feng, et al. Experimental research on the calculating method of stress concentration factor for CFST K-joint[J]. Journal of Structural Engineering, 2023, 149(3): 04023006. -