Temperature-rising laws of drum brake pad for truck on long downgrades
-
摘要: 以福建省龙岩G319典型事故黑点中心坑路段和小池岭路段为试验路段, 设计了长下坡路段货车毂式制动器摩擦衬片温升规律实车试验方案。基于试验数据, 结合有限元方法, 分析了货车毂式制动器摩擦衬片在不同车辆载质量、制动方式和降温方式下的升温规律。试验结果表明: 下坡时制动器摩擦衬片温度随制动行为的实施呈波动式增长; 车辆总质量、摩擦衬片的使用性能和道路线形组合是影响摩擦衬片温度变化的重要因素; 采用发动机挂低档制动与淋水制动能有效地减缓摩擦衬片温度的增长, 实车制动行为与实际道路路况和线形组合关系密切, 简单状态下的制动器有限元温度场模拟结果与实车试验结果相差较大。Abstract: The Zhongxinkeng and Xiaochiling Sections on Longyan G319 of Fujian Province were chosen as test sections, which are typical accident black spots.The test plan with concrete vehicle was designd on long downgrades.Based on the finite element analysis about test data, the temperature-rising laws of brake pad under different conditions, such as different gross masses of truck, brake modes, cooling methods, were analyzed.The result indicates that when truck runs downhill, the temperature of the pad increases wavelike with the implementation of braking behavior.The gross mass, the functional performance of brake pad and road linetype combination are the key influence factors on the temperature change of brake pad.The temperature is decreased by engine brake at low gear and sprayed brake effectively.The braking behavior is closely related with road conditions and linetype combination.The simulation result of temperature field with finite element method in simple state is quite different from the result of vehicle test.
-
Key words:
- automobile engineering /
- vehicle test /
- long downgrade /
- drum brake /
- brake pad /
- temperature-rising law
-
表 1 货车基本参数
Table 1. Basic parameters of truck
柴油发动机型号 CA6DE1-21 (一汽) 车桥类型 前桥为CA151, 后桥为CA457 外形尺寸/mm 长、宽、高分别为6 404、2 464、2 990 整备质量/kg 12 400 轴距/mm 3 200+1 300 最高车速/ (km·h-1) 80 轮胎规格 10.00R20 摩擦衬片尺寸/mm 对前轮, 长、宽、厚分别为100、180、18 对后轮, 长、宽、厚分别为200、180、18 制动毂尺寸/mm 厚度为18, 直径为415 表 2 中心坑路段参数
Table 2. Parameters of Zhongxinkeng Road Section
变坡点序号 变坡点高程/m 里程桩号 平均坡度/% 坡长/m 1 695.09 K247+295 2 491.07 K250+990 -5.50 3 695 3 377.99 K255+047 -2.79 4 057 表 3 小池岭路段参数
Table 3. Parameters of Xiaochiling Road Section
变坡点序号 变坡点高程/m 里程桩号 平均坡度/% 坡长/m 1 676.43 K224+232 2 489.14 K220+597 -5.17 3 763 3 438.52 K218+708 -2.45 1 761 表 4 试验工况
Table 4. Test conditions
工况序号 试验地点 车辆总质量/kg 是否淋水制动下坡 下坡档位 前/后轮初始温度/℃ 环境温度/℃ 1 中心坑 12 400 否 6档 68/51 35 2 12 400 否 6档 100/77 35 3 12 400 否 6档 120/92 34 4 12 400 是 6档 160/92 33 5 12 400 是 6档 87/79 30 6 20 065 否 6档 69/56 35 7 20 065 是 6档 161/101 35 8 20 065 否 6档 183/93 36 9 30 960 否 4档 92/72 34 10 30 960 否 4档 134/97 28 11 30 960 是 4档 160/125 28 12 小池岭 12 400 否 7档 49/36 26 13 12 400 否 7档 125/62 34 表 5 制动毂外表面温度
Table 5. Temperatures of external surfaces of drum brakes
℃ 工况 位置 前轮 后轮 工况 位置 前轮 后轮 1 坡顶 57 33 8 坡顶 154 44 坡底 149 54 坡底 277 63 2 坡顶 87 45 9 坡顶 82 40 坡底 191 63 坡底 170 61 3 坡顶 107 45 10 坡顶 100 38 坡底 197 50 坡底 227 55 4 坡顶 137 39 11 坡顶 136 43 坡底 258 70 坡底 246 60 5 坡顶 76 35 12 坡顶 36 29 坡底 132 54 坡底 105 33 6 坡顶 60 39 13 坡顶 106 36 坡底 317 61 坡底 190 45 7 坡顶 119 50 坡底 198 65 注: 坡底温度测试时间与热电偶温度传感器坡底测试时间延迟量约为10 s。 -
[1] PI ARC Technical Committee on Road Safety (C13). RoadSafety Manual[M]. Paris: World Road Association, 2003. [2] 毛智东. 鼓式制动器的三维有限元模拟及分析[D]. 武汉: 华中科技大学, 2002.MAO Zhi-dong. 3-D Finite element si mulation analysis ondrumbrake[D]. Wuhan: Huazhong University of Scienceand Technology, 2002. (in Chinese) [3] 陈兴旺. 鼓式制动器制动温度场的研究[D]. 西安: 长安大学, 2006.CHEN Xin-wang. Study ontemperaturefield of drumbrake[D]. Xi an: Chang an University, 2006. (in Chinese) [4] 袁伟. 鼓式制动器温升计算模型及其应用研究[D]. 西安: 长安大学, 2003.YUAN Wei. Study on temperature rising model and applica-tion of drum brake[D]. Xi an: Chang an University, 2003. (in Chinese) [5] 张建军. 连续长大下坡路段避险车道设置原则研究[D]. 合肥: 合肥工业大学, 2005.ZHANGJian-jun. Study onthe principle of setting up emergencyescape ramps for continuous long and steep downgrades[D]. Hefei: Hefei University of Technology, 2005. (in Chinese) [6] 陈荫三, 余强, 马建, 等. 辅助制动实验研究[J]. 西安公路交通大学学报, 2000, 20 (2): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GYZD201105019.htmCHEN Yin-san, YU Qiang, MA Jian, et al. Experi mentresearch onsupplementary brake[J]. Journal of Xi an HighwayUniversity, 2000, 20 (2): 69-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYZD201105019.htm [7] 余强, 陈荫三, 马建, 等. 发动机制动、排气制动与缓速器联合作用时的非连续线性控制系统的研究[J]. 中国公路学报, 2005, 18 (1): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200501027.htmYU Qiang, CHEN Yin-san, MA Jian, et al. Study ofnon-continuous linear control systemof combining action withengine brake, exhaust brake and retarder[J]. China Journalof Highway and Transport, 2005, 18 (1): 117-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200501027.htm [8] 郭应时, 付锐, 杨鹏飞, 等. 鼓式制动器瞬态温度场数值模拟计算[J]. 长安大学学报: 自然科学版, 2006, 26 (3): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603023.htmGUO Ying-shi, FU Rui, YANG Peng-fei, et al. Numericalsi mulation and calculation for transient thermal field of drumbrake[J]. Journal of Chang an University: Natural ScienceEdition, 2006, 26 (3): 87-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603023.htm -
下载: