留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交通轨迹数据挖掘的道路限速信息识别方法

廖律超 蒋新华 林铭榛 邹复民

廖律超, 蒋新华, 林铭榛, 邹复民. 基于交通轨迹数据挖掘的道路限速信息识别方法[J]. 交通运输工程学报, 2015, 15(5): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.05.015
引用本文: 廖律超, 蒋新华, 林铭榛, 邹复民. 基于交通轨迹数据挖掘的道路限速信息识别方法[J]. 交通运输工程学报, 2015, 15(5): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.05.015
LIAO Lu: -chao, JIANG Xin-hua, LIN Ming-zhen, ZOU Fu-min. Recognition method of road speed limit information based on data mining of traffic trajectory[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.05.015
Citation: LIAO Lu: -chao, JIANG Xin-hua, LIN Ming-zhen, ZOU Fu-min. Recognition method of road speed limit information based on data mining of traffic trajectory[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.05.015

基于交通轨迹数据挖掘的道路限速信息识别方法

doi: 10.19818/j.cnki.1671-1637.2015.05.015
基金项目: 

国家自然科学基金项目 61304199

福建省中青年教师科技项目 JA14209

福建省自然科学基金项目 2012J06015

福建省自然科学基金项目 2013J01214

福建省科技重大专项专题项目 2013HZ0002-1

福建省科技计划项目 2012I0002

福建省科技计划项目 2014H0008

详细信息
    作者简介:

    廖律超(1980-), 男, 福建长汀人, 福建工程学院高级工程师, 中南大学工学博士研究生, 从事交通数据挖掘与处理技术研究

    蒋新华(1956-), 男, 湖南长沙人, 中南大学教授

  • 中图分类号: U491

Recognition method of road speed limit information based on data mining of traffic trajectory

More Information
    Author Bio:

    LIAO Lu-chao(1980-), male, doctoral student, + 86-591-22863333, lcliao@csu.edu.cn

    JIANG Xin-hua(1956-), male, professor, + 86-591-22863333, xhj@csu.edu.cn

  • 摘要: 分析了道路限速信息的时空变化性, 提出一种基于轨迹数据挖掘技术的道路限速信息自动识别方法。为了实现海量交通轨迹数据的快速处理, 研究了快速地图匹配与数据清洗等预处理算法, 分析了交通轨迹数据的速度分布特性与最高车速限制指标。基于路段行车速度的统计特性, 构建了道路特征向量模型, 以快速提取海量轨迹数据的潜在特征信息。提出了多投票K近邻分类算法对数据特性进行训练与学习, 以实现对道路限速信息的快速识别。以福州市交通路网及其浮动车轨迹数据构建试验样本集进行训练、学习与交叉验证试验。试验结果表明: 在训练过程中, 当样本数量达到1 200时, 方法的识别准确率最高达到93%, 在仅有150个小训练样本下, 方法的识别准确率也达到75%;方法具有近线性的处理性能, 处理1.0×106条道路的限速信息仅用时46ms。

     

  • 图  1  速度信息盒图分析

    Figure  1.  Box analysis of speed information

    图  2  路网倒排表创建

    Figure  2.  Establishment of road network inverted list

    图  3  福州市区路网

    Figure  3.  Road network of Fuzhou City

    图  4  地图匹配后的轨迹数据点

    Figure  4.  Trajectory data points after map matching

    图  5  原始数据频数-速度分布

    Figure  5.  Frequency-speed distribution of original data

    图  6  原始数据正态检验结果

    Figure  6.  Normal test result of original data

    图  7  降噪后的频数-速度分布

    Figure  7.  Frequency-speed distribution after noise reduction

    图  8  降噪后的正态检验结果

    Figure  8.  Normal test result after noise reduction

    图  9  不同K值的系统识别准确率

    Figure  9.  System recognition accuracies of different Kvalues

    图  10  不同数据量的系统识别准确率

    Figure  10.  System recognition accuracies of different data quantities

    图  11  不同样本量系统运行时间

    Figure  11.  System operating times of different data quantities

    图  12  不同K值的系统运行时间

    Figure  12.  System operating time of different kvalues

    表  1  测试路段特征向量

    Table  1.   Feature vectors of test road sections

  • [1] 姜康, 张梦雅, 陈一锴. 山区圆曲线路段半挂汽车列车行驶安全性分析[J]. 交通运输工程学报, 2015, 15(3): 109-117. doi: 10.3969/j.issn.1671-1637.2015.03.015

    JIANG Kang, ZHANG Meng-ya, CHEN Yi-kai. Driving safety analysis of semi-trailer train at circular curve section in mountain area[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 109-117. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.015
    [2] AARTS L, SCHAGEN I V. Driving speed and the risk of road crashes: a review[J]. Accident Analysis and Prevention, 2006, 38(2): 215-224. doi: 10.1016/j.aap.2005.07.004
    [3] QUDDUS M. Exploring the relationship between average speed, speed variation, and accident rates using spatial statistical models and GIS[J]. Journal of Transportation Safety and Security, 2013, 5(1): 27-45. doi: 10.1080/19439962.2012.705232
    [4] BELLA F. Driving simulator for speed research on two-lane rural roads[J]. Accident Analysis and Prevention, 2008, 40(3): 1078-1087. doi: 10.1016/j.aap.2007.10.015
    [5] HOSSEINLOU M H, KHEYRABADI S A, ZOLFAGHARI A. Determining optimal speed limits in traffic networks[J]. IATSS Research, 2015, 39(1): 36-41. doi: 10.1016/j.iatssr.2014.08.003
    [6] SUN Rui, HU Jian-ming, XIE Xu-dong, et al. Variable speed limit design to relieve traffic congestion based on cooperative vehicle infrastructure system[J]. Procedia-Social and Behavioral Sciences, 2014, 138: 427-438. doi: 10.1016/j.sbspro.2014.07.221
    [7] HEYDECKER B G, ADDISON J D. Analysis and modelling of traffic flow under variable speed limits[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(2): 206-217. doi: 10.1016/j.trc.2010.05.008
    [8] LI Zhi-bin, LI Ye, LIU Pan, et al. Development of a variable speed limit strategy to reduce secondary collision risks during inclement weathers[J]. Accident Analysis and Prevention, 2014, 72: 134-145. doi: 10.1016/j.aap.2014.06.018
    [9] GRUMERT E, MA Xiao-liang, TAPANI A. Analysis of a cooperative variable speed limit system using microscopic traffic simulation[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 173-186. doi: 10.1016/j.trc.2014.11.004
    [10] SOUANI C, FAIEDH H, BESBES K. Efficient algorithm for automatic road sign recognition and its hardware implementation[J]. Journal of Real-Time Image Processing, 2014, 9(1): 79-93. doi: 10.1007/s11554-013-0348-z
    [11] 王进, 孙开伟, 李钟浩. 超网络道路限速标志识别[J]. 小型微型计算机系统, 2012, 33(12): 2709-2714. doi: 10.3969/j.issn.1000-1220.2012.12.027

