留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UHPC局部受压承载力计算方法

邱明红 邵旭东 刘琼伟 晏班夫 李盼盼 黄中林

邱明红, 邵旭东, 刘琼伟, 晏班夫, 李盼盼, 黄中林. UHPC局部受压承载力计算方法[J]. 交通运输工程学报, 2021, 21(4): 116-129. doi: 10.19818/j.cnki.1671-1637.2021.04.008
引用本文: 邱明红, 邵旭东, 刘琼伟, 晏班夫, 李盼盼, 黄中林. UHPC局部受压承载力计算方法[J]. 交通运输工程学报, 2021, 21(4): 116-129. doi: 10.19818/j.cnki.1671-1637.2021.04.008
QIU Ming-hong, SHAO Xu-dong, LIU Qiong-wei, YAN Ban-fu, LI Pan-pan, HUANG Zhong-lin. Calculation method of UHPC local compressive bearing capacity[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 116-129. doi: 10.19818/j.cnki.1671-1637.2021.04.008
Citation: QIU Ming-hong, SHAO Xu-dong, LIU Qiong-wei, YAN Ban-fu, LI Pan-pan, HUANG Zhong-lin. Calculation method of UHPC local compressive bearing capacity[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 116-129. doi: 10.19818/j.cnki.1671-1637.2021.04.008

UHPC局部受压承载力计算方法

doi: 10.19818/j.cnki.1671-1637.2021.04.008
基金项目: 

国家重点研发计划项目 2018YFC0705400

国家自然科学基金项目 51778223

国家自然科学基金项目 52038003

详细信息
    作者简介:

    邱明红(1992-),男,广东乐昌人,湖南大学工学博士研究生,从事UHPC桥梁结构设计理论与工程应用研究

    邵旭东(1961-),男,浙江富阳人,湖南大学教授,工学博士

  • 中图分类号: U442.5

Calculation method of UHPC local compressive bearing capacity

Funds: 

National Key Research and Development Program of China 2018YFC0705400

National Natural Science Foundation of China 51778223

National Natural Science Foundation of China 52038003

More Information
  • 摘要: 为合理地计算UHPC构件的局部受压承载力,建立了有、无间接钢筋UHPC的局部受压试验数据库,以此为基础分析和评估了NF P 18-710、CECS 38:2004、DBJ 43/T 325—2017和JTG 3362—2018中的局部受压承载力计算公式;基于UHPC局部受压试验数据库提出了考虑混凝土强度和钢纤维影响的UHPC局部承压修正系数和间接钢筋影响系数,进而修正了JTG 3362—2018的局部受压承载力计算公式。研究结果表明:无间接钢筋UHPC的局部受压承载力试验值与NF P 18-710、CECS 38:2004、DBJ 43/T 325—2017和JTG 3362—2018计算值之比的均值分别为0.97、0.81、1.33和1.09,有间接钢筋UHPC的局部受压承载力试验值与CECS 38:2004、DBJ 43/T 325—2017和JTG 3362—2018计算值之比的均值分别为0.91、1.31和1.13;各规范公式的混凝土局部受压承载力公式未充分反映混凝土抗压强度和钢纤维的影响,间接钢筋的局部受压承载力计算公式未充分反映约束面积比、混凝土抗压强度和钢纤维的影响;NF P 18-710可较好地预测无间接钢筋UHPC的局部受压承载力,CECS 38:2004计算所得UHPC的局部受压承载力偏大,且间接钢筋的局部受压承载力预测结果离散性大,DBJ 43/T 325—2017和JTG 3362—2018的计算结果偏保守。有、无间接钢筋UHPC的局部受压承载力试验值与JTG 3362—2018修正公式的预测值之比的均值分别为1.00和1.04,标准差均小于0.20,因此,JTG 3362—2018修正公式可较好地预测有、无间接钢筋UHPC的局部受压承载力,可为国内UHPC桥梁结构设计规范的编制提供参考。

     

  • 图  1  无间接钢筋UHPC局部受压试件参数分布

    Figure  1.  Parameter distributions of UHPC local compressive specimens without indirect reinforcement

    图  2  含间接钢筋UHPC局压试件参数分布

    Figure  2.  Parameter distributions of UHPC local compressive specimens with indirect reinforcement

    图  3  无间接钢筋的UHPC局部受压承载力试验值与计算值对比

    Figure  3.  Comparison of UHPC local compression bearing capacity without indirect reinforcement between tested and calculated values

    图  4  ξ随主要参数的变化

    Figure  4.  Variations of ξ with main parameters

    图  5  含间接钢筋的UHPC局部受压承载力试验值与计算值对比

    Figure  5.  Comparison of local compressive bearing capacity of UHPC with indirect reinforcement between tested and calculated values

    图  6  间接钢筋局部受压承载力试验值与计算值对比

    Figure  6.  Comparison of local compressive bearing capacity of indirect reinforcement between tested and calculated values

    图  7  ξs随主要参数的变化

    Figure  7.  Variations of ξs with main parameters

    图  8  UHPC局部承压修正系数拟合结果

    Figure  8.  Fitting result of UHPC local compressive correction factor

    图  9  混凝土局部受压承载力试验值与计算值对比

    Figure  9.  Comparison of local compressive capacity of concrete between tested and calculated values

    图  10  混凝土局部受压承载力试验值与计算值之比与不同参数的关系

    Figure  10.  Relationships between ratios of tested values to calculated values of local compressive capacities of concrete and different parameters

    图  11  间接钢筋影响系数与不同参数的关系

    Figure  11.  Relationships between influence factor of indirect reinforcement and different parameters

    图  12  间接钢筋局部受压承载力试验值与计算值对比

    Figure  12.  Comparison of local compressive capacity of indirect reinforcement between tested and calculated values

    图  13  间接钢筋局部受压承载力试验值与计算值之比与不同参数关系

    Figure  13.  Relationships between ratios of tested values to calculated values of local compressive capacity of indirect reinforcement and different parameters

    图  14  含间接钢筋的UHPC局部受压承载力试验值与计算值对比

    Figure  14.  Comparison of local compressive capacity of UHPC with indirect reinforcement between tested and calculated values

    表  1  无间接钢筋UHPC局部受压承载力预测结果统计指标

    Table  1.   Statistical indices of prediction results of UHPC local compressive bearing capacity without indirect reinforcement

    计算公式 ξ
    平均值 标准差 相关性系数 小于1的比例/% 最大值 最小值
    NF P 18-710 0.97 0.24 0.87 48.7 1.77 0.51
    CECS 38:2004 0.81 0.15 0.90 93.2 1.03 0.49
    DBJ 43/T 325—2017 1.33 0.25 0.90 12.8 1.71 0.78
    JTG 3362—2018 1.09 0.27 0.84 35.0 1.52 0.52
    下载: 导出CSV
  • [1] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(12): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htm

    SHAO Xu-dong, QIU Ming-hong, YAN Ban-fu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Material Reports, 2017, 31(12): 33-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htm
    [2] 邵旭东, 邱明红. 基于UHPC材料的高性能装配式桥梁结构研发[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201902002.htm

    SHAO Xu-dong, QIU Ming-hong. Research on high performance fabricated bridge structures based on UHPC[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2019, 51(2): 160-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201902002.htm
    [3] 邵旭东, 曹君辉. 面向未来的高性能桥梁结构研发与应用[J]. 建筑科学与工程学报, 2017, 34(5): 41-58. doi: 10.3969/j.issn.1673-2049.2017.05.005

    SHAO Xu-dong, CAO Jun-hui. Research and application of high performance bridge structures toward future[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 41-58. (in Chinese) doi: 10.3969/j.issn.1673-2049.2017.05.005
    [4] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm

    SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm
    [5] 邵旭东, 詹豪, 雷薇, 等. 超大跨径单向预应力UHPC连续箱梁桥概念设计与初步实验[J]. 土木工程学报, 2013, 46(8): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201308014.htm

    SHAO Xu-dong, ZHAN Hao, LEI Wei, et al. Conceptual design and preliminary experiment of super-long-span continuous box-girder bridge composed of one-way prestressed UHPC[J]. China Civil Engineering Journal, 2013, 46(8): 83-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201308014.htm
    [6] 邱明红, 邵旭东, 甘屹东, 等. 单向预应力UHPC连续箱梁桥面体系优化设计研究[J]. 土木工程学报, 2017, 50(11): 87-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711009.htm

    QIU Ming-hong, SHAO Xu-dong, GAN Yi-dong, et al. Research on optimal design of deck system in longitudinal prestressed UHPC continuous box girder bridge[J]. China Civil Engineering Journal, 2017, 50(11): 87-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711009.htm
    [7] 邵旭东, 张良, 张松涛, 等. 新型UHPC连续箱梁桥的体外预应力锚固构造形式研究[J]. 湖南大学学报(自然科学版), 2016, 43(3): 1-7. doi: 10.3969/j.issn.1674-2974.2016.03.001

    SHAO Xu-dong, ZHANG Liang, ZHANG Song-tao, et al. Study on structural forms of external prestressing anchorage for a novel continuous UHPC box-girder bridge[J]. Journal of Hunan University (Natural Sciences), 2016, 43(3): 1-7. (in Chinese) doi: 10.3969/j.issn.1674-2974.2016.03.001
    [8] 冯峥, 李传习, 潘仁胜, 等. 密集横隔板UHPC箱梁锚固区局部承压性能研究[J]. 工程力学, 2020, 37(5): 94-103, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202005012.htm

    FENG Zheng, LI Chuan-xi, PAN Ren-sheng, et al. Study on local compressive performance for anchorage zone of UHPC box-girder with densely distributed diaphragms[J]. Engineering Mechanics, 2020, 37(5): 94-103, 119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202005012.htm
    [9] 李传习, 冯峥, 郭立成, 等. 密集横隔板UHPC箱梁锚固区局部效应分析及配筋设计[J]. 公路交通科技, 2020, 37(5): 53-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005007.htm

    LI Chuan-xi, FENG Zheng, GUO Li-cheng, et al. Local effect analysis and reinforcement design for anchorage zone of UHPC box girder with densely distributed diaphragms[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 53-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005007.htm
    [10] 蔡绍怀. 混凝土及配筋混凝土的局部承压强度[J]. 土木工程学报, 1963, 9(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC196306000.htm

    CAI Shao-huai. Local compressive strength of concrete and reinforced concrete[J]. China Civil Engineering Journal, 1963, 9(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC196306000.htm
    [11] 刘永颐, 曹声远, 杨熙坤, 等. 混凝土及钢筋混凝土的局部承压问题[J]. 建筑结构, 1982(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG198204000.htm

    LIU Yong-yi, CAO Sheng-yuan, YANG Xi-kun, et al. Local pressure problems in concrete and reinforced concrete[J]. Building Structure, 1982(4): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG198204000.htm
    [12] 曹声远, 杨熙坤, 徐凯怡. 钢筋混凝土局部承压的试验研究[J]. 哈尔滨建筑工程学院学报, 1983(2): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ198302000.htm

    CAO Sheng-yuan, YANG Xi-kun, XU Kai-yi. Experimental research on local compression of reinforced concrete[J]. Journal of Harbin University of Civil Engineering and Architecture, 1983(2): 1-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ198302000.htm
    [13] 曹声远, 杨熙坤, 徐凯恰. 钢筋混凝土局部承压的工作机理[J]. 哈尔滨建筑工程学院学报, 1984(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ198401000.htm

    CAO Sheng-yuan, YANG Xi-kun, XU Kai-yi. The working mechanism of local compression of reinforced concrete[J]. Journal of Harbin University of Civil Engineering and Architecture, 1984(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ198401000.htm
    [14] 曹声远, 杨熙坤, 徐凯怡. 钢筋混凝土局部承压强度理论[J]. 哈尔滨建筑工程学院学报, 1984(2): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ198402002.htm

    CAO Sheng-yuan, YANG Xi-kun, XU Kai-yi. Theory of local compressive strength of reinforced concrete[J]. Journal of Harbin University of Civil Engineering and Architecture, 1984(2): 25-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ198402002.htm
    [15] 刘永颐, 关建光, 王传志. 混凝土局部承压强度及破坏机理[J]. 土木工程学报, 1985, 18(2): 53-65.

    LIU Yong-yi, GUAN Jian-guang, WANG Chuan-zhi. Bearing strength of concrete and its failure mechanism[J]. China Civil Engineering Journal, 1985, 18(2): 53-65. (in Chinese)
    [16] 杨波, 赵景海, 樊承谋. 钢纤维混凝土局部承压的试验研究[J]. 哈尔滨建筑工程学院学报, 1994(2): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ402.013.htm

    YANG Bo, ZHAO Jing-hai, FAN Cheng-mou. Experimental research on the steel fiber reinforced concrete with partial pressure[J]. Journal of Harbin University of Civil Engineering and Architecture, 1994(2): 84-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ402.013.htm
    [17] 赵景海, 邙静喆. 钢纤维混凝土局部受压试验研究[J]. 河南科学, 2002, 20(6): 702-704. doi: 10.3969/j.issn.1004-3918.2002.06.023

    ZHAO Jing-hai, MANG Jing-zhe. Experimental research on steel fiber concrete subjected local loading[J]. Henan Science, 2002, 20(6): 702-704. (in Chinese) doi: 10.3969/j.issn.1004-3918.2002.06.023
    [18] 范征宇, 邙静喆, 赵景海. CF60钢纤维混凝土局部受压的试验研究[J]. 低温建筑技术, 2003(1): 36-37. doi: 10.3969/j.issn.1001-6864.2003.01.018

