留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应巡航控制车辆跟驰模型综述

秦严严 王昊 王炜 NI Dai-heng

秦严严,王昊,王炜,等.自适应巡航控制车辆跟驰模型综述[J].交通运输工程学报,2017,17(03):121-130.
引用本文: 秦严严,王昊,王炜,等.自适应巡航控制车辆跟驰模型综述[J].交通运输工程学报,2017,17(03):121-130.
QIN Yan-yan,WANG Hao,WANG Wei,et al.Review of car-following models of adaptive cruise control[J].Journal of Traffic and Transportation Engineering,2017,17(03):121-130.
Citation: QIN Yan-yan,WANG Hao,WANG Wei,et al.Review of car-following models of adaptive cruise control[J].Journal of Traffic and Transportation Engineering,2017,17(03):121-130.

自适应巡航控制车辆跟驰模型综述

基金项目: 国家自然科学基金项目(51478113)
详细信息
    作者简介:

    秦严严(1989-),男,江苏沛县人,东南大学工学博士研究生,从事交通流理论研究。

  • 中图分类号: U491.25

Review of car-following models of adaptive cruise control

  • 摘要: 分析了自动驾驶汽车自适应巡航控制(Adaptive Cruise Control, ACC)和协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)车辆跟驰模型,从系统控制原理、车车通信技术与车间时距方面阐述了ACC与CACC车辆的异同点; 将目前主 流ACC/CACC车辆跟驰模型分为3类:基于智能驾驶的车辆跟驰模型、加州伯克利大学PATH实验室车辆跟驰模型与基于控制论的车辆跟 驰模型,总结3类车辆跟驰模型的建模思路与主要优缺点; 从道路通行能力、交通安全和交通流稳定性3方面,分析了ACC/CACC车辆对 交通流特性的影响,及其研究现状与未来发展趋势。研究结果表明:不同的ACC/CACC车辆跟驰模型对通行能力的影响存在较大差 别,ACC/CACC车辆有利于提升交通安全性,但由于缺乏统一的安全性评价指标,难以量化ACC/CACC车辆对交通安全性的影响程度; 小 规模实车试验验证了ACC车辆具有不稳定的交通流特性,否定了ACC车辆稳定性数值仿真结果,而数值仿真试验和小规模实车试验均表 明CACC车辆可较好提升交通流稳定性,因此,完全依赖于计算机仿真试验无法获得令人信服的结论,实车试验是ACC/CACC研究的必要 途径; 为了完善ACC/CACC在交通领域的研究,应构建不同ACC/CACC车辆比例下的混合交通流基本图模型、智能网联环境下的 ACC/CACC车辆跟驰模型建模方法与ACC/CACC混合交通流稳定性解析方法。

     

