留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半开口和分离边箱开口断面主梁竖向涡振性能对比

段青松 马存明

段青松, 马存明. 半开口和分离边箱开口断面主梁竖向涡振性能对比[J]. 交通运输工程学报, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009
引用本文: 段青松, 马存明. 半开口和分离边箱开口断面主梁竖向涡振性能对比[J]. 交通运输工程学报, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009
DUAN Qing-song, MA Cun-ming. Comparison of vertical vortex-induced vibration characteristics between semi-open girder and separated edge-boxes open girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009
Citation: DUAN Qing-song, MA Cun-ming. Comparison of vertical vortex-induