-
摘要: 为了研究长寿命路面设计方法, 采用SHELL、AI等设计方法对国外提出的沥青层底拉应变与土基顶面压应变标准进行了验证, 根据国外典型长寿命路面结构组合进行应变指标计算与统计分析, 并基于中国路面设计参数对长寿命路面设计指标进行修正。经过统计分析, 验证了国外提出的2个长寿命路面设计指标的可行性, 并提出了适用于中国长寿命路面结构设计的控制指标: 沥青层底拉应变不大于120×10-6, 土基顶面压应变不大于280×10-6, 并对已有试验路结构进行了力学分析。分析结果表明: 试验路的沥青层底拉应变均小于120×10-6, 土基顶面压应变均小于280×10-6, 这表明试验路段满足长寿命路面指标。Abstract: In order to investigate the design method of perpetual asphalt pavement, the indices about tensile strain at the bottom of asphalt layer and the compressive strain at the top of subgrade were validated with SHELL design method, AI design method and so on, the strain indices were statistically analyzed according to the structure combination of representative perpetual asphalt pavement in foreign countries, and the design indices were modified based on the pavement design parameters in China, the two foreign design indices of perpetual pavement were approved to be reasonable, the control indices of structure design for perpetual pavement in China were put forward as follows: the tensile strain at the bottom of asphalt layer should be not more than 120×10-6, and the compressive strain at the top of subgrade should be not more than 280×10-6, the mechanical analyses of test road structures were carried out. Study result shows that the tensile strains at the bottom of asphalt layers are less than 120×10-6, and the compressive strains at the top of subgrades are less than 280×10-6, so the test road sections satisfy the indices of perpetual pavement.
-
表 1 沥青层底拉应变
Table 1. Tensile strain at bottom of asphalt layer
设计方法 拉应变与路面寿命关系 Sm、E /MPa Vb/% Va/% hac/cm εt/10-6 Nf SHELL法[1] Nf=(0.856Vb+1.08)5Sm-1.8εt-5 5 000 12 — — 70 3.03×1014 AI法[1] 5 000 12 4 — 70 7.25×107 AASHTO 2002[8] Nf=0.004 32k′1×10Mεt-2.949 2E-1.281 5 000 12 4 20.3 70 9.86×1011 注: Nf为累计标准荷载作用次数, 次; Vb为沥青混合料中沥青含量(体积百分比); Va为沥青混合料孔隙率; Sm、E分别为沥青混合料劲度模量和沥青层模量, MPa; hac为沥青层厚度, cm;εt为沥青层底拉应变。 表 2 土基顶面压应变
Table 2. Compressive strain at top of subgrade
表 3 Ⅰ-710公路应变分析结果
Table 3. Strain analysis results of Ⅰ-710 highway
组合 7.5 cm磨耗层模量/MPa 15.0 cm中间层模量/MPa 7.5 cm基层模量/MPa 土基模量/MPa 轴载80 kN轮压0.758 MPa 轴载100 kN轮压0.700 MPa 水平拉应变/10-6 竖向压应变/10-6 水平拉应变/10-6 竖向压应变/10-6 1 1 000 2 500 3 500 55 121.40 279.7 149.90 347.5 2 1 000 6 370 6 900 55 72.80 178.6 89.69 222.0 3 2 000 2 000 3 000 55 125.20 280.3 154.60 348.2 4 2 000 2 500 3 500 55 111.80 254.6 138.00 316.3 5 2 000 6 500 6 500 55 69.59 169.8 85.90 210.9 注: 组合2为伯克利大学路面研究中心实测模量值[7]。 表 4 Ⅰ-70公路应变分析结果
Table 4. Strain analysis results of Ⅰ-70 highway
组合 5 cm磨耗层模量/MPa 14 cm中间层模量/MPa 25 cm基层模量/MPa 土基模量/MPa 轴载80 kN轮压0.6 MPa 轴载100 kN轮压0.7 MPa 水平拉应变/10-6 竖向压应变/10-6 水平拉应变/10-6 竖向压应变/10-6 1 1 000 2 000 2 000 40 90.03 208.3 111.90 258.5 2 1 000 3 000 3 000 40 66.47 158.6 82.61 196.9 3 1 000 5 000 5 000 40 44.63 111.0 55.49 138.0 4 2 000 2 000 2 000 40 85.58 196.8 106.30 244.3 5 2 000 5 000 5 000 40 43.20 107.2 53.73 133.2 表 5 Ⅰ-287公路应变分析结果
Table 5. Strain analysis results of Ⅰ-287 highway
