-
摘要: 为了进一步促进沥青微观组成结构的发展, 综述了国内外沥青化学组成、微观结构理论、数值模拟与试验研究方法; 介绍了沥青四组分物理化学性能, 蜡与杂原子对沥青微观结构的影响; 综合沥青胶体理论与改进的Yen模型对沥青微观结构进行了研究; 分析了沥青微观组成结构研究中常用的分子动力学与相场法; 总结了凝胶渗透色谱、红外光谱、小角散射技术、显微技术等方法在沥青微观结构的研究进展。研究结果表明: 沥青应被视为一个化学连续体, 沥青中各类分子的摩尔质量、氢碳比、极性等, 按饱和分、芳香分、胶质、沥青质的顺序递变, 主碳链大于C40的蜡可以视为沥青质组分, 沥青中的氧、氮、硫杂原子以特征官能团的形式存在于沥青质、胶质、芳香分等极性较强的组分中, 是沥青分子结构组成的关键参数之一, 也与沥青-集料的黏附性能密切相关; 沥青的胶体状态是沥青黏弹行为的微观结构基础, 改进的Yen模型可以对沥青胶体理论进一步解释, 即沥青质浓度低于纳米聚集体的临界浓度时, 沥青表现为溶胶结构, 当沥青质浓度逐渐高于纳米聚集体的临界浓度时, 沥青中出现团簇与絮凝, 沥青微观结构由溶胶结构向凝胶结构转变; 沥青微观结构中广泛采用的模拟方法包含分子动力学与相场法, 但2个模拟方法均对沥青的微观结构进行了一定程度简化, 以微观结构模拟为基础的沥青多尺度仿真方法仍面临着巨大的挑战; 结合沥青化学成分、沥青胶体理论与流变特征建立完整的力学本构关系将是沥青材料科学的重要发展方向之一。Abstract: To further promote the development of bitumen microstructures and components, the research progresses of bitumen chemical component, microstructure theory, simulation, and experimental methods were summarized. The physical and chemical properties of four components of bitumen, and the influence of wax and heteroatoms on bitumen microstructure were investigated. The bitumen microstructure was studied by combining bitument colloid theory and modified Yen model. The molecular dynamics and phase-field method commonly used in bitumen microstructure research were analyzed. The research progress of gel permeation chromatography, infrared spectroscopy, small angel scattering technology, microscopy technique in the study of bitumen microstructure was summarized. Research results show that bitumen should be regarded as a chemical continuum system. The molar mass, hydrogen to carbon ratio, and the polarity of molecules in bitumen gradually change in the order of saturate, aromatic, resin, and asphaltene. Waxes with a main carbon chain greater than C40 can be regarded as asphaltene components. The oxygen, nitrogen, and sulfur heteroatoms of bitumen exist in the form of characteristic functional groups in the polar components such as asphaltenes, resins, and aromatics, which are key parameters of bitumen molecular structure and are closely related to the adhesion properties of bitumen-aggregates. The colloidal state of bitumen is the microstructural basis of the viscoelastic behavior of asphalt. The modified Yen model can further explain the bitumen colloid theory. When asphaltene concentration is lower than the critical concentration of nano-aggregates, bitumen microstructure turns to the sol. When asphaltene concentration is gradually higher than the critical concentration of nano-aggregates, clusters and flocculation appear in bitumen, and bitumen microstructure changes from sol to gel. The molecular dynamics and phase-field method are widely used to simulate bitumen microstructure, but both two simulation methods simplify bitumen microstructure, there is still existing a huge challenge in the multi-scale simulation method based on microstructure simulation. One of the important development directions in bitumen material science is to combine bitumen chemical composition, bitumen colloid theory, and rheology characteristics to establish a complete mechanical constitutive relationship.
-
表 1 沥青四组分的化学组成
Table 1. Chemical compositions of four components of bitumen
组分 饱和分 芳香分 胶质 沥青质 形态 白色半透明液态 红色液态 黑色板状固体 黑色粉末状 密度/(g·cm-3) 0.90 1.00 1.07 1.15 质量百分比/% 3.0~19.1 22.4~46.6 23.2~52.7 4.0~22.9 摩尔质量/(g·mol-1) 600 800 1 100 800~3 500 溶度参数/MPa-0.5 15.0~17.0 17.0~18.5 18.5~20.0 17.6~21.7 氢碳比 2.00 / 1.38~1.69 1.15 碳元素百分比/% 78.0~85.6 80.0~87.3 67.0~88.0 80.0~88.6 氢元素百分比/% 12.0~14.4 9.0~13.0 9.0~12.0 7.1~10.0 氮元素百分比/% < 0.1 0~4.0 0.2~1.7 0.3~4.0 氧元素百分比/% < 0.1 2 0.3~2.0 1.0~2.7 硫元素百分比/% < 0.1 0~4 0.4~5.0 3.0~9.3 -
[1] MORTAZAVI M, MOULTHROP J S. The SHRP materials reference library[R]. Washington DC: National Research Council, 1993. [2] WIEHE I A, LIANG K S. Asphaltenes, resins, and other petroleum macromolecules[J]. Fluid Phase Equilibria, 1996, 117(1/2): 201-210. [3] LOEBER L, MULLER G, MOREL J, et al. Bitumen in colloid science: a chemical, structural and rheological approach[J]. Fuel, 1998, 77(13): 1443-1450. doi: 10.1016/S0016-2361(98)00054-4 [4] CORBETT L W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization[J]. Analytical Chemistry, 1969, 41(4): 576-580. doi: 10.1021/ac60273a004 [5] HINKLE A, SHIN E J, LIBERATORE M W, et al. Correlating the chemical and physical properties of a set of heavy oils from around the world[J]. Fuel, 2008, 87(13/14): 3065-3070. [6] HAO Jun-hui, CHE Yuan-jun, TIAN Yuan-yu, et al. Thermal cracking characteristics and kinetics of oil sand bitumen and its SARA fractions by TG-FTIR[J]. Energy and Fuels, 2017, 31: 1295-1309. doi: 10.1021/acs.energyfuels.6b02598 [7] SPEIGHT J G, MOSCHOPEDIS S E. On the molecular nature of petroleum asphaltenes[J]. Advances in Chemistry, 1982, 195: 1-15. [8] BRANTHAVER J F, PETERSEN J C, ROBERTSON R E, et al. Binder characterization and evaluation—volume 2: chemistry[R]. Washington DC: National Research Council, 1993. [9] 梁文杰, 阙国和, 陈月珠. 