-
摘要: 将可靠性理论引入跑道长度计算, 对有关变量作了统计分析, 获得了空气相对密度、风速、驾驶误差系数、着陆接地点到跑道端的距离等变量的分布规律。采用遗传算法和重要抽样法进行了跑道长度可靠度分析, 提出了一种基于可靠性理论的跑道长度设计方法, 对永备机场进行了可靠性评价, 其平均失效概率是4 75×10-4, 实际失效概率为2×10-4~3×10-4, 两者比较接近。计算结果表明可靠性方法对跑道长度设计和安全性评价是可行的。Abstract: This paper introduced reliability theory to the calculation of airport runway length. The random variables relevant to the runway length were analyzed, and distributive models were gained for relative air density, wind velocity, pilot error coefficient and distance from landing site to runway end. With genetic algorithm and importance sampling, a new design method of runway length was put forward based on reliability theory. The reliability of long-term airport was calculated with this method, the calculating failure probability was 4.75×10-4, and practice result was 2×10-4~3×10-4, two results were closed. The results indicate that the method is feasible in the design of runway length and safety evaluation.
-
Key words:
- airport engineering /
- runway length /
- reliability design /
- genetic algorithm /
- importance sampling
-
表 1 一月份和七月份所需的跑道设计长度
Table 1. Runway length needed in january and july
失效概率/‰ 一月份起飞/m 一月份着陆/m 七月份起飞/m 七月份着陆/m 8554 8087 7680 6800 5480 8554 8087 7680 6800 5480 10.0 1740 1540 1380 2120 1770 2220 1960 1750 2370 1980 1.0 1870 1660 1480 2310 1930 2390 2110 1890 2580 2160 0.1 1990 1770 1570 2490 2090 2550 2250 2010 2770 2350 表 2 各月着陆时的失效概率
Table 2. Failure probability of landing in every months
/10-4 月份 1 2 3 4 5 6 7 8 9 10 11 12 平均 最大质量 12.28 20.26 31.38 67.70 106.62 174.39 235.74 177.47 107.77 48.39 25.97 13.86 85.16 正常质量 0.03 0.08 0.17 0.40 0.63 1.14 1.63 1.12 0.70 0.27 0.07 0.02 0.52 -
[1] 蔡良才. 机场规划设计[M]. 北京: 解放军出版社, 2002. [2] 赵国藩, 金伟良, 贡金鑫. 结构可靠度理论[M]. 北京: 中国建筑工业出版社, 2000. [3] 蔡良才, 种小雷. 飞机起飞滑跑距离的可靠度分析[A]. 第四届国际道路和机场路面技术大会论文集[C]. 北京: 人民交通出版社, 2001. [4] 钱炳华. 空军机场跑道长度设计[D]. 西安: 空军工程学院, 1981. [5] XU Jun, SHAO Jun, ZHENG Ying-ren. Application of genetic algorithm to reliability analysis of geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 586-589. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.05.017 [6] 王小平, 曹立明. 遗传算法理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002. [7] Ibrahim Y. Observations of applications of importance sampling in structural reliability analysis[J]. Structural Safety, 1991, 10(4): 269-281. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201907027.htm [8] Fujita M, Rackwitz R. Updating firstorder and secondorder reliability estimates by importance sampling[J]. Structural Engineering/Earthquake Engineering, 1988, 5(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202203002.htm