    FAN Zheng-yu, MANG Jing-zhe, ZHAO Jing-hai. Experimental research on partial compression of CF60 steel fiber concrete[J]. Low Temperature Architecture Technology, 2003(1): 36-37. (in Chinese) doi: 10.3969/j.issn.1001-6864.2003.01.018
    [19] 郑文忠, 赵军卫, 张博一. 活性粉末混凝土局压承载力试验与分析[J]. 南京理工大学学报(自然科学版), 2008, 32(3): 381-386. doi: 10.3969/j.issn.1005-9830.2008.03.027

    ZHENG Wen-zhong, ZHAO Jun-wei, ZHANG Bo-yi. Experiment and analysis of local compression bearing capacity of reactive powder concrete[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2008, 32(3): 381-386. (in Chinese) doi: 10.3969/j.issn.1005-9830.2008.03.027
    [20] 张利娜, 巴方, 张伟. 活性粉末混凝土局部抗压性能试验研究[J]. 工业建筑, 2009, 39(增1): 939-942. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ2009S1253.htm

    ZHANG Li-na, BA Fang, ZHANG Wei. The test study on local compressive performance of RPC[J]. Industrial Construction, 2009, 39(S1): 939-942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ2009S1253.htm
    [21] 周威, 郑文忠, 胡海波. 钢筋网片约束活性粉末混凝土局压性能试验研究[J]. 建筑结构学报, 2013, 34(11): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201311019.htm

    ZHOU Wei, ZHENG Wen-zhong, HU Hai-bo. Bearing capacity of reactive powder concrete reinforced by orthogonal ties[J]. Journal of Building Structures, 2013, 34(11): 141-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201311019.htm
    [22] 周威, 胡海波, 郑文忠. 高强螺旋筋约束活性粉末混凝土局压承载力试验[J]. 土木工程学报, 2014, 47(8): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201408011.htm

    ZHOU Wei, HU Hai-bo, ZHENG Wen-zhong. Bearing capacity of reactive powder concrete reinforced by high-strength steel spirals[J]. China Civil Engineering Journal, 2014, 47(8): 63-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201408011.htm
    [23] 周威, 胡海波. 预留孔道活性粉末混凝土局压性能与承载力分析[J]. 工程力学, 2014, 31(7): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201407018.htm

    ZHOU Wei, HU Hai-bo. Analysis on bearing capacity and behavior of reactive powder concrete with empty concentric duct under local pressure[J]. Engineering Mechanics, 2014, 31(7): 119-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201407018.htm
    [24] ZHOU Wei, HU Hai-bo, ZHENG Wen-zhong. Bearing capacity of reactive powder concrete reinforced by steel fibers[J]. Construction and Building Materials, 2013, 48: 1179-1186. doi: 10.1016/j.conbuildmat.2013.07.103
    [25] 李文全. 活性粉末混凝土预应力锚固区局压性能研究[D]. 长沙: 湖南大学, 2017.

    LI Wen-quan. Performance study on the local compression of reactive powder concrete under anchorages[D]. Changsha: Hunan University, 2017. (in Chinese)
    [26] BOULAY C, TOUTLEMONDE F, CLE'ENT J L, et al. Safety of VHSC structures under concentrated loading: experimental approach[J]. Magazine of Concrete Research, 2004, 56(9): 523-535. doi: 10.1680/macr.2004.56.9.523
    [27] CHOI E S, LEE J W, JOH C B, et al. A local compression tests of UHPC anchor blocks for post-tensioning tendons[J]. Key Engineering Materials, 2012, 525/526: 561-564. doi: 10.4028/www.scientific.net/KEM.525-526.561
    [28] KIM J S, JOH C B, CHOI Y S, et al. Load transfer test of post-tensioned anchorage zone in ultra high performance concrete[J]. Engineering, 2015, 7(3): 115-128. doi: 10.4236/eng.2015.73010
    [29] KIM J H, KWAK H G, KIM B S, et al. Finite element analyses and design of post-tensioned anchorage zone in ultra-high-performance concrete beams[J]. Advances in Structural Engineering, 2019, 22(2): 323-336. doi: 10.1177/1369433218787727
    [30] NF P 18-710, national addition to Eurocode 2—design of concrete structures: specific rules for ultra-high performance fibre-reinforced concrete (UHPFRC)[S].
    [31] 郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10): 45-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201510007.htm

    ZHENG Wen-zhong, LYU Xue-yuan. Literature review of reactive powder concrete[J]. Journal of Building Structures, 2015, 36(10): 44-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201510007.htm
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  364
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-16
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回