  • [1] KERNER B S. Experimental features of self-organization in traffic flow[J]. Physical Review Letters, 1998, 81 (17): 3797-3800.
    [2] MAHMASSANI H S. Autonomous vehicles and connected vehicle systems: flow and operations considerations[J]. Transportation Science, 2016, 50(4): 1140-1162.
    [3] NUNEN E V, KWAKKERNAAT M R J A E, PLOEG J, et al. Cooperative competition for future mobility[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1018-1025.
    [4] DEY K C, YAN Li, WANG Xu-jie, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 491-509.
    [5] RAJAMANI R, SHLADOVER S E. An experimental comparative study of autonomous and co-operative vehicle-follower control systems[J]. Transportation Research Part C: Emerging Technologies, 2001, 9(1): 15-31.
    [6] VINE S L, LIU Xiao-bo, ZHENG Fang-fang, et al. Automated cars: queue discharge at signalized intersections with ‘assured-clear-distance-ahead' driving strategies[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 35-54.
    [7] VOLLRATH M, SCHLEICHER S, GELAU C. The influence of cruise control and adaptive cruise control on driving behavior―a driving simulator study[J]. Accident Analysis and Prevention, 2011, 43(3): 1134-1139.
    [8] YU Shao-wei, SHI Zhong-ke. The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy[J]. Physica A: Statistical Mechanics and its Applications, 2015, 428: 206-223.
    [9] CHEN Dan-jue, AHN S, CHITTURI M, et al. Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017, 100: 196-221.
    [10] JIA Dong-yao, NGODUY D. Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication[J]. Transportation Research Part B: Methodological, 2016, 90: 172-191.
    [11] 张德兆,王建强,刘佳熙,等.加速度连续型自适应巡航控制模式切换策略[J].清华大学学报:自然科学版,2010,50(8):1277- 1281. ZHANG De-zhao, WANG Jian-qiang, LIU Jia-xi, et al. Switching strategy for adaptive cruise control modes for continuous acceleration[J]. Journal of Tsinghua University: Science and Technology, 2010, 50(8): 1277-1281.(in Chinese)
    [12] 华雪东,王 炜,王 昊.考虑车与车互联通讯技术的交通流跟驰模型[J].物理学报,2016,65(1):52-63. HUA Xue-dong, WANG Wei, WANG Hao. Traffic car-following model based on car communication technology[J]. Acta Physica Sinica, 2016, 65(1): 52-63.(in Chinese)
    [13] 王 灿,马 钧.汽车CACC系统的车头时距策略研究[J].农业装备与车辆工程,2015,53(2):60-67. WANG Can, MA Jun. Study on automotive CACC systems headway policy[J]. Agricultural Equipment and Vehicle Engineering, 2015, 53(2): 60-67.(in Chinese)
    [14] 王 昊,刘振全,张志学,等.考虑双前导车的跟驰与换道联合模型[J].东南大学学报:自然科学版,2015,45(5):985-989. WANG Hao, LIU Zhen-quan, ZHANG Zhi-xue, et al. Doubel-head car-following and lane-changing combined model[J]. Journal of Southeast University: Natural Science Edition, 2015, 45(5): 985-989.(in Chinese)
    [15] 金峻臣.基于ACC系统的跟驰模型改进分析[J].科学技术与工程,2011,11(26):6396-6400. JIN Jun-chen. Research on improved car-following based on ACC system[J]. Science Technology and Engineering, 2011, 11(26): 6396-6400.(in Chinese)
    [16] 罗莉华.汽车自适应巡航控制及相应宏观交通流模型研究[D].杭州:浙江大学,2011. LUO Li-hua. Vehicle adaptive cruise control and the corresponding macroscopic traffic flow model[D]. Hangzhou: Zhejiang University, 2011.(in Chinese)
    [17] XIAO Ling-yun, GAO Feng. A comprehensive review of the development of adaptive cruise control systems[J]. Vehicle System Dynamics, 2010, 48(10): 1167-1192.
    [18] 张智勇,荣 建,任福田.跟车模型研究综述[J].公路交通科技,2004,21(8):108-113. ZHANG Zhi-yong, RONG Jian, REN Fu-tian. Review of car following model research[J]. Journal of Highway and Transportation Research and Development, 2004, 21(8): 108-113.(in Chinese)
    [19] 王殿海,金 盛.车辆跟驰行为建模的回顾与展望[J].中国公路学报,2012,25(1):115-127. WANG Dian-hai, JIN Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25(1): 115-127.(in Chinese)
    [20] 陈 涛,陈燕芹,邓 刚,等.驾驶人行为模型的研究综述[J].长安大学学报:自然科学版,2016,36(2):80-90. CHEN Tao, CHEN Yan-qin, DENG Gang, et al. Review of driver behavior models[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36(2): 80-90.(in Chinese)
    [21] MARSDEN G, MCDONALD M, BRACKSTONE M. Towards an understanding of adaptive cruise control[J]. Transportation Research Part C: Emerging Technologies, 2001, 9(1): 33-51.
    [22] SHLADOVER S E, SU Dong-yan, LU Xiao-yun. Impacts of cooperative adaptive cruise control on freeway traffic flow[J].Transportation Research Record, 2012(2324): 63-70.
    [23] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824.
    [24] KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368(1928): 4585-4605.
    [25] LI Zhi-peng, LI Wen-zhong, XU Shang-zhi, et al. Stability analysis of an extended intelligent driver model and its simulations under open boundary condition[J]. Physica A: Statistical Mechanics and its Applications, 2015, 419: 526-536.
    [26] KESTING A, TREIBER M, SCHONHOF M, et al. Extending adaptive cruise control to adaptive driving strategies[J]. Transportation Research Record, 2007(2000): 16-24.
    [27] MILANES V, SHLADOVRE S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
    [28] VANDERWERF J, SHLADOVRE S, KOURJANSKAIA N, et al. Modeling effects of driver control assistance systems on traffic[J]. Transportation Research Record, 2001(1748): 167-174.
