留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据可视化的区域交通状态特征评价方法

何兆成 周亚强 余志

何兆成, 周亚强, 余志. 基于数据可视化的区域交通状态特征评价方法[J]. 交通运输工程学报, 2016, 16(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2016.01.016
引用本文: 何兆成, 周亚强, 余志. 基于数据可视化的区域交通状态特征评价方法[J]. 交通运输工程学报, 2016, 16(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2016.01.016
HE Zhao-cheng, ZHOU Ya-qiang, YU Zhi. Regional traffic state evaluation method based on data visualization[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2016.01.016
Citation: HE Zhao-cheng, ZHOU Ya-qiang, YU Zhi. Regional traffic state evaluation method based on data visualization[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2016.01.016

基于数据可视化的区域交通状态特征评价方法

doi: 10.19818/j.cnki.1671-1637.2016.01.016
基金项目: 

国家科技支撑计划项目 2014BAG01B04

详细信息
    作者简介:

    何兆成(1977-), 男, 广东梅县人, 中山大学教授, 工学博士, 从事智能交通系统研究

  • 中图分类号: U491.11

Regional traffic state evaluation method based on data visualization

More Information
  • 摘要: 引入交通拥堵时空累积指标对区域交通运行状态进行判别与定量分析, 建立拥堵源与拥堵评价点之间的函数关系以构建可视化模型, 利用梯度方向直方图与主成分分析法对交通运行状态数据进行特征提取, 并利用高斯混合聚类方法对特征数据进行聚类, 划分区域交通拥堵的空间分布模式。选择了广州23 478辆出租车, 得到了509 376个数据样本, 并对交通路网拥堵模式进行识别和划分, 分析和评价了城市交通拥堵分布特性。试验结果表明: 3个样本的拥堵强度平均值分别为0.558、0.559、0.559, 交通拥堵聚集度指标分别为3.518、3.121、2.800, 3个样本的整体路网拥堵强度相同, 但是空间拥堵分布有较大差异; 广州在拥堵等级为6时的3种拥堵模式的主要聚集区域数分别为2、4、3个, 符合实际调查结果。可见, 本文提出的方法能更科学直观地描述区域交通拥堵程度和分布情况以及空间层面上的城市区域交通运行规律。

     

