-
摘要: 应用遗传算法, 考虑货物装载重量、装载容积、优先装箱及非同时配装等约束条件, 采用适当的个体编码方法, 并构造合理的适应值函数, 优化铁路集装箱运输中的普零货物拼箱配装。结果发现以42件货物装入10t箱, 利用遗传算法得到的集装箱装载重量利用率为83 8%, 优化了装载结果, 达到了装载要求, 这说明该方法是可行的。Abstract: In order to make good use of container's loading weight of volume in railway transportation, this paper constructed reasonable coding and fitness function by improved genetic algorithm, according to loading weight, volume and priority. It was found that 42 pieces of goods are loaded into a 10 t container, the container usage ratio of loading weight is 83.8%. Applied result shows that the algorithm is feasible.
-
Key words:
- logistics engineering /
- loading in container /
- genetic algorithm /
- optimization
-
表 1 各货票货物质量及外径体积
Table 1. Goods quality and volume
货票编号 ai/t vi/m3 货票编号 ai/t vi/m3 货票编号 ai/t vi/m3 1 1.221 1.05 15 1.040 2.60 29 1.102 2.46 2 1.156 1.98 16 0.805 1.23 30 2.041 2.20 3 0.700 2.00 17 1.220 0.65 31 1.900 2.80 4 1.243 3.14 18 1.000 2.40 32 2.400 3.20 5 1.600 2.86 19 1.782 0.87 33 1.029 3.00 6 1.612 2.17 20 1.100 1.54 34 3.000 1.20 7 2.300 4.80 21 1.030 5.60 35 1.840 1.20 8 1.930 5.20 22 0.730 4.40 36 1.796 3.89 9 1.850 2.30 23 1.030 1.80 37 2.650 1.01 10 1.900 3.80 24 2.430 3.80 38 1.975 1.23 11 1.120 2.00 25 1.520 4.00 39 0.800 1.00 12 1.431 4.02 26 1.890 5.46 40 1.100 3.20 13 0.600 2.78 27 1.320 3.54 41 1.200 0.80 14 0.306 3.22 28 1.150 1.60 42 2.000 1.10 表 2 配装结果
Table 2. Result of goods arrangement
货票编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 配装结果 1 0 0 0 0 0 0 0 1 0 0 0 0 0 货票编号 15 16 17 18 19 20 21 22 23 24 25 26 27 28 配装结果 0 0 0 1 0 0 0 0 1 0 0 0 0 1 货票编号 29 30 31 32 33 34 35 36 37 38 39 40 41 42 配装结果 0 0 0 0 1 0 0 0 0 0 0 1 0 0 目标函数值 8.380 -
[1] 周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防出版社, 2000. [2] 康立山, 谢云. 非数值并行算法(Ⅱ)[M]. 北京: 科学出版社, 1998. [3] 李致中. 铁道运输管理的数学模型及算法[M]. 武汉: 华中理工大学出版社, 1995. [4] 卜雷. 遗传算法确定零担货物的选择装箱方式[J]. 交通运输工程学报, 2002, 2(3): 93-96. http://transport.chd.edu.cn/article/id/200203021BULei. Deciding to select and load piece goods in container by genetic algorithm[J]. Journal ofTraffic andTransportation Engineering, 2002, 2 (3): 93-96. (in Chinese) http://transport.chd.edu.cn/article/id/200203021 [5] 卜雷. 零担货物序贯装箱优化问题的遗传模拟退火算法[J]. 西南交通大学学报, 2002, 37(5): 531-535. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200205011.htmBU Lei. A genetic and simulated annealing algorithm for optimal sequential casing of less-than-carload freights[J]. Journal of Southwest Jiaotong University, 2002, 37(5): 531-535. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200205011.htm [6] 吴志远. 基于遗传算法的退火精确罚函数非线性约束优化方法[J]. 控制与决策, 1998, 13(2): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC802.007.htmWUZhi-yuan. Annealing accuracy penalty function based on nonlinear constrainted optimization method with genetic algorithms[J]. Control and Decision, 1998, 13(2): 136-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC802.007.htm [7] 卜雷. 集装箱中零担货物合理混载的遗传退火进化算法[J]. 世界科技研究与发展, 2002, 24(6): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF200206021.htmBULei. Genetic annealing evolutionary algorithms applied to the piece good's reasonable mixed loading in container[J]. World Science- Technology Research and Development, 2002, 24(6): 88-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF200206021.htm [8] Rubenstein- Montano B, Anandalingam G, Zandi I. A genetic algorithm approach to policy design for consequence minimization[J]. European Journal of Operational Research, 2000, 124(1): 43-54. doi: 10.1016/S0377-2217(99)00123-X [9] TAN Yongji, ZENG Yi, CAO Wei. Resolving restrict NLP problem by mixed genetic algorithms[J]. Journal of Fudan University, 2000, 39(5): 467-470. (in Chinese)