留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单目图像的列车事故场景三维重建

聂隐愚 唐兆 常建 刘丰嘉 张建军

聂隐愚, 唐兆, 常建, 刘丰嘉, 张建军. 基于单目图像的列车事故场景三维重建[J]. 交通运输工程学报, 2017, 17(1): 149-158.
引用本文: 聂隐愚, 唐兆, 常建, 刘丰嘉, 张建军. 基于单目图像的列车事故场景三维重建[J]. 交通运输工程学报, 2017, 17(1): 149-158.
NIE Yin-yu, TANG Zhao, CHANG Jian, LIU Feng-jia, ZHANG Jian-jun. 3D reconstruction of train accident scene based on monocular image[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 149-158.
Citation: NIE Yin-yu, TANG Zhao, CHANG Jian, LIU Feng-jia, ZHANG Jian-jun. 3D reconstruction of train accident scene based on monocular image[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 149-158.

基于单目图像的列车事故场景三维重建

基金项目: 

国家自然科学基金项目 51405402

国家自然科学基金项目 51475394

牵引动力国家重点实验室自主研究课题 2015TPL_T06

中央高校基本科研业务费专项资金项目 2682016CX128

详细信息
    作者简介:

    聂隐愚(1992-), 男, 湖南衡阳人, 西南交通大学工学硕士研究生, 从事机车车辆数据驱动仿真研究

    唐兆(1979-), 男, 四川南充人, 西南交通大学讲师, 工学博士

  • 中图分类号: U298.5

3D reconstruction of train accident scene based on monocular image

More Information
  • 摘要: 为了辅助铁路事故应急救援方案的制定, 提出了一种基于单目图像的列车事故场景快速三维重建方法。考虑不同应用场景的2种相机投影模型, 采用SIFT算法提取图像特征并与事故列车的CAD模型相匹配, 通过引入车厢之间的几何约束, 将三维重建转换为求解带约束的非线性最小二乘问题, 最终还原事故主体的位置与姿态。为了定量与定性验证该方法的计算效果, 分别对模拟列车事故场景与真实列车事故场景进行车厢的三维重建。在模拟列车事故场景中采用了较精确的有限相机投影模型进行离线标定, 在真实列车事故场景中采用了较稳定的针孔模型进行自标定。分析结果表明: 通过对模拟场景的定量分析, 重建两节车厢中用于测量的8个节点的最大相对误差为4.54%, 平均相对误差为1.85%;通过对真实场景的定性分析, 结合地形信息校正, 同样能够实现车厢位置与姿态的三维还原; 最终借助三维可视化引擎, 可在视觉上还原整个事故环境全貌。该方法还可用于应急救援电子沙盘的开发以进行铁路事故分析和安全教育。

     

  • 图  1  物体投影过程

    Figure  1.  Projection process

    图  2  CAD模型的三维重建

    Figure  2.  3Dreconstruction of CAD model

    图  3  基于单目图像三维重建的奇异性

    Figure  3.  Singularity of 3Dreconstruction based on monocular image

    图  4  重建过程

    Figure  4.  Reconstruction process

    图  5  模拟现场全景

    Figure  5.  Panorama of mimicked scene

    图  6  标志点

    Figure  6.  Mark points

    图  7  导入的CAD模型

    Figure  7.  Imported CAD model

    图  8  CAD特征匹配结果

    Figure  8.  Result of CAD feature matching

    图  9  模拟事故场景重建结果

    Figure  9.  Reconstruction result of mimicked accident scene

    图  10  车厢重建误差

    Figure  10.  Reconstruction errors of carriages

    图  11  各方向下不同车厢的平均相对误差

    Figure  11.  Average relative errors from different carriages for each direction

    图  12  各车厢不同方向下的平均相对误差

    Figure  12.  Average relative errors from different directions for each carriage

    图  13  事故主体位姿识别系统

    Figure  13.  Position-pose recognition system of bodies in accidents

    图  14  列车脱轨事故全景

    Figure  14.  Panorama of train derailment accident

    图  15  事故列车特征选择结果

    Figure  15.  Feature selection result of accident train

    图  16  导入车厢的CAD模型

    Figure  16.  CAD model of imported carriage

    图  17  所有车厢的位置与姿态估计结果

    Figure  17.  Position-pose estimation result of all carriages

    图  18  场景重建可视化结果

    Figure  18.  Visualization result of scene reconstruction

    表  1  车身标志点的测量坐标

    Table  1.   Survey coordinates of mark points on car bodies

    下载: 导出CSV

    表  2  重建坐标与相对误差

    Table  2.   Reconstructed coordinates and relative errors

    下载: 导出CSV

    表  3  采用针孔相机重建相对误差

    Table  3.   Relative errors of reconstruction using pin hole camera

    下载: 导出CSV
  • [1] SMILEY A M. The hinton train disaster[J]. Accident Analysis and Prevention, 1990, 22 (5): 443-455. doi: 10.1016/0001-4575(90)90039-N
    [2] WU Yan-han, WANG Fu-zhang. Research on location and optimization of railway emergency rescue center[C]//IEEE. 2011 2nd IEEE International Conference on Emergency Management and Management Sciences. New York: IEEE, 2011: 330-333.
    [3] HOU Lin, LAO Yun-teng, WANG Yin-hai, et al. Modeling freeway incident response time: a mechanism-based approach[J]. Transportation Research Part C: Emerging Technologies, 2013, 28 (3): 87-100.
    [4] LI Ying, TRINH H, HAAS N, et al. Rail component detection, optimization, and assessment for automatic rail track inspection[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (2): 760-770. doi: 10.1109/TITS.2013.2287155
    [5] GIBERT X, PATEL V M, CHELLAPPA R. Robust fastener detection for autonomous visual railway track inspection[C]//IEEE. 2015 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE, 2015: 694-701.
    [6] 闵永智, 殷超, 党建武, 等. 基于图像色相值突变特征的钢轨区域快速识别方法[J]. 交通运输工程学报, 2016, 16 (1): 46-54. http://transport.chd.edu.cn/article/id/201601006

    MIN Yong-zhi, YIN Chao, DANG Jian-wu, et al. Fast recognition method of rail region based on hue value mutation feature of image[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (1): 46-54. (in Chinese). http://transport.chd.edu.cn/article/id/201601006
    [7] TAŞTIMUR C, AKIN E, KARAKÖSE M, et al. Detection of rail faults using morphological feature extraction based image processing[C]//IEEE. 2015 23th Signal Processing and Communications Applications Conference. New York: IEEE, 2015: 1244-1247.
    [8] RESENDIZ E, HART J M, AHUJA N. Automated visual inspection of railroad tracks[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (2): 751-760. doi: 10.1109/TITS.2012.2236555
    [9] CAMARGO L F M, EDWARDS J R, BARKAN C P L. Emerging condition monitoring technologies for railway track components and special trackwork[C]//IEEE. 2011ASME/ASCE/IEEE Joint Rail Conference. New York: IEEE, 2011: 151-158.
    [10] 廖军洪, 刘仍奎. 基于GIS的铁路行车事故救援系统研究[J]. 中国安全科学学报, 2003, 13 (11): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200311001.htm

    LIAO Jun-hong, LIU Reng-kui. Study on emergency rescue system for accidents of running train based on GIS[J]. China Safety Science Journal, 2003, 13 (11): 5-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200311001.htm
    [11] 王东亮. 接触网下内电机车客货车辆快速救援起复方法[J]. 铁道机车车辆, 2009, 29 (5): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200905028.htm

    WANG Dong-liang. Diesel and electric locomotive, coach and lorry car rapid rescue recovery method under contact line[J]. Railway Locomotive and Car, 2009, 29 (5): 84-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200905028.htm
    [12] MOHR R, TRIGGS B. Projective geometry for image analysis[R]. Vienna: ISPRS, 1996.
    [13] KOLB C, MITCHELL D, HANRAHAN P. A realistic camera model for computer graphics[C]//ACM. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995: 317-324.
    [14] HEIKKILJ, SILVN O. A four-step camera calibration procedure with implicit image correction[C]//IEEE. 1997IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 1997: 1106-1112.
    [15] ZHANG Zheng-you. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (11): 1330-1334. doi: 10.1109/34.888718
    [16] SANTAGATI C, INZERILLO L. 123Dcatch: efficiency, accuracy, constraints and limitations in architectural heritage field[J]. International Journal of Heritage in the Digital Era, 2013, 2 (2): 263-289. doi: 10.1260/2047-4970.2.2.263
    [17] TORR P H S, ZISSERMAN A. Feature based methods for structure and motion estimation[J]. Lecture Notes in Computer Science, 2002, 1883: 278-294.
    [18] BROWN M, LOWE D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74 (1): 59-73. doi: 10.1007/s11263-006-0002-3
    [19] BROWN M, LOWE D G. Recognising panoramas[C]//IEEE. Ninth IEEE International Conference on Computer Vision. New York: IEEE, 2003: 1218-1227.
    [20] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [21] JUAN L, GWUN O. A comparison of SIFT, PCA-SIFT and SURF[J]. International Journal of Image Processing, 2009, 3 (4): 143-152.
    [22] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24 (6): 381-395.
    [23] TRIGGS B, MCLAUCHLAN P, HARTLEY R, et al. Bundle adjustment—a modern synthesis[J]. Lecture Notes in Computer Science, 2002, 1883: 298-372.
    [24] MORJ J, SORENSEN D C. Computing a trust region step[J]. SIAM Journal on Scientific and Statistical Computing, 1983, 4 (3): 553-572.
    [25] HEIKKILJ, SILVN O. Calibration procedure for short focal length off-the-shelf CCD-cameras[C]//IEEE. Proceedings of13th International Conference on Pattern Recognition. New York: IEEE, 1996: 166-170.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  728
  • HTML全文浏览量:  118
  • PDF下载量:  605
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-01
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回