我国原油减压渣油的化学组成与结构Ⅱ: 减压渣油及其各组分的平均结构[J]. 石油学报(石油加工), 1991, 7(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG199104000.htmLIANG Wen-jie, QUE Guo-he, CHEN Yue-zhu. Chemical composition and structure of vacuum residues of Chinese crudesⅡ: average structure of vacuum residues and their fractions[J]. ACTA Petrolei Sinica (Petroleum Processing Section), 1991, 7(4): 1-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG199104000.htm [10] KOOTS J A, SPEIGHT J G. Relation of petroleum resins to asphaltenes[J]. Fuel, 1975, 54: 179-184. doi: 10.1016/0016-2361(75)90007-1 [11] SPEIGHT J G. Petroleum asphaltenes—part 1: asphaltenes, resins and the structure of petroleum[J]. Oil and Gas Science and Technology, 2004, 59(5): 467-477. doi: 10.2516/ogst:2004032 [12] MICHON L, MARTIN D, PLANCHE J P. Estimation of average structural parameters of bitumens by 13C nuclear magnetic resonance spectroscopy[J]. Fuel, 1997, 76(1): 9-15. doi: 10.1016/S0016-2361(96)00184-6 [13] MASSON J F, POLOMARK G M. Bitumen microstructure by modulated differential scanning calorimetry[J]. Thermochimica Acta, 2001, 374(2): 105-114. doi: 10.1016/S0040-6031(01)00478-6 [14] MASSON J F, POLOMARK G M, COLLINS P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry[J]. Energy and Fuels, 2002, 16: 470-476. doi: 10.1021/ef010233r [15] MASSON J F, LEBLOND V, MARGESON J. Bitumen morphologies by phase—detection atomic force microscopy[J]. Journal of Microscopy, 2006, 221: 17-29. doi: 10.1111/j.1365-2818.2006.01540.x [16] CLAUDY P, LETOFFE J M, KING G N, et al. Characterization of paving asphalts by differential scanning calorimetry[J]. Fuel Science and Technology International, 1991, 9(1): 71-92. doi: 10.1080/08843759108942254 [17] LESUEUR D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification[J]. Advances in Colloid and Interface Science, 2009, 145(1/2): 42-82. [18] REHAN M, NIZAMI A S, TAYLAN O, et al. Determination of wax content in crude oil[J] Petroleum Science and Technology, 2016, 34(9): 799-804. [19] LU Xiao-hu, KALMAN B, REDELIUS P. A new test method for determination of wax content in crude oils, residues and bitumens[J]. Fuel, 2008, 87(8/9): 1543-1551. [20] THANHN X, HSIEH M, PHILP R P. Waxes and asphaltenes in crude oils[J]. Organic Geochemistry, 1999, 30: 119-132. doi: 10.1016/S0146-6380(98)00208-3 [21] 刘洪安. 道路沥青降蜡改性与老化机理研究[D]. 青岛: 中国石油大学, 2012.LIU Hong-an. Study on wax-reducing modification and ageing of paving asphalt[D]. Qingdao: China University of Petroleum, 2012. (in Chinese). [22] 厉涛. 梳型共聚物与蜡、沥青质/胶质的组装行为对原油的流变性能的影响研究[D]. 上海: 华东理工大学, 2018.LI Tao. Assembly behaviours between comb-type copolymers and wax or asphaltene/resin toward the rheological effect on crude oils[D]. Shanghai: East China University of Science and Technology, 2018. (in Chinese). [23] EDWARDS Y, REDELIUS P. Rheological effects of waxes in bitumen[J]. Energy and Fuels, 2003, 17(3): 511-520. doi: 10.1021/ef020202b [24] EDWARDS Y, ISACSSON U. Wax in bitumen. Part 1—classifications and general aspects[J]. Road Material and Pavement Design, 2005, 6(3): 281-309. [25] EDWARDS Y, ISACSSON U. Wax in bitumen. Part 2—characterization and effects[J]. Road Material and Pavement Design, 2005, 6(4): 439-468. [26] 王瑞馨. 复合相变材料对沥青混凝土控温及路用性能研究[D]. 大连: 大连交通大学, 2018.WANG Rui-xin. Study on temperature control and pavement performance of composite phase change material for asphalt concrete[D]. Dalian: Dalian Jiaotong University, 2018. (in Chinese). [27] 何亮. 温拌橡胶沥青及混合料路用性能研究[D]. 