-
摘要: 建立了高速列车多体动力学仿真模型和车轮踏面磨耗计算模型, 通过动力学模拟计算了轮轨接触关系和接触力, 用FASTSIM重新计算轮轨接触斑内的滑动速度、轮轨切向力和摩擦功率的分布, 采用基于摩擦功的轮轨磨耗模型计算了车轮滚过一圈时踏面上一个接触斑的磨耗质量, 再通过累积得到运行一定距离后的踏面磨耗深度。采用数值仿真方法研究了不同车轮踏面外形、轮对内侧距、轨底坡和车速对踏面磨耗深度和磨耗分布的影响。计算结果表明: LMA和S1002踏面的磨耗分布比较均匀, LM踏面的磨耗深度最大, LM和XP55踏面的磨耗区域更靠近轮缘; 在LMA踏面标准轮轨匹配参数下, 轮对内侧距增加会增加磨耗, 磨耗深度随着轨底坡减小而增大; 高速列车车轮踏面磨耗与等效锥度密切相关, 较小的等效锥度会减小磨耗, 但等效锥度的选择需要兼顾动力学性能的其他方面。Abstract: The multibody dynamics model of high-speed vehicle and the wear calculation model of wheel profile were set up.The wheel/rail contact relationship and the contact normal force were calculated by dynamics simulation.FASTSIM was used to calculate the sliding velocity, the tangential froce and the wear power dissipation in the contact patch.The wear model based on wear energy dissipation was adopted.The mass loss in a contact patch was calculated when wheelset rolled a circle.The wear depth was cumulated after vehicle ran a distance.Numerical simulation was used to study the influence of profile shape, vehicle speed, wheel back distance and rail cant on the wear depth and wear distribution of wheel profile.The result indicates that the wear regions of S1002 and LMA profiles are more even.The wear depth of LM profile is biggest.The wear regions of LM and XP55 profiles near wheel flage.When it is LMA profile with standard wheel/rail parameters, the wear depth increases with the increase of wheel back distance, and increases with the decrease of rail cant.The profile wear is closely related to the equivalent conicity.Although the profile wear is less when the equivalent conicity is smaller, the other dynamics performances should be considered when selecting the equivalent conicity.
-
Key words:
- high-speed train /
- wheel profiles /
- profile wear /
- dynamics simulation
-
表 1 车辆部分参数
Table 1. Some parameters of vehicle
参数 数值/kg 参数 数值/m 车体质量 34 000 车体重心高度 1.520 构架质量 2 300 构架重心高度 0.510 轮对质量 1 900 车轮半径 0.430 表 2 直线轨道上的磨耗体积
Table 2. Wear volumes on linear track μm3
V0/ (km·h-1) LMA S1002 XP55 LM 200 4.3 2.7 4.3 8.2 250 5.6 4.1 5.5 9.9 300 7.1 6.0 6.9 11.9 350 9.1 8.5 8.6 13.8 表 3 直线轨道上磨耗体积增量
Table 3. Wear volume increments on linear track %
V0/ (km·h-1) LMA S1002 XP55 LM 250 29.5 50.0 28.9 21.7 300 64.1 118.2 62.4 45.2 350 109.7 210.9 103.3 69.4 表 4 直线轨道上不同轮对内侧距下的磨耗体积
Table 4. Wear volumes under different wheel back distances on linear track μm3
L/mm V0/ (km·h-1) 200 250 300 350 1 353 4.3 5.6 7.1 9.1 1 355 6.3 7.6 9.0 10.7 1 357 9.2 10.7 12.3 13.9 1 359 13.0 14.7 16.6 18.6 1 361 17.5 19.7 22.2 25.4 -
[1] ENBLOMR, BERG M. Impact of non-elliptic contact modelling in wheel wear simulation[J]. Wear, 2008, 265: 1532-1541. doi: 10.1016/j.wear.2008.01.027 [2] JENDEL T. Prediction of wheel profile wear—comparisons with field measurements[J]. Wear, 2002, 253: 89-99. doi: 10.1016/S0043-1648(02)00087-X [3] BRAGHI N F, LEWIS R, DWYER-JOYCE R S, et al. A mathematical model to predict rail way wheel profile evolu-tion due to wear[J]. Wear, 2006, 261: 1253-1264. doi: 10.1016/j.wear.2006.03.025 [4] ZOBORYI. Prediction of wheel/rail profile wear[J]. Vehicle System Dynamics, 1997, 28 (2): 221-259. [5] OLOFSSON U, TELLISKI VI T. Wear, plastic deformation and friction of two rail steels—a full-scale test andlaboratory study[J]. Wear, 2003, 254: 80-93. doi: 10.1016/S0043-1648(02)00291-0 [6] KALKER J J. Simulation of the development of a rail waywheel profile through wear[J]. Wear, 1991, 150: 355-365. doi: 10.1016/0043-1648(91)90329-S [7] ENBLOM R, BERG M. Simulation of rail way wheel profile development due to wear—influence of disc braking and con-tact environment[J]. Wear, 2005, 258: 1055-1063. doi: 10.1016/j.wear.2004.03.055 [8] JENDEL T, BERG M. Prediction of wheel profile wear—methodology and verification[J]. Vehicle System Dynamics, 2002, 37 (Supplement): 502-513. [9] 常崇义, 王成国, 金鹰. 基于三维动态有限元模型的轮轨磨耗数值分析[J]. 中国铁道科学, 2008, 29 (4): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804017.htmCHANG Chong-yi, WANG Cheng-guo, JIN Ying. Numerical analysis of wheel/rail wear based on3D dynamic finite element model[J]. China Rail way Science, 2008, 29 (4): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804017.htm [10] KALKER J J. Afast algorithmfor the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11 (1): 1-13. doi: 10.1080/00423118208968684 [11] 肖广文, 肖新标, 温泽峰, 等. 高速客车轮对动力学性能的比较[J]. 铁道学报, 2008, 30 (6): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200806009.htmXI AO Guang-wen, XI AO Xin-biao, WEN Ze-feng, et al. Comparison of dynamic behaviors of wheelsets of high-speed passenger car[J]. Journal of the China Rail way Society, 2008, 30 (6): 29-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200806009.htm