  • 图  1  研究框架

    Figure  1.  Research framework

    图  2  区域交通拥堵强度评价原理

    Figure  2.  Evaluating principle of regional traffic congestion intensity

    图  3  衰减函数

    Figure  3.  Attenuation functions

    图  4  二维坐标系下的拥堵区域评价原理

    Figure  4.  Evaluating principle of congestion region in2Dcoordinated system

    图  5  带宽选取效果

    Figure  5.  Bandwidth selection results

    图  6  均匀分布的拥堵聚集度

    Figure  6.  Congestion aggregation of uniform distibution

    图  7  随机分布的拥堵聚集度

    Figure  7.  Congestion aggregation of random distibution

    图  8  聚散分布一的拥堵聚集度

    Figure  8.  Congestion aggregation of aggregated distibution 1

    图  9  聚散分布二的拥堵聚集度

    Figure  9.  Congestion aggregation of aggregated distibution 2

    图  10  聚散分布三的拥堵聚集度

    Figure  10.  Congestion aggregation of aggregated distibution 3

    图  11  区域拥堵聚集特征提取

    Figure  11.  Feature extraction of regional congestion aggregation

    图  12  广州市路网

    Figure  12.  Guangzhou road network

    图  13  区域交通拥堵聚集度散点

    Figure  13.  Scatter points of regional traffic congestion aggregation

    图  14  拥堵分布可视化

    Figure  14.  Congestion distribution visualization

    图  15  拥堵模式

    Figure  15.  Congestion patterns

    表  1  样本聚集度指标

    Table  1.   Sample aggregation indexes

    下载: 导出CSV

    表  2  聚类结果

    Table  2.   Clustering result

    下载: 导出CSV
  • [1] LIGHTHILL M J, WHITHAM G B. On kinematic waves I. flood movement in long rivers[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 229(1178): 281-316. doi: 10.1098/rspa.1955.0088
    [2] RICHARDS P I. Shock waves on the highway[J]. Operations Research, 1956, 4(1): 42-51. doi: 10.1287/opre.4.1.42
    [3] AW A, RASCLE M. Resurrection of"second order"models of traffic flow[J]. SIAM Journal on Applied Mathematics, 2000, 60(3): 916-938. doi: 10.1137/S0036139997332099
    [4] DAGANZO C F. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. doi: 10.1016/0191-2615(94)90002-7
    [5] DAGANZO C F. The cell transmission model, partⅡ: network traffic[J]. Transportation Research Part B: Methodological, 1995, 29(2): 79-93. doi: 10.1016/0191-2615(94)00022-R
    [6] HU P S, PACK M L. Visualization and visual analytics in transportation[J]. Transportation Research Part C: Emerging Technologies, 2014, 47: 193. doi: 10.1016/j.trc.2014.09.014
    [7] KJRGAARD R S. Data visualization: mapping the topical space[J]. Nature, 2015, 520: 292-293. doi: 10.1038/520292a
    [8] BEECHAM R, WOOD J. Characterising group-cycling journeys using interactive graphics[J]. Transportation Research Part C: Emerging Technologies, 2014, 47: 194-206. https://www.sciencedirect.com/science/article/pii/S0968090X14000734
    [9] KOTHA P. A methodology for deriving performance measures from spatio-temporal traffic contour maps using digital image analysis procedures[D]. Baton Rouge: Louisiana State University, 2003.
    [10] 龚峻峰, 苏奎, 何兆成, 等. 广州市路网交通状态评价方法及其在亚运交通管控分析中的应用[J]. 交通运输系统工程与信息, 2012, 12(增1): 106-112. https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=ZJTX201109001112&dbname=IPFD9914

    GONG Jun-feng, SU Kui, HE Zhao-cheng, et al. Traffic state evaluation method for Guangzhou urban road network and its application in the 16th Asian Games[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(S1): 106-112. (in Chinese). https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=ZJTX201109001112&dbname=IPFD9914
    [11] CHEN C, SKABARDONIS A, VARAIYA P. Systematic identification of freeway bottlenecks[J]. Transportation Research Record, 2004(1867): 46-52. https://trid.trb.org/view/741262
    [12] SHE Xi-wei, HE Zhao-cheng, NIE Pei-lin, et al. Online mapmatching framework for floating-car data with low sampling rate in urban road network[C]∥Transportation Research Board. Transportation Research Board 91st Annual Meeting. Washington DC: Transportation Research Board, 2012: 1-23.
    [13] 曾伟良, 何兆成, 沙志仁, 等. 结合卡尔曼滤波的城市路段速度估计[J]. 测绘科学, 2013, 38(1): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201301032.htm

    ZENG Wei-liang, HE Zhao-cheng, SHA Zhi-ren, et al. Urban link speed estimation with Kalman filter[J]. Science of Surveying and Mapping, 2013, 38(1): 96-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201301032.htm
    [14] SABEL C E, GATRELL A C, LYTNEN M, et al. Modelling exposure opportunities: estimating relative risk for motor neurone disease in Finland[J]. Social Science and Medicine, 2000, 50(7/8): 1121-1137. https://www.sciencedirect.com/science/article/pii/S0277953699003603
    [15] KRISTAN M, LEONARDIS A, SKO C"AJ D. Multivariate online kernel density estimation with Gaussian kernels[J]. Pattern Recognition, 2011, 44(10/11): 2630-2642. https://www.sciencedirect.com/science/article/pii/S0031320311001233
    [16] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥SCHMID C, SOATTO S, TOMASI C. International Conference on Computer Vision and Pattern Recognition, CVPR 2005. New York: IEEE, 2005: 886-893.
    [17] 傅湘, 纪昌明. 区域水资源承载能力综合评价—主成分分析法的应用[J]. 长江流域资源与环境, 1999, 8(2): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY199902011.htm

    FU Xiang, JI Chang-ming. A comprehensive evaluation of the regional water resource carrying capacity—application of main component analysis method[J]. Resources and Environment in the Yangtze Basin, 1999, 8(2): 168-173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY199902011.htm
    [18] YILDIRIMOGLU M, GEROLIMINIS N. Experienced travel time prediction for congested freeways[J]. Transportation Research Part B: Methodological, 2013, 53(4): 45-63. https://www.sciencedirect.com/science/article/pii/S0191261513000465
    [19] ROUSSEEUW P J. Silhouettes: agraphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20(4): 53-65. https://www.researchgate.net/publication/340575202_Silhouettes_A_graphical_aid_to_the_interpretation_and_validation_of_cluster_analysis
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1156
  • HTML全文浏览量:  244
  • PDF下载量:  1512
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-20
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回