    WANG Jin, SUN Kai-wei, LEE C H. Hypernetworks for road speed limit sign recognition[J]. Journal of Chinese Computer Systems, 2012, 33(12): 2709-2714. (in Chinese) doi: 10.3969/j.issn.1000-1220.2012.12.027
    [12] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32(2): 323-332.
    [13] GREENHALGH J, MIRMEHDI M. Real-time detection and recognition of road traffic signs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1498-1506. doi: 10.1109/TITS.2012.2208909
    [14] LILLO-CASTELLANO J M, MORA-JIMéNEZ I, FIGUERA-POZUELO C, et al. Traffic sign segmentation and classification using statistical learning methods[J]. Neurocomputing, 2015, 153: 286-299. doi: 10.1016/j.neucom.2014.11.026
    [15] ZAKLOUTA F, STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous Systems, 2014, 62(1): 16-24. doi: 10.1016/j.robot.2012.07.019
    [16] LIU Hua-ping, LIU Yu-long, SUN Fu-chun. Traffic sign recognition using group sparse coding[J]. Information Sciences, 2014, 266(10): 75-89.
    [17] PASCALE A, DEFLORIO F, NICOLI M, et al. Motorway speed pattern identification from floating vehicle data for freight applications[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 104-119. doi: 10.1016/j.trc.2014.09.018
    [18] 吴佩莉, 刘奎恩, 郝身刚, 等. 基于浮动车数据的快速交通拥堵监控[J]. 计算机研究与发展, 2015, 51(1): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201401021.htm

    WU Pei-li, LIU Kui-en, HAO Shen-gang, et al. Rapid traffic congestion monitoring based on floating car data[J]. Journal of Computer Research and Development, 2015, 51(1): 189-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201401021.htm
    [19] WALKER G, CALVERT M. Driver behaviour at roadworks[J]. Applied Ergonomics, 2015, 51: 18-29. doi: 10.1016/j.apergo.2015.03.019
    [20] RAHMANI M, JENELIUS E, KOUTSOPOULOS H N. Non-parametric estimation of route travel time distributions from low-frequency floating car data[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 343-362. doi: 10.1016/j.trc.2015.01.015
    [21] RAHMANI M, KOUTSOPOULOS H N. Path inference from sparse floating car data for urban networks[J]. Transportation Research Part C: Emerging Technologies, 2013, 30(5): 41-54.
    [22] JIMéNEZ-MEZA A, ARáMBURO-LIZáRRAGA J, FUENTE E. Framework for estimating travel time, distance, speed, and street segment level of service(LOS), based on GPS data[J]. Procedia Technology, 2013, 7(4): 61-70.
    [23] ALJANAHI A A M, RHODES A H, METCALFE A V. Speed, speed limits and road traffic accidents under free flow conditions[J]. Accident Analysis and Prevention, 1999, 31(1): 161-168.
    [24] CHEN Bi-yu, YUAN Hui, LI Qing-quan, et al. Map-matching algorithm for large-scale low-frequency floating car data[J]. International Journal of Geographical Information Science, 2014, 28(1): 22-38. doi: 10.1080/13658816.2013.816427
    [25] 王美玲, 程林. 浮动车地图匹配算法研究[J]. 测绘学报, 2012, 41(1): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201201026.htm

    WANG Mei-ling, CHENG Lin. Study on map-matching algorithm for floating car[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 133-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201201026.htm
    [26] BRIN S, PAGE L. Reprint of: the anatomy of a large-scale hypertextual web search engine[J]. Computer Networks, 2012, 56(18): 3825-3833. doi: 10.1016/j.comnet.2012.10.007
    [27] BIJALWAN V, KUMAR V, KUMARI P, et al. KNN based machine learning approach for text and document mining[J]. International Journal of Database Theory and Application, 2014, 7(1): 61-70. doi: 10.14257/ijdta.2014.7.1.06
    [28] JIANG Sheng-yi, PANG Guan-song, WU Mei-ling, et al. An improved k-nearest-neighbor algorithm for text categorization[J]. Expert Systems with Applications, 2012, 39(1): 1503-1509. doi: 10.1016/j.eswa.2011.08.040
    [29] LIU Hua-wen, ZHANG Shi-chao. Noisy data elimination using mutual k-nearest neighbor for classification mining[J]. The Journal of Systems and Software, 2012, 85(5): 1067-1074. doi: 10.1016/j.jss.2011.12.019
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  792
  • HTML全文浏览量:  173
  • PDF下载量:  1504
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-16
  • 刊出日期:  2015-10-25

目录

    /

    返回文章
    返回