-
摘要: 依据淮河入海水道高架桥工程, 采用空间有限元数值方法, 构建了全桥的空间仿真模型, 分析了多跨独柱墩弯梁桥的抗扭稳定性。考虑了引起弯梁抗扭稳定性的主要影响因素, 如弯梁恒载、温度效应、车辆的偏心行驶等, 并分析了这些因素组合时对弯梁的影响。结果表明, 弯梁桥的抗扭稳定性主要表现在弯梁的扭转变形和支座的支反力上, 特别是要设计合理的支承方式, 避免支座出现脱空现象。Abstract: Overturning stability analysis of curved box girder bridge in Huaiyang highway interchange over the Huaihe to sea waterway was introduced. The major factors, which would cause bridge overturning, were analyzed by the finite element method, and preventive measures were advanced in bridge design. Analysis results show that the overturning stability of curved box girder bridge is mainly behaved in the torsional distortion and the bearing reaction, the supporting fashion must be designed to avoid negative vertical reaction of bearings.
-
表 1 恒载下的支座竖向反力
Table 1. Bearing's vertical reaction under dead weight
/kN 计算模式 4#墩外支座 4#墩内支座 5#墩支座 6#墩支座 7#墩支座 8#墩外支座 8#墩内支座 方案Ⅰ 619 432 2 769 2 401 2 774 619 433 方案Ⅱ 626 511 2 785 2 381 2 789 626 512 方案Ⅲ 707 328 2 777 2 420 2 779 710 327 表 2 日照温差下的支座竖向反力
Table 2. Bearing's vertical reaction under sunlight
/kN 计算模式 4#墩外支座 4#墩内支座 5#墩支座 6#墩支座 7#墩支座 8#墩外支座 8#墩内支座 方案Ⅰ 427 -297 -201 142 -202 433 -302 方案Ⅱ 289 -158 -205 148 -206 293 -161 方案Ⅲ 439 -309 -200 -141 -201 -444 -314 表 3 车辆荷载下的支座竖向反力
Table 3. Bearing's vertical reaction under vehicle loads
/kN 车辆偏载位置 计算模式 4#墩外支座 4#墩内支座 5#墩支座 6#墩支座 7#墩支座 8#墩外支座 8#墩内支座 偏外侧行驶 方案Ⅰ 557 -205 284 228 249 151 -183 方案Ⅱ 408 -58 287 225 249 87 -119 方案Ⅲ 579 -229 286 228 250 166 -199 偏内侧行驶 方案Ⅰ -85 496 234 203 210 -114 140 方案Ⅱ 25 385 237 199 211 -66 91 方案Ⅲ -89 499 233 203 209 -112 137 表 4 组合荷载下的支座竖向反力
Table 4. Bearing's vertical reaction under assembled loads
/kN 计算模式 4#墩外支座 4#墩内支座 5#墩支座 6#墩支座 7#墩支座 8#墩外支座 8#墩内支座 方案Ⅰ 1 603 -70 2 853 2 770 2 820 1 203 -53 方案Ⅰ不设拉力支座 1 516 0 2 864 2 784 2 830 1 133 0 方案Ⅱ 1 324 295 2 868 2 753 2 832 1 006 232 方案Ⅲ 1 725 -210 2 863 2 787 2 829 1 319 -186 方案Ⅲ不设拉力支座 1 460 0 2 900 2 826 2 865 1 077 0 -
[1] 邵容光, 夏淦. 混凝土弯梁桥[M]. 北京: 人民交通出版社, 1994. [2] 宫平. 深圳某立交N4匝道桥梁体转动分析和加固介绍[J]. 特种结构, 2001, 18 (4): 67—68. https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG200104022.htmGONG Ping. Turning analysis and reinforce introduce of a curved girder bridge in Shenzhen[J]. Special Structures, 2001, 18(4): 67—68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG200104022.htm [3] 何柏雷. 太阳把桥晒跑了[J]. 城市道桥与防洪, 2002, 19 (2): 39—43. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ200202012.htmHE Bo-lei. Does the bridge go away by sun or not[J]. Road-Bridge and Preventing Flood in City, 2002, 19(2): 39—43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ200202012.htm [4] 何维利. 独柱支承的曲线梁桥设计[J]. 北京建筑工程学院学报, 2001, 17 (校友专辑): 23—28. https://www.cnki.com.cn/Article/CJFDTOTAL-BJJZ2001S1003.htmHE Wei-li. Design of single-column supported curved beam bridge[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2001, 17(Schoolfellow Special): 23—28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJJZ2001S1003.htm [5] 孙向东, 陈湘华. 弯梁桥建模分析[J]. 东北公路, 2001, 24 (3): 58—59. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGL200103020.htmSUN Xiang-dong, CHEN Xiang-hua. Formwork of analysis of bend bridge[J]. Northeast Highway, 2001, 24(3): 58—59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGL200103020.htm [6] Sherif El-T, Ayman MO. Behavior and design of curved composite box girder bridges[D]. Department of Civil and Environmental Engineering, University of Central Florida, Orlando, 2002.