南京: 东南大学, 2013.HE Liang. Research on road performance of warm mix asphalt rubber and its mixture[D]. Nanjing: Southeast University, 2013. (in Chinese). [28] ZHAO Xu, XU Chun-ming, QUAN Shi. Porphyrins in heavy petroleums: a review[J]. Structure and Modeling of Complex Petroleum Mixtures, 2015, 189: 1-32. [29] TURGMAN-COHEN S, SMITH M B, FISCHER D A, et al. Asphaltene adsorption onto self-assembled monolayers of mixed aromatic and aliphatic trichlorosilanes[J]. Langmuir, 2009, 25(11): 6260-6269. doi: 10.1021/la9000895 [30] JOUAULT N, CORVIS Y, COUSIN F, et al. Asphaltene adsorption mechanisms on the local scale probed by neutron reflectivity: transition from monolayer to multilayer growth above the flocculation threshold[J]. Langmuir, 2009, 25(7): 3991-3998. doi: 10.1021/la8027447 [31] GONZALEZ M F, STULL C S, LOPEZ-LINARES F, et al. Comparing asphaltene adsorption with model heavy molecules over macroporous solid surfaces[J]. Energy and Fuels, 2007, 21(1): 234-241. doi: 10.1021/ef060196+ [32] AGGARWAL V, CHIEN Y Y, TEPPEN B J. Molecular simulations to estimate thermodynamics for adsorption of polar organic solutes to montmorillonite[J]. European Journal of Soil Science, 2007, 58: 945-957. doi: 10.1111/j.1365-2389.2007.00939.x [33] SKARTLIEN R, SIMON S, SJÖBLOM J. DPD molecular simulations of asphaltene adsorption on hydrophilic substrates: effects of polar groups and solubility[J]. Journal of Dispersion Science and Technology, 2016, 37(6): 866-883. doi: 10.1080/01932691.2015.1066259 [34] WU Guo-Zhong, HE Lin, CHEN Dao-yi. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: molecular dynamic simulation[J]. Chemosphere, 2013, 92(11): 1465-1471. doi: 10.1016/j.chemosphere.2013.03.057 [35] XIONG Yong, LI Zhen, CAI Tian-tian, et al. Synergistic adsorption of polyaromatic compounds on silica surfaces studied by molecular dynamics simulation[J]. Journal of Physical Chemistry, 2018, 122: 4290-4299. [36] LI Xin-gang, BAI Yun, SUI Hong, et al. Understanding the liberation of asphaltenes on muscovite surface[J]. Energy and Fuels, 2017, 31(2): 1174-1181. doi: 10.1021/acs.energyfuels.6b02278 [37] LI Xin-gang, BAI Yun, SUI Hong, et al. Understanding desorption of oil fractions from mineral surfaces[J]. Fuel, 2018, 232: 257-266. doi: 10.1016/j.fuel.2018.05.112 [38] BAI Yun, SUI Hong, LIU Xiao-yan, et al. Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: a molecular dynamics simulation[J]. Fuel, 2019, 240: 252-261. doi: 10.1016/j.fuel.2018.11.135 [39] SODERO A C R, SANTOS-SILVA H, LEVEL P G, et al. Investigation of the effect of sulfur heteroatom on asphaltene aggregation[J]. Energy and Fuels, 2016, 30(6): 4758-4766. doi: 10.1021/acs.energyfuels.6b00757 [40] SANTOS-SILVA H, SODERO A C R, BOUYSSIERE B, et al. Molecular dynamics study of nanoaggregation in asphaltene mixtures: effects of the N, O, and S heteroatoms[J]. Energy and Fuels, 2016, 30: 5656-5664. doi: 10.1021/acs.energyfuels.6b01170 [41] XIONG Yong, CAO Tian-tian, CHEN Qian, et al. Adsorption of a polyaromatic compound on silica surfaces from organic solvents studied by molecular dynamics simulation and AFM imaging[J]. Journal of Physical Chemistry, 2017, 121: 5020-5028. [42] MACK C. Colloidal chemistry of asphalts[J]. Journal of Physical Chemistry, 1932, 36(12): 2901-2914. doi: 10.1021/j150342a005 [43] PFEIFFER J P, SAAL R N J. Asphaltic bitumen as colloidal system[J]. Journal of Physical Chemistry, 1940, 44(2): 139-149. doi: 10.1021/j150398a001 [44] BEHNOOD A, GHAREHVERAN M M. Morphology, rheology and physical properties of polymer-modified asphalt binders[J]. European Polymer Journal, 2019, 112: 766-791. doi: 10.1016/j.eurpolymj.2018.10.049 [45] SAAL R N J, LABOUT J W A. Rheological properties of asphaltic bitumens[J]. Journal of Physical Chemistry, 1940, 40(2): 149-165. [46] DWIGGINS C W. A small angle X-ray scattering study of the colloidal nature of petroleum[J]. Journal of Physical Chemistry, 1965, 69(10): 3500-3506. doi: 10.1021/j100894a041 [47] RAVEY J C, DUCOURET G, ESPINAT D. Asphaltene macrostructure by small angle neutron scattering[J]. Fuel, 1988, 67: 1560-1567. doi: 10.1016/0016-2361(88)90076-2 [48] OVERFIELD R E, SHEU E Y, SINHA S K, et al. Sans study of asphaltene aggregation[J]. Fuel Science and Technology International, 1989, 7(5/6): 611-624. [49] BARDON C, BARRE L, ESPINAT D, et al. The colloidal structure of crude oils and suspensions of asphaltenes and resins[J]. Fuel Science and Technology International, 1996, 14(1/2): 203-242. [50] TANAKA R, SATO E, HUNT J E, et al. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering[J]. Energy and Fuels, 2004, 18(4): 1118-1125. doi: 10.1021/ef034082z [51] MASON T G, LIN M Y. Asphaltene nanoparticle aggregation in mixtures of incompatible crude oils[J]. Physical Review E, 2003, 67: 050401-1-4. [52] YEN F T. The colloidal aspect of a macrostructure of petroleum asphalt[J]. Fuel Science and Technology International, 1992, 10(4-6): 723-733. doi: 10.1080/08843759208916018 [53] SHAN Li-yan, XIE Ru, WAGNER N J, et al. Microstructure of neat and SBS modified asphalt binder by small-angle neutron scattering[J]. Fuel, 2019, 253: 1589-1596. doi: 10.1016/j.fuel.2019.05.087 [54] MOHD HASAN M R, CHEW J W, JAMSHIDI A, et al. Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(3): 209-244. doi: 10.1016/j.jtte.2018.08.001 [55] LESUEUR D, GÉRARD J F, CLAUDY P. A structure-related model to describe asphalt linear viscoelasticity[J]. Journal of Rheology, 1996, 40(5): 813-836. doi: 10.1122/1.550764 [56] DICKIE J P, YEN T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. doi: 10.1021/ac50157a057 [57] MULLINS O C. The modified Yen model[J]. Energy and Fuels, 2010, 24(4): 2179-2207. doi: 10.1021/ef900975e [58] BARRÉ L, JESTIN J, MORISSET A, et al. Relation between nanoscale structure of asphaltene aggregates and their macroscopic solution properties[J]. Oil and Gas Science and Technology, 2009, 64(5): 617-628. doi: 10.2516/ogst/2009022 [59] LI D D, GREENFIELD M L. High internal energies of proposed asphaltene structures[J]. Energy and Fuels, 2011, 25(8): 3698-3705. doi: 10.1021/ef200507c [60] LI D D, GREENFIELD M L. Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules[J]. Journal of Chemical Physics, 2014, 140: 034507-1-10. [61] ZHANG Li-qun, GREENFIELD M L. Molecular orientation in model asphalts using molecular simulation[J]. Energy and Fuels, 2007, 21(2): 1102-1111. doi: 10.1021/ef060449z [62] ZHANG Li-qun, GREENFIELD M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. Journal of Chemical Physics, 2007, 127(19): 194502-1-13. [63] ZHANG Li-qun, GREENFIELD M L. Analyzing properties of model asphalts using molecular simulation[J]. Energy and Fuels, 2007, 21(3): 1712-1716. doi: 10.1021/ef060658j [64] ZHANG Li-qun, GREENFIELD M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy and Fuels, 2008, 22(5): 3363-3375. doi: 10.1021/ef700699p [65] ZHANG Li-qun, GREENFIELD M L. Rotational relaxation times of individual compounds within simulations of molecular asphalt models[J]. Journal of Chemical Physics, 2010, 132: 184502-1-10. [66] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115(1): 347-356. [67] BHASIN A, BOMMAVARAM R, GREENFIELD M L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. doi: 10.1061/(ASCE)MT.1943-5533.0000200 [68] 许勐. 基于分子动力学模拟的沥青再生剂扩散机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2015.XU Meng. Analysis of the diffusion of rejuvenator into asphalt based on the molecular dynamic simulation[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese). [69] XU Guang-ji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169. doi: 10.1016/j.commatsci.2015.10.024 [70] XU G, WANG H. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. doi: 10.1016/j.conbuildmat.2016.05.167 [71] HE Liang, LI Guan-nan, LYU Song-tao, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119-225. [72] DING Yong-Jie, TANG Bo-ming, ZHANG Yu-zhen, et al. Molecular dynamics simulation to investigate the influence of SBS on molecular agglomeration behavior of asphalt[J]. Journal of Materials in Civil Engineering, 2015, 27(8): C4014004-1-7. [73] XU Guang-ji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. doi: 10.1016/j.fuel.2016.10.021 [74] WANG Peng, DONG Ze-jiao, TAN Yi-qiu, et al. Effect of multi-walled carbon nanotubes on the performance of styrene-butadiene-styrene copolymer modified asphalt[J]. Materials and Structures, 2017, 50(1): 1-11. doi: 10.1617/s11527-016-0885-6 [75] WANG Peng, ZHAI Fei, DONG Ze-jiao, et al. Micromorphology of asphalt modified by polymer and carbon nanotubes through molecular dynamics simulation and experiments: role of strengthened interfacial interactions[J]. Energy and Fuels, 2018, 32(2): 1179-1187. doi: 10.1021/acs.energyfuels.7b02909 [76] ZHOU Xin-xing, ZHAO Guang-yuan, TIGHE S, et al. Quantitative comparison of surface and interface adhesive properties of fine aggregate asphalt mixtures composed of basalt, steel slag, and andesite[J]. Construction and Building Materials, 2020, 246: 118507-1-12. [77] SUN Wei, WANG Hao. Moisture effect on nanostructure and adhesion energy of asphalt on aggregate surface: a molecular dynamics study[J]. Applied Surface Science, 2020, 510: 145435-1-11. [78] 颜子敏. 结合相场法的热-力-扩散耦合理论研究[D]. 重庆: 重庆大学, 2018.YAN Zi-min. Research of thermal-elastic-diffusion theory combine with phase field method[D]. Chonqing: Chongqing University, 2018. (in Chinese). [79] KIM J. Phase-field models for multi-component fluid flows[J]. Communications in Computational Physics, 2012, 12(3): 613-661. doi: 10.4208/cicp.301110.040811a [80] KRINGOS N, SCHMETS A S, PAULI T. Towards an understanding of the self-healing capacity of asphaltic mixtures[J]. Heron, 2011, 56(1): 45-74. [81] HOU Yue, SUN Wen-juan, DAS P, et al. Coupled navier-stokes phase-field model to evaluate the microscopic phase separation in asphalt binder under thermal loading[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016100-1-8. [82] HOU Yue, WANG Lin-bing, WANG Da-wei, et al. Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation[J]. Materials, 2017, 10(2): 1-16. [83] HOU Yue, WANG Lin-bing, PAULI T, et al. Investigation of the asphalt self-healing mechanism using a phase-field model[J]. Journal of Materials in Civil Engineering, 2014, 27(3): 1-28. [84] 梁明. 聚合物改性沥青多相体系的流变学和形态学研究[D]. 青岛: 中国石油大学(华东), 2017.LIANG Ming. Rheology and morphology for the heterogeneous system of polymer modified asphalt[D]. Qingdao: China University of Petroleum (East China), 2017. (in Chinese). [85] LIANG Ming, XIN Xue, FAN Wei-yu, et al. Phase field simulation and microscopic observation of phase separation and thermal stability of polymer modified asphalt[J]. Construction and Building Materials, 2019, 204: 132-143. doi: 10.1016/j.conbuildmat.2019.01.180 [86] FALLAH F, KHABAZ F, KIM Y R, et al. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction[J]. Fuel, 2019, 237: 71-80. doi: 10.1016/j.fuel.2018.09.110 [87] KIM K W, KIM K, DOH Y S, et al. Estimation of RAPs binder viscosity using GPC without binder recovery[J]. Journal of Materials in Civil Engineering, 2006, 18(4): 561-567. doi: 10.1061/(ASCE)0899-1561(2006)18:4(561) [88] JENNINGS W. Prediction of asphalt performance by HP-GPC(with discussion)[R]. St Paul: Association of Asphalt Paving Technologists, 1985. [89] 杨震, 张肖宁, 虞将苗, 等. 基质沥青老化前后多尺度特性研究[J]. 建筑材料学报, 2018, 21(3): 420-425. doi: 10.3969/j.issn.1007-9629.2018.03.012YANG Zhen, ZHANG Xiao-ning, YU Jiang-miao, et al. Study on multi-scale characteristics of matrix asphalt before and after aging[J]. Journal of Building Materials, 2018, 21(3): 420-425. (in Chinese). doi: 10.3969/j.issn.1007-9629.2018.03.012 [90] MOSCHOPEDIS S E, SPEIGHT J G. The effect of air blowing on the properties and constitution of a natural bitumen[J]. Journal of Materials Science, 1977, 12: 990-998. doi: 10.1007/BF00540983 [91] BAEK S H, KIM H H, DOH Y S, et al. Estimation of high-temperature properties of rubberized asphalt using chromatograph[J]. KSCE Journal of Civil Engineering, 2009, 13(3): 161-167. doi: 10.1007/s12205-009-0161-1 [92] HOU Xiang-dao, LYU Song-tao, CHEN Zheng, et al. Applications of fourier transform infrared spectroscopy technologies on asphalt materials[J]. Measurement, 2018, 121: 304-316. doi: 10.1016/j.measurement.2018.03.001 [93] LIU Hong-ying, HAO Pei-wen, WANG Hai-nian, et al. Effects of physio-chemical factors on asphalt aging behavior[J]. Journal of Materials in Civil Engineering, 2014, 26(1): 190-197. doi: 10.1061/(ASCE)MT.1943-5533.0000786 [94] LU Xiao-hu, ISACSSON U. Effect of ageing on bitumen chemistry and rheology[J]. Construction and Building Materials, 2002, 16: 15-22. doi: 10.1016/S0950-0618(01)00033-2 [95] PETERSEN J C, GLASER R. Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited[J]. Road Materials and Pavement Design, 2011, 12(4): 795-819. doi: 10.1080/14680629.2011.9713895 [96] GUNDLA A. Understanding viscoelastic behavior of asphalt binders through molecular structure investigation[D]. Phoenix: Arizona State University, 2018. [97] HUNG A M, FINI E H. Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes[J]. Fuel, 2019, 242: 408-415. doi: 10.1016/j.fuel.2019.01.085 [98] ZHAO Yong-li, GU Fan, XU Jing, et al. Analysis of aging mechanism of SBS polymer modified asphalt based on Fourier transform infrared spectrum[J]. Journal of Wuhan University of Technology-Mater, 2010, 25(6): 1047-1052. doi: 10.1007/s11595-010-0147-3 [99] KARLSSON R, ISACSSON U. Application of FTIR-ATR to characterization of bitumen rejuvenator diffusion[J]. Journal of Materials in Civil Engineering, 2003, 15(2): 157-165. doi: 10.1061/(ASCE)0899-1561(2003)15:2(157) [100] TANG Nai-peng, HUANG Wei-dong, XIAO Fei-peng. Chemical and rheological investigation of high-cured crumb rubber-modified asphalt[J]. Construction and Building Materials, 2016, 123: 847-854. doi: 10.1016/j.conbuildmat.2016.07.131 [101] PUTMAN B J, AMIRKHANIAN S N. Characterization of the interaction effect of crumb rubber modified binders using HP-GPC[J]. Journal of Materials in Civil Engineering, 2010, 22(2): 153-159. doi: 10.1061/(ASCE)0899-1561(2010)22:2(153) [102] 韩晶晶, 储祥蔷. 利用中子散射探索生命世界中的物理奥秘[J]. 