-
摘要: 基于虚拟仪器技术, 开发了柴油发动机信号处理系统, 该系统数据采集由传感器与PCI-6023E数据采集卡完成, 系统软件采用LABVIEW6.0, 根据柴油发动机的典型故障, 对系统参数赋值, 利用BP神经网络对采集的数据进行处理, 进而判断发动机的故障, 试验表明该系统是可行的。Abstract: Based on virtual instrument technology, the fault diagnosis system for diesel engine was developed. Its digital treatment system was consisted of sensors and PCI-6023E collectors, its design software was LABVIEW6. 0. This system character parameters were defined by engine's typical faults. In this system, the collected data were treated with BP neural network to diagnose engine's faults. The tested results show that this system is feasiable.
-
Key words:
- automotive engineering /
- neural network /
- virtual instrument /
- fault diagnosis /
- diesel engine
-
表 1 网络输出向量与故障种类的对应关系
Table 1. Relations of network output vectors and fault kinds
表 2 特征参数测试样本
Table 2. Testing samples of characteristic parameters
-
[1] Kajior Watanabe. Incipient fault diagnosis of chemical proces-ses via artificial neural networks[J]. Journal of AICHE, 1989, 3(11): 1803-1812 [2] 王文成. 神经网络及其在汽车工程中的应用[M]. 北京: 北京理工大学出版社, 1998. [3] 赵振宇. 模糊理论和神经网络的基础和应用[M]. 北京: 清华大学出版社, 1993. [4] Bosch W. The fuel indicator-a new measuring instrument fordisplay of the characteristics of individual injection[J]. SAE660749. [5] Fan J Y. An approach to fault diagnosis of chemical processesvia neural network[J]. Journal of AICHE, 1993, 39 (1): 82-87. doi: 10.1002/aic.690390109 [6] 徐丽娜. 神经网络控制[M]. 哈尔滨: 哈尔滨工业大学出版社, 1993. [7] 戴葵. 神经网络应用技术[M]. 北京: 国防科技大学出版社, 1998. [8] 申焱. 基于Kohonen网络的机械故障模式识别[J]. 交通运输工程学报, 2002, 2(2): 55-59. http://transport.chd.edu.cn/article/id/200202013SHEN Yan. Pattern recognition of mechanical fault based on Kohonen neural network[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 55-59. (in Chinese) http://transport.chd.edu.cn/article/id/200202013 [9] John J Hopfield. Artificial neural networks[J]. IEEE Circuits and Devices Magzine, 1988, 18(12): 3-10.