留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

道路网短期交通流预测方法比较

史其信 郑为中

史其信, 郑为中. 道路网短期交通流预测方法比较[J]. 交通运输工程学报, 2004, 4(4): 68-71.
引用本文: 史其信, 郑为中. 道路网短期交通流预测方法比较[J]. 交通运输工程学报, 2004, 4(4): 68-71.
SHI Qi-xin, ZHENG Wei-zhong. Short-term traffic flow prediction methods comparison of road networks[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 68-71.
Citation: SHI Qi-xin, ZHENG Wei-zhong. Short-term traffic flow prediction methods comparison of road networks[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 68-71.

道路网短期交通流预测方法比较

详细信息
    作者简介:

    史其信(1946-), 男, 北京人, 清华大学教授, 从事智能交通系统研究

  • 中图分类号: U491.14

Short-term traffic flow prediction methods comparison of road networks

More Information
  • 摘要: 介绍了用于短期交通流预测的两大类模型: 统计预测算法和人工神经网络模型。对其中各种模型的特征进行了比较, 将历史平均模型、求和自回归滑动平均模型(ARIMA)、非参数回归模型、径向基函数(RBF) 神经网络模型与贝叶斯组合神经网络模型, 应用于一个真实路网的短期流量预测, 比较了各模型的预测结果。结果表明, 组合神经网络模型预测误差最小, 可靠性最高, 是一种对短期交通流预测的有效方法。

     

  • 图  1  测试路网

    Figure  1.  Test network

    图  2  预测值与真实值对比

    Figure  2.  Comparison of observed traffic flow and predicted traffic flow

    表  1  误差均值和误差分布概率比较

    Table  1.   Comparison of MAPE and PPE

    模型 EMAPE/% EPPE
    历史平均 12.47 0.69
    ARIMA (0, 1, 1) 14.87 0.65
    非参数回归 11.54 0.71
    RBF神经网络 11.06 0.75
    组合神经网络 10.20 0.80
    下载: 导出CSV

    表  2  应用比较

    Table  2.   Application comparison

    模型 优点 弱项
    历史平均 操作简单易行 无法表现交通流变化
    ARIMA (0, 1, 1) 时间序列过程的应用 很难处理数据有空缺的情形
    非参数回归 无需假定变量关系 对近邻状态的定义不易掌握
    RBF神经网络 适合于复杂、非线性关系的描述 “黑盒子”的系统结构
    组合神经网络 实时跟踪、自适应调整预测性能 需调试训练多个模型
    下载: 导出CSV
  • [1] Ben-Akiva M, Koutsopoulos H N, Mukundan A. A dynamic traffic model system for ATMS/ATIS operations[J]. IVHS Journal, 1994, 2 (1): 1-19.
    [2] CheslowM, Hatcher S G, Patel VM. An initial evaluation of alternative intelligent vehicle highway systems architecture[R]. MITRE Report 92w0000063, MITRE Corporation, 1992.
    [3] Davis G A, Nihan N L. Nonparametric regression and short term freeway traffic forecasting[J]. Journal of Transportation Engineering, 1991, 117(2): 178-188. doi: 10.1061/(ASCE)0733-947X(1991)117:2(178)
    [4] BoxG E P, JenkinsGM. Time series analysis: forecasting and control [R]. San Francisco: Holden-Day, 1977.
    [5] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. doi: 10.1115/1.3662552
    [6] Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research, Part B, 1984, 18(1): 1-11. doi: 10.1016/0191-2615(84)90002-X
    [7] Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3): 175-185.
    [8] Dougherty MS. A review of neural networks applied to transport[J]. Transportation Research, Part C, 1995, 3(4): 247-260.
    [9] Zhang H J, Ritchie S G, Lo Z P. Macroscopic modeling of freeway traffic using an artificial neural network[J]. Transportation Research Record, 1997, 1588: 110-119. doi: 10.3141/1588-14
    [10] Faghri A, Hua J. Evaluation of artificial neural network applications in transportation engineering[J]. Transportation Research Record, 1992, 1358: 71-80.
    [11] Dougherty M S, Kirby H C. The use of neural networks to recognize and predict traffic congestion[J]. Traffic Engineering and Control, 1993, 34(6): 311-314.
    [12] Park B, Messer C J, Urbanik T. Shortterm freeway traffic volume forecasting using radial basis function neural network[J]. Transportation Research Record, 1998, 1651: 39-47. doi: 10.3141/1651-06
    [13] Abdulhai B, Porwal H, Recker W. Short-term freeway traffic flow prediction using genetically-optimized time-delay-based neural networks [R]. Institute of Transportation Studies, University of California, 1998.
    [14] Dia H. An object-oriented neural network approach to short-term traffic forecasting[J]. European Journal of Operational Research, 2001, 131(2): 253-261. doi: 10.1016/S0377-2217(00)00125-9
    [15] Van D V, Dougherty M, Watson S. Combining kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research, Part C, 1996, 4(5): 307-318.
    [16] Park D, Rilett L R. Forecasting multiple-period freeway link travel times using modular neural networks[J]. Transportation Research Record, 1998, 1617: 163-170. doi: 10.3141/1617-23
    [17] Lee D, Zheng W, Shi Q. Short-term freeway traffic flow prediction using a combined neural network model[A]. The 83rd Annual Meeting of TRB[C]. Washington D C: TRB, 2004.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  113
  • PDF下载量:  797
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-06-07
  • 刊出日期:  2004-12-25

目录

    /

    返回文章
    返回