留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁道信号系统安全计算机状态监测方法

曹源 马连川 李旺

曹源, 马连川, 李旺. 铁道信号系统安全计算机状态监测方法[J]. 交通运输工程学报, 2013, 13(3): 107-112. doi: 10.19818/j.cnki.1671-1637.2013.03.015
引用本文: 曹源, 马连川, 李旺. 铁道信号系统安全计算机状态监测方法[J]. 交通运输工程学报, 2013, 13(3): 107-112. doi: 10.19818/j.cnki.1671-1637.2013.03.015
CAO Yuan, MA Lian-chuan, LI Wang. Monitoring method of safety computer condition for railway signal system[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 107-112. doi: 10.19818/j.cnki.1671-1637.2013.03.015
Citation: CAO Yuan, MA Lian-chuan, LI Wang. Monitoring method of safety computer condition for railway signal system[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 107-112. doi: 10.19818/j.cnki.1671-1637.2013.03.015

铁道信号系统安全计算机状态监测方法

doi: 10.19818/j.cnki.1671-1637.2013.03.015
基金项目: 

国家863计划项目 2012AA112001

国家863计划项目 2012AA112801

中央高校基本科研业务费专项资金项目 2012JBZ0014

高等学校博士学科点专项科研基金项目 20110092120011

高等学校博士学科点专项科研基金项目 20120009120004

国家自然科学基金项目 61101087

铁道部科技研究开发计划项 2013X013-D

详细信息
    作者简介:

    曹源(1982-), 男, 河南开封人, 北京交通大学讲师, 工学博士, 从事高速铁路通信信号研究

  • 中图分类号: U283.2

Monitoring method of safety computer condition for railway signal system

More Information
    Author Bio:

    CAO Yuan(1982-), male, lecturer, PhD, +86-10-51684971, ycao@bjtu.edu.cn

  • 摘要: 基于隐马尔科夫模型(Hidden Markov Model, HMM)提出了状态监测和故障诊断的原理与基本流程。通过观测数据的提取与降维, 正常态模型训练与改进, 故障态模型训练等一系列措施, 实现了两模冗余安全计算机的状态监测, 对正常态与时钟偏离1%~10%等7种不同条件进行监测。监测结果表明: 对数似然概率均值从-228.98降至-1 385.60, 健康状态不断恶化。对1号处理单元(PU1)故障状态进行仿真监测时, 将PU1故障与PU1故障态、正常态、安全容错管理单元(FTSM)故障态、通信控制器(CC)故障态以及系统受扰故障态进行比较, 得到对数似然概率均值分别为-161.95、-13.72、-14.13、-40.17及-35.69, 证明了系统所发生的故障是因PU1所致。监测方法能够有效实现安全计算机健康状态的检测, 为铁道信号安全计算机监测技术提供理论支撑。

     

  • 图  1  HMM结构

    Figure  1.  HMM structure

    图  2  工作流程

    Figure  2.  Working process

    图  3  LDA处理后的一维数据

    Figure  3.  One-dimension data after LDA

    图  4  安全计算机的状态转移

    Figure  4.  State transition of safety computer

    图  5  正常态与故障态训练曲线

    Figure  5.  Training curves of normal and failure statuses

    图  6  正常态的对数似然概率

    Figure  6.  Logarithmic likelihood probabilities of normal status

    图  7  对数似然概率比较

    Figure  7.  Comparison of logarithmic likelihood probabilities

  • [1] 曹源, 唐涛, 徐田华, 等. 形式化方法在列车运行控制系统中的应用[J]. 交通运输工程学报, 2010, 10(1): 112-126. http://transport.chd.edu.cn/article/id/201001020

    CAO Yuan, TANG Tao, XU Tian-hua, et al. Application of formal methods in train control system[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 112-126. (in Chinese). http://transport.chd.edu.cn/article/id/201001020
    [2] 陈珊, 王太勇, 王国锋, 等. 机械设备智能诊断与预测维修系统[J]. 西南交通大学学报, 2003, 38(5): 540-543. doi: 10.3969/j.issn.0258-2724.2003.05.013