    [29] SHLADOVRE S E, TAN S K. Analysis of vehicle positioning accuracy requirements for communication-based cooperative collision warning[J]. Journal of Intelligent Transportation Systems, 2007, 10(3): 131-140.
    [30] SHLADOVRE S E, DESOER C A, HEDRICK J K, et al. Automated vehicle control developments in the PATH program[J]. IEEE Transactions on Vehicular Technology, 1991, 40(1): 114-130.
    [31] NUS G J L, PLOEG J, MOLENGRAFT M J G V D, et al. Design and implementation of parameterized adaptive cruise control: an explicit model predictive control approach[J]. Control Engineering Practice, 2010, 18(8): 882-892.
    [32] NARANJO J E, GONZALEZ C, GARCIA R, et al. ACC+ stop and go maneuvers with throttle and brake fuzzy control [J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(2): 213-225.
    [33] GEIGER A, LAUER M, MOOSMANN F, et al. Team annieway's entry to the 2011 grand cooperative driving challenge [J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1008-1017.
    [34] MILANES V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 296-305.
    [35] NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: a frequency- domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279.
    [36] KIANFAR R, AUGUSTO B, EBADIGHAJARI A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 994-1007.
    [37] KESTING A, TREIBER M, SCHONHOF M, et al. Adaptive cruise control design for active congestion avoidance[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(6): 668-683.
    [38] NTOUSAKIS I A, NIKOLOS I K, PAPAGEORGIOU M. On microscopic modeling of adaptive cruise control systems[J]. Transportation Research Procedia, 2015, 6: 111-127.
    [39] VANDERWERF J, SHLADOVER S E, MILLER M A, et al. Effects of adaptive cruise control systems on highway traffic flow capacity[J]. Transportation Research Record, 2002(1800): 78-84.
    [40] VAN AREM B, VAN DRIEL C J G, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436.
    [41] ZOHDY I H, RAKHA H A. Enhancing roundabout operations via vehicle connectivity[J]. Transportation Research Record, 2013(2381): 91-100.
    [42] LU Xiao-yun, SHLADOVER S E, JAWAD I, et al. A novel speed-measurement based variable speed limit/advisory algorithm for a freeway corridor with multiple bottlenecks[C]∥TRB. 94th TRB Annual Conference. Washington DC: TRB, 2015: 1-16.
    [43] LEE J D, MCGEHEE D V, BROWN T L, et al. Effects of adaptive cruise control and alert modality on driver performance[J]. Transportation Research Record, 2006(1980): 49-56.
    [44] WANG J, RAJAMANI R. The impact of adaptive cruise control systems on highway safety and traffic flow[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(2): 111-130.
    [45] MOON S, MOON I, YI K. Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance[J]. Control Engineering Practice, 2009, 17(4): 442-455.
    [46] FARAH H, KOUTSOPOULOS H N. Do cooperative systems make drivers' car-following behavior safer?[J]. Transportation Research Part C: Emerging Technologies, 2014, 41: 61-72.
    [47] MILANES V, SHLADOVER S E. Handling cut-in vehicles in strings of cooperative adaptive cruise control vehicles[J]. Journal of Intelligent Transportation Systems, 2016, 20(2): 178-191.
    [48] NIEUWENHUIJZE M R I, KEULEN T V, ONCU S, et al. Cooperative driving with a heavy-duty truck in mixed traffic: Experimental results[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1026-1032.
    [49] GE J I, OROSZ G. Dynamics of connected vehicle systems with delayed acceleration feedback[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 46-64.
    [50] SCHAKEL W J, KNOOP V L, AREM B V. Integrated lane change model with relaxation and synchronization [J].Transportation Research Record, 2012(2316): 47-57.
    [51] WANG Meng, DAAMEN W, HOOGENDOORN S P, et al. Cooperative car-following control: distributed algorithm and impact on moving jam features[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1459-1471.
    [52] SAU J, MONTEIL J, BILLOT R, et al. The root locus method: application to linear stability analysis and design of cooperative car-following models[J]. Transportmetrica B: Transport Dynamics, 2014, 2(1): 60-82.
    [53] HOLLAND E N. A generalised stability criterion for motorway traffic[J]. Transportation Research Part B: Methodological, 1998, 32(2): 141-154.
    [54] WARD J A. Heterogeneity, lane-changing and instability in traffic: a mathematical approach[D]. Bristol: University of Bristol, 2009.
    [55] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163.
    [56] PUEBOOBPAPHAN R, AREM B V. Driver and vehicle characteristics and platoon and traffic flow stability: understanding the relationship for design and assessment of cooperative adaptive cruise control[J]. Transportation Research Record, 2010(2189): 89-97.
    [57] LEE J, PARK B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 81-90.
  • 加载中
计量
  • 文章访问数:  669
  • HTML全文浏览量:  27
  • PDF下载量:  1422
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-23
  • 刊出日期:  2017-08-05

目录

    /

    返回文章
    返回