组合 7.5 cm表面层模量/MPa 18.0 cm中间层模量/MPa 20.0 cm基层模量/MPa 25.0 cm底基层模量/MPa 土基模量/MPa 轴载80 kN轮压0.6 MPa 轴载100 kN轮压0.7 MPa 水平拉应变/10-6 竖向压应变/10-6 水平拉应变/10-6 竖向压应变/10-6 1 1 000 2 000 320 200 30 122.80 283.2 151.00 352.7 2 1 000 6 500 280 160 30 78.30 236.4 96.70 294.4 3 2 000 2 000 320 200 30 117.30 258.9 144.30 322.5 4 2 000 3 000 300 180 30 103.30 249.8 127.40 311.3 5 2 000 6 500 280 160 30 73.90 218.6 91.20 272.2 6 1 000 2 000 320 200 30 109.10 251.2 134.50 313.0 7 1 000 5 000 280 160 30 75.21 207.0 92.98 258.1 8 2 000 2 000 320 200 30 105.40 235.6 129.90 293.6 9 2 000 3 000 300 180 30 91.35 221.2 112.80 275.7 10 2 000 5 000 280 160 30 72.45 196.8 89.58 245.4 注: 组合1~5为加铺前结构, 组合6~10的结构为原结构铣刨7.5 cm表面层后加铺10.0 cm。 表 6 Ⅰ-40公路应变分析结果
Table 6. Strain analysis results of Ⅰ-40 highway
组合 5 cm磨耗层模量/MPa 6 cm中间层模量/MPa 20 cm基层模量/MPa 土基模量/MPa 轴载80 kN轮压0.6 MPa 轴载100 kN轮压0.7 MPa 水平拉应变/10-6 竖向压应变/10-6 水平拉应变/10-6 竖向压应变/10-6 1 1 000 1 000 1 000 50 245.40 506.5 87.3 213.0 2 1 000 2 000 2 000 50 156.10 342.8 77.5 192.2 3 1 000 2 000 2 500 50 136.20 306.1 203.8 456.0 4 1 000 5 000 5 000 50 81.06 194.3 177.4 406.7 5 1 000 6 000 6 000 50 70.62 172.3 104.9 256.8 表 7 Ⅰ-77公路应变分析结果
Table 7. Strain analysis results of Ⅰ-77 highway
组合 3.8 cm表面层模量/MPa 22.9 cm基层模量/MPa 10.2 cm抗疲劳层模量/MPa 15.2 cm底基层模量/MPa 土基模量/MPa 轴载80 kN轮压0.6 MPa 轴载100 kN轮压0.7 MPa 水平拉应变/10-6 竖向压应变/10-6 水平拉应变/10-6 竖向压应变/10-6 1 1 000 2 000 2 000 280 30 98.42 282.7 122.10 351.5 2 1 000 5 000 5 000 280 30 55.61 170.8 69.05 212.6 3 2 000 2 000 2 000 280 30 94.58 267.2 117.30 332.2 4 2 000 3 000 5 000 280 30 60.33 191.2 74.87 237.8 5 2 000 5 000 5 000 280 30 54.07 164.8 67.15 205.1 表 8 马里兰州环城公路应变分析结果
Table 8. Strain analysis results of circular highway of Maryland
组合 5 cm磨耗层模量/MPa 6 cm中间层模量/MPa 29 cm基层模量/MPa 土基模量/MPa 轴载80 kN轮压0.6 MPa 轴载100 kN轮压0.7 MPa 水平拉应变/10-6 竖向压应变/10-6 水平拉应变/10-6 竖向压应变/10-6 1 1 000 2 000 2 000 40 106.60 244.6 132.30 303.2 2 1 000 3 000 3 000 40 79.01 187.4 98.12 232.4 3 1 000 5 000 5 000 40 53.30 132.0 66.22 163.9 4 2 000 2 000 2 000 40 100.90 230.2 125.30 285.3 5 2 000 5 000 5 000 40 51.43 126.9 63.89 157.6 表 9 采用动静态参数的应变分析结果
Table 9. Strain analysis results with dynamic and static parameters
地区 动态模量参数 静态模量参数 沥青层底拉应变/10-6 土基顶面压应变/10-6 沥青层底拉应变/10-6 土基顶面压应变/10-6 加利福尼亚州 71.2 174.2 116.6 267.2 伊利诺斯州 45.6 113.8 87.8 202.6 新泽西州(改造前) 76.1 227.5 120.1 271.1 新泽西州(改造后) 73.9 201.9 107.3 243.4 俄克拉荷马州 70.6 172.3 136.2 306.1 俄亥俄州 54.9 167.8 96.5 275.0 马里兰州 52.4 129.5 103.8 237.4 平均值 63.5 169.6 109.7 257.5 标准偏差 12.2 39.1 16.1 33.1 变异系数/% 19.2 23.0 14.7 12.8 表 10 广深高速应变计算结果
Table 10. Strain calculation results of Guang-Shen freeway
水稳层模量/MPa 沥青层底拉应变/10-6 土基顶面压应变/10-6 水稳层底拉应变/10-6 500 91.1 178.0 101.0 1 000 61.8 156.9 86.5 2 000 25.0 135.3 66.2 表 11 试验路结构组合
Table 11. Structural combinations of test road
结构层位 结构1 结构2 结构3 磨耗层 SMA-13(4 cm) SMA-13(4 cm) SMA-13(4 cm) 中间层 SAC20-Ⅰ(13 cm) SAC20-Ⅰ(13 cm) AC20-Ⅰ(13 cm) 抗疲劳基层 AC25-Ⅰ(15 cm) AC25-Ⅰ(8 cm) AC25-Ⅰ(15 cm) 下基层 2%水泥稳定碎石(20 cm) 6%水泥稳定碎石(32 cm) 4%水泥稳定碎石(20 cm) 底基层(垫层) 级配碎石(20 cm) 级配碎石(15 cm) 级配碎石(20 cm) 表 12 试验路应变计算结果
Table 12. Strain calculation results of test road
指标 中等模量水稳层 低模量水稳层 结构1 结构2 结构3 结构1 结构2 结构3 沥青层底拉应变不大于120×10-6 60.0 37.8 57.7 86.5 65.7 74.4 土基顶面压应变不大于280×10-6 221.7 196.1 225.4 248.6 241.6 247.7 -