物理, 2019, 48(12): 780-789. doi: 10.7693/wl20191202HAN Jing-jing, CHU Xiang-qiang. Using neutron scattering to explore the mysteries in biophysical sciences[J]. Physics, 2019, 48(12): 780-789. (in Chinese). doi: 10.7693/wl20191202 [103] KOSHARI S. Characterization of lysozyme adsorption in cellulosic chromatographic materials using small-angle neutron scattering[D]. Newark: University of Delaware, 2014. [104] LOPEZ-BARRON C R, LI Dong-cui, WAGNER J, et al. Triblock copolymer self-assembly in ionic liquids: effect of PEO block length on the self-assembly of PEO-PPO-PEO in Ethylammonium Nitrate[J]. Macromolecules, 2014, 47(21): 7484-7495. doi: 10.1021/ma501238w [105] STORM D A, SHEU E Y. Characterization of colloidal asphaltenic particles in heavy oil[J]. Fuel, 1995, 74(8): 1140-1145. doi: 10.1016/0016-2361(95)00062-A [106] LIU Y C, SHEU E Y, CHEN S H, et al. Fractal structure of asphaltenes in toluene[J]. Fuel, 1995, 74(9): 1352-1356. doi: 10.1016/0016-2361(95)00098-P [107] EYSSAUTIER J, LEVITZ P, ESPINAT D, et al. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering[J]. Journal of Physical Chemistry B, 2011, 115(21): 6827-6837. doi: 10.1021/jp111468d [108] SCHMETS A, KRINGOS N, PAULI T, et al. On the existence of wax-induced phase separation in bitumen[J]. International Journal of Pavement Engineering, 2010, 11(6): 555-563. doi: 10.1080/10298436.2010.488730 [109] HUANG Bao-shan, ZHANG Yang, SHU Xiang, et al. Neutron scattering for moisture detection in foamed asphalt[J]. Journal of Materials in Civil Engineering, 2013, 25(7): 932-938. doi: 10.1061/(ASCE)MT.1943-5533.0000762 [110] 鲍幸峰, 方积年. 原子力显微镜在生物大分子结构研究中的应用进展[J]. 分析化学, 2000, 28(10): 1300-1307. doi: 10.3321/j.issn:0253-3820.2000.10.028BAO Xing-feng, FANG Ji-nian. The advances of applications in studying the structures of biological macromolecules by atomic force microscopy[J]. Chinese Journal of Analytical Chemistry, 2000, 28(10): 1300-1307. (in Chinese). doi: 10.3321/j.issn:0253-3820.2000.10.028 [111] CARBOGNANI L, DELIMA L, OREA M, et al. Studies on large crude oil alkanes. Ⅱ: Isolation and characterization of aromatic waxes and waxy asphaltenes[J]. Petroleum Science and Technology, 2000, 18(5/6): 607-634. [112] PAULI A T, GRIMES R W, BEEMER A G, et al. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy[J]. International Journal of Pavement Engineering, 2011, 12(4): 291-309. doi: 10.1080/10298436.2011.575942 [113] LOEBER L, SUTTON O, MOREL J, et al. New direct observations of asphalts and asphalt binder by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39. doi: 10.1046/j.1365-2818.1996.134416.x [114] REBELO L M, DE SOUSA J S, ABREU A S, et al. Aging of asphaltic binders investigated with atomic force microscopy[J]. Fuel, 2014, 117: 15-25. doi: 10.1016/j.fuel.2013.09.018 [115] SOENEN H, BESAMUSCA J, FISCHER H R, et al. Laboratory investigation of bitumen based on round robin DSC and AFM tests[J]. Materials and Structures, 2014, 47(7): 1205-1220. doi: 10.1617/s11527-013-0123-4 [116] YU Xiao-kong, BURNHAM N A, TAO Ming-jiang. Surface microstructure of bitumen characterized by atomic force microscopy[J]. Advances in Colloid and Interface Science, 2015, 218: 17-33. doi: 10.1016/j.cis.2015.01.003 [117] ZHANG H L, WANG H C, YU J Y. Effect of aging on morphology of organo-montmorillonite modified bitumen by atomic force microscopy[J]. Journal of Microscopy, 2011, 242: 37-45. doi: 10.1111/j.1365-2818.2010.03435.x [118] HOFKO B, EBERHARDSTEINER L, FUSSL J, et al. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen[J]. Materials and Structures, 2015, 49(3): 829-841. [119] LU Xiao-hu, LANGTON M, OLOFSSON P, et al. Wax morphology in bitumen[J]. Journal of Materials Science, 2005, 40(8): 1893-1900. doi: 10.1007/s10853-005-1208-4 [120] DEMORAES M B, PEREIRA R B, SIMAO R A, et al. High temperature AFM study of CAP 30/45 pen grade bitumen[J]. Journal of Microscopy, 2010, 239(1): 46-53. doi: 10.1111/j.1365-2818.2009.03354.x [121] YU Xiao-kong, BURNHAM N A, TAO Ming-jiang. Surface microstructure of bitumen characterized by atomic force microscopy[J]. Advances in Colloid and Interface Science, 2015, 218: 17-33. doi: 10.1016/j.cis.2015.01.003 [122] LU Xiao-hu, REDELIUS P. Compositional and structural characterization of waxes isolated from bitumens[J]. Energy and Fuels, 2006, 20(2): 653-660. doi: 10.1021/ef0503414 [123] XING Cheng-wei, LIU Li-ping, CUI Yi, et al. Analysis of base bitumen chemical composition and aging behaviors via atomic force microscopy-based infrared spectroscopy[J]. Fuel, 2020, 264: 116845-1-12. [124] DOURADO E R, SIMAO R A, LEITE L F M. Mechanical properties of asphalt binders evaluated by atomic force microscopy[J]. Journal of Microscopy, 2012, 245(2): 119-128. doi: 10.1111/j.1365-2818.2011.03552.x [125] LYNE A L, WALLQVIST V, BIRGISSON B. Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy[J]. Fuel, 2013, 113: 248-256. doi: 10.1016/j.fuel.2013.05.042 [126] ALLEN R G, LITTLE D N, BHASIN A. Structural characterization of micromechanical properties in asphalt using atomic force microscopy[J]. Journal of Materials in Civil Engineering, 2012, 24(10): 1317-1327. doi: 10.1061/(ASCE)MT.1943-5533.0000510 [127] ALLEN R G, LITTLE D N, BHASIN A, et al. The effects of chemical composition on asphalt microstructure and their association to pavement performance[J]. International Journal of Pavement Engineering, 2014, 15(1): 9-22. doi: 10.1080/10298436.2013.836192 [128] MASSON J F, LEBLOND V, MARGESON J, et al. Low-temperature bitumen stiffness and viscous paraffinic nano- and micro-domains by cryogenic AFM and PDM[J]. Journal of Microscopy, 2007, 227(3): 191-202. doi: 10.1111/j.1365-2818.2007.01796.x [129] 朱琳. 扫描电子显微镜及其在材料科学中的应用[J]. 吉林化工学院学报, 2007, 24(2): 81-84, 92. doi: 10.3969/j.issn.1007-2853.2007.02.024ZHU Lin. SEM and its application in material science[J]. Journal of Jilin Institute of Chemical Technology, 2007, 24(2): 81-84, 92. (in Chinese). doi: 10.3969/j.issn.1007-2853.2007.02.024 [130] 李剑平. 扫描电子显微镜对样品的要求及样品的制备[J]. 分析测试技术与仪器, 2007, 13(1): 74-77. doi: 10.3969/j.issn.1006-3757.2007.01.017LI Jian-ping. Requirements and preparation of scanning electron microscope sample[J]. Analysis and Testing Technology and Instruments, 2007, 13(1): 74-77. (in Chinese). doi: 10.3969/j.issn.1006-3757.2007.01.017 [131] CHEN J S, LIN K Y. Mechanism and behavior of bitumen strength reinforcement using fibers[J]. Journal of Materials Science, 2005, 40(1): 87-95. doi: 10.1007/s10853-005-5691-4 [132] GASKIN J. Onbitumen microstructure and the effects of crack healing[D]. Nottingham: University of Nottingham, 2013. [133] CHEN J S, LIAO M C, TSAI H H. Evaluation and optimization of the engineering properties of polymer-modified asphalt[J]. Journal of Failure Analysis and Prevention, 2002, 2(3): 75-83. [134] KHATTAK M J, BALADI G Y, DRZAL L T. Low temperature binder-aggregate adhesion and mechanistic characteristics of polymer modified asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(5): 411-422. doi: 10.1061/(ASCE)0899-1561(2007)19:5(411) [135] SINGH B, KUMAR L, GUPTA M, et al. Effect of activated crumb rubber on the properties of crumb rubber-modified bitumen[J]. Journal of Applied Polymer Science, 2013, 129(5): 2821-2831. doi: 10.1002/app.38991 [136] KUMAR S, AGRAWAL K M, FISCHER P. Identification of acyclic isoprenoid hydrocarbons in wax derived from tank bottom sludge[J]. Energy and Fuels, 2004, 18(5): 1588-1594. doi: 10.1021/ef034027q [137] KANE M, DJABOUROV M, VOLLE J L, et al. Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow[J]. Fuel, 2003, 82: 127-135. doi: 10.1016/S0016-2361(02)00222-3 [138] YEN T F, GORDON ERDMAN J, POLLACK S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Analytical Chemistry, 1961, 33(11): 1587-1594. doi: 10.1021/ac60179a039 [139] SWANSON J M. A contribution to the physical chemistry of the asphalts[J]. The Journal of Physical Chemistry, 1941, 46(1): 141-150. [140] MURGICH J, RODRIGUEZ M J, ARAY Y. Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins[J]. Energy and Fuels, 1996, 10: 68-76. doi: 10.1021/ef950112p [141] FISCHER H R, CERNESCU A. Relation of chemical composition to asphalt microstructure—details and properties of micro-structures in bitumen as seen by thermal and friction force microscopy and by scanning near-filed optical microscopy[J]. Fuel, 2015, 153: 628-633. doi: 10.1016/j.fuel.2015.03.043 [142] 于双林. 渣油加氢体系胶体性质的研究[D]. 