    CHEN Shan, WANG Tai-yong, WANG Guo-feng, et al. Intelligent fault diagnosis, prediction and maintenance system of mechanical equipment[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 540-543. (in Chinese). doi: 10.3969/j.issn.0258-2724.2003.05.013
    [3] VICHARE N M, PECHT M G. Prognostics and health management of electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 222-229. doi: 10.1109/TCAPT.2006.870387
    [4] OWSLEY L M D, ATLASL E, BERNARD G D. Self-organizing feature maps and hidden Markov models formachine-tool monitoring[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2787-2798. doi: 10.1109/78.650105
    [5] SMYTH P. Hidden Markov models and neural networks for fault detection in dynamic systems[C]∥IEEE. Proceedings of Neural Networks for Signal Processing. Boise: IEEE, 1993: 582-592.
    [6] ATLAS L, OSTENDORF M, BERNARD G D. Hidden Markov models for monitoring machining tool-wear[C]∥IEEE. Proceedings of the Acoustics, Speech, and Signal Processing. Istanbul: IEEE, 2000: 3887-3890.
    [7] OCAK H, LOPARO K A. A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]∥IEEE. Proceedings of the Acoustics, Speech, and Signal Processing. Salt Lake City: IEEE, 2001: 3141-3144.
    [8] ZHAO Yun-xin, ATLAS L E, ZHUANG Xin-hua. Application of the gibbs distribution to hidden Markov modeling in speaker independent isolated word recognition[J]. IEEE Transactions on Signal Processing, 1991, 39(6): 1291-1299. doi: 10.1109/78.136535
    [9] 林果园, 郭山清, 黄皓, 等. 基于动态行为和特征模式的异常检测模型[J]. 计算机学报, 2006, 29(9): 1553-1560. doi: 10.3321/j.issn:0254-4164.2006.09.006

    LIN Guo-yuan, GUO Shan-qing, HUANG Hao, et al. An anomaly detection model based on dynamic behavior and character patterns[J]. Chinese Journal of Computers, 2006, 29(9): 1553-1560. (in Chinese). doi: 10.3321/j.issn:0254-4164.2006.09.006
    [10] 冯长建. HMM动态模式识别理论、方法以及在旋转机械故障诊断中的应用[D]. 杭州: 浙江大学, 2002.

    FENG Chang-jian. HMM dynamical pattern recognition the-ories, methods and applications in faults diagnosis of rotating machine[D]. Hangzhou: Zhejiang University, 2002. (in Chinese).
    [11] 王剑, 张辉, 蔡伯根, 等. 基于HMM的列车轨道占用自动识别算法研究[J]. 铁道学报, 2009, 31(3): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200903011.htm

    WANG Jian, ZHANG Hui, CAI Bai-gen, et al. The algorithm of automatic track occupying identification based on HMM[J]. Journal of the China Railway Society, 2009, 31(3): 54-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200903011.htm
    [12] QIAO Y, XIN X W, BIN Y, et al. Anomaly intrusion detection method based on HMM[J]. Electronics Letters, 2002, 38(13): 663-664. doi: 10.1049/el:20020467
    [13] 宋雪萍, 马辉, 刘杰, 等. 基于HMM的故障诊断特征提取和聚类技术[J]. 振动、测试与诊断, 2006, 26(2): 92-96, 157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200602001.htm

    SONG Xue-ping, MA Hui, LIU Jie, et al. Feature extraction and clustering technique of rotating machinery fault diagnose based on HMM[J]. Journal of Vibration, Measurement and Diagnosis, 2006, 26(2): 92-96, 157. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200602001.htm
    [14] RABINER L R, JUANG B H. An introduction to hidden Markov models[J]. IEEE ASSP Magazine, 1986, 3(1): 4-16.
    [15] PECK R, NESS J. The use of shrinkage estimators in linear discriminant analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(5): 530-537.
  • 加载中
图(7)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  122
  • PDF下载量:  894
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-18
  • 刊出日期:  2013-06-25

目录

    /

    返回文章
    返回