[1] 崔鹏, 孙立军, 胡晓. 高等级公路长寿命路面研究综述[J]. 公路交通科技, 2006, 23(10): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200610002.htmCui Peng, Sun Li-jun, Hu Xiao. A summary of perpetual pavements on high-grade highway[J]. Journal of Highway and Transportation Research and Development, 2006, 23(10): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200610002.htm [2] Asphalt Pavement Alliance. Perpetual pavements: a synthesis[R]. Maryland: Asphalt Pavement Alliance, 2002. [3] 崔鹏, 邵敏华, 王国英, 等. 长寿命沥青路面结构组合探讨[J]. 中南公路工程, 2007, 32(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200703001.htmCui Peng, Shao Min-hua, Wang Guo-ying, et al. Research on perpetual pavements structural combination[J]. Journal of Central South Highway Engineering, 2007, 32(3): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200703001.htm [4] 王龙, 冯德成. 提高级配碎石基层使用性能的方法[J]. 中国公路学报, 2006, 19(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200604007.htmWang Long, Feng De-cheng. Methods for improving using performance of graded broken stone base[J]. China Journal of Highway and Transport, 2006, 19(4): 40-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200604007.htm [5] 李峰, 孙立军. 沥青路面Top-Down开裂成因的有限元分析[J]. 公路交通科技, 2006, 23(6): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200606000.htmLi Feng, Sun Li-jun. Finite element analysis of Top-Down crackingin asphalt pavement[J]. Journal of Highway and Transportation Research and Development, 2006, 23(6): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200606000.htm [6] Nunn M E, Brown A, Weston D, et al. Design of long-life flexible pavements for heavy traffic[R]. Berkshire: Transport Research Laboratory, 1997. [7] Martin J S, Harvey J T, Long F, et al. Long-life rehabilitation design and construction: Ⅰ-710freeway, long beach, California[C]//Transportation Research Board. Transportation Research Circular503: Perpetual Bituminous Pavements. Washington DC: Transportation Research Board National Research Center, 2001: 50-65. [8] NCHRP1-37A. Guide for mechanistic-empirical design of new and rehabilitated pavement structures[R]. Washington DC: Transportation Research Board National Research Council, 2004. [9] 魏建国, 查旭东, 郑健龙, 等. 基于不同成型方法的沥青碎石混合料性能对比研究[J]. 交通运输工程学报, 2007, 7(2): 41-45. http://transport.chd.edu.cn/article/id/200702009Wei Jian-guo, Zha Xu-dong, Zheng Jian-long, et al. Performance contrast of asphalt macadam mixture based on different molding methods[J]. Journal of Traffic and Transportation Engineering, 2007, 7(2): 41-45. (in Chinese) http://transport.chd.edu.cn/article/id/200702009 [10] 张永清, 贾双盈. 高等级公路沥青路面性能评价方法[J]. 长安大学学报: 自然科学版, 2005, 25(2): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200502002.htmZhang Yong-qing, Jia Shuang-ying. Evaluation method for asphalt pavement performance of freeway[J]. Journal of Chang an University: Natural Science Edition, 2005, 25(2): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200502002.htm
计量
- 文章访问数: 428
- HTML全文浏览量: 107
- PDF下载量: 366
- 被引次数: 0