北京: 中国石油大学, 2010.YU Shuang-lin. Study on the colloidal properties of residue hydroprocessing system[D]. Beijing: China University of Petroleum, 2010. (in Chinese). [143] CHEN J S, LIAO M C, LIN C H. Determination of polymer content in modified bitumen[J]. Materials and Structures, 2003, 36: 594-598. doi: 10.1007/BF02483278 [144] WANG Lan, XING Yong-ming, CHANG Chun-qing. Microscopic and dynamic rheological characteristics of crumb rubber modified asphalt[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2010, 25(6): 1022-1027. doi: 10.1007/s11595-010-0142-8 [145] VENKATRAMAYYA V, VINAYAKA RAM V, KRISHNAIAH S, et al. Performance of VG30 paving grade bitumen modified with polyphosphoric acid at medium and high temperature regimes[J]. Construction and Building Materials, 2016, 105: 157-164. doi: 10.1016/j.conbuildmat.2015.12.021 [146] WANG Shi-feng, WANG Qiang, WU Xiao-yu, et al. Asphalt modified by thermoplastic elastomer based on recycled rubber[J]. Construction and Building Materials, 2015, 93: 678-684. doi: 10.1016/j.conbuildmat.2015.06.047 [147] MOKHTARI A, DAVID LEE H, WILLIAMS R C, et al. A novel approach to evaluate fracture surfaces of aged and rejuvenator-restored asphalt using cryo-SEM and image analysis techniques[J]. Construction and Building Materials, 2017, 133: 301-313. doi: 10.1016/j.conbuildmat.2016.12.075 [148] YAO Hui, YOU Zhan-ping, LI Liang, et al. Rheological properties and chemical bonding of asphalt modified with Nanosilica[J]. Journal of Materials in Civil Engineering, 2013, 25: 1619-1630. doi: 10.1061/(ASCE)MT.1943-5533.0000690 [149] SHEN Shi-hui, LU Xin, LIU Li-ping, et al. Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels[J]. Construction and Building Materials, 2016, 126: 197-205. doi: 10.1016/j.conbuildmat.2016.08.107 [150] MORRISON G R, HESP S A M. A new look at rubber-modified asphalt binders[J]. Journal of Materials Science, 1995, 30(10): 2584-2590. doi: 10.1007/BF00362138 [151] ROZEVELD S J, EUGENE SHIN E, BHURKE A, et al. Network morphology of straight and polymer modified asphalt cements[J]. Microscopy Research and Technique, 1997, 38: 529-543. doi: 10.1002/(SICI)1097-0029(19970901)38:5<529::AID-JEMT11>3.0.CO;2-O [152] KHATTAK M J, BALADI G Y, DRZAL L Y. Binder rheology, morphology and adhesion effects on asphalt mixtures[J]. Geotechnical Engineering for Transportation Projects, 2004(126): 925-937. [153] LIU Hong-ying, CHEN Zhi-jun, WANG Hai-nian, et al, Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive[J]. Construction and Building Materials, 2014, 67: 225-233. doi: 10.1016/j.conbuildmat.2013.11.031 [154] SOBOLEV K, VIVIAN I F, SAHA R, et al. The effect of fly ash on the rheological properties of bituminous materials[J]. Fuel, 2014, 116: 471-477. doi: 10.1016/j.fuel.2013.07.123 [155] YAO Hui, YOU Zhan-ping, LI Liang, et al. Performance of asphalt binder blended with non-modified and polymer-modified nanoclay[J]. Construction and Building Materials, 2012, 35: 159-170. doi: 10.1016/j.conbuildmat.2012.02.056 [156] WANG Ying-yuan, SU Jun-feng, SCHLANGEN E, et al. Fabrication and characterization of self-healing microcapsules containing bituminous rejuvenator by a nano-inorganic/organic hybrid method[J]. Construction and Building Materials, 2016, 121: 471-482. doi: 10.1016/j.conbuildmat.2016.06.021 [157] YANG Peng, HAN Shan, SU Jun-feng, et al. Design of self-healing microcapsules containing bituminous rejuvenator with nano-CaCO3/organic composite shell: mechanical properties, thermal stability, and compactability[J]. Polymer Composites, 2018, 39: 1441-1451. doi: 10.1002/pc.24343 [158] FINI E H, HAJIKARIMI P, RAHI M, et al. Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles[J]. Journal of Materials in Civil Engineering, 2016, 28(2): 04015133-1-9. [159] FANG Chang-qing, YU Xin, YU Rui-ren, et al. Preparation and properties of isocyanate and nano particles composite modified asphalt[J]. Construction and Building Materials, 2016, 119: 113-118. doi: 10.1016/j.conbuildmat.2016.04.099 [160] ZHANG Hong-liang, SU Man-man, ZHAO Shi-feng, et al. High and low temperature properties of nano-particles/polymer modified asphalt[J]. Construction and Building Materials, 2016, 114: 323-332. doi: 10.1016/j.conbuildmat.2016.03.118 [161] 孙俊. 外场作用下材料表/界面结构演变的原位透射电子显微学研究[D]. 南京: 东南大学, 2017.SUN Jun. In situ transmission electron microscopy study on the structural evolution of materials surface/interaface under external field[D]. Nanjing: Southeast University, 2017. (in Chinese). [162] LI Sheng-hua, LIU Chen-guang, QUE Guo-he, et al. Colloidal structures of vacuum residua and their thermal stability in terms of saturate, aromatic, resin and asphaltene composition[J]. Journal of Petroleum Science and Engineering, 1999, 22(1-3): 37-45. doi: 10.1016/S0920-4105(98)00055-2 [163] LI Sheng-hua, LIU Chen-guang, QUE Guo-he, et al. Colloidal structures of three Chinese petroleum vacuum residues[J]. Fuel, 1996, 75(8): 1025-1029. doi: 10.1016/0016-2361(95)00315-0 [164] WANG Yu-hong, ZHANG Ke-cheng. Different forms of asphaltene microstructures discovered in transmission electron microscopy[J]. Journal of Materials in Civil Engineering, 2016, 28(11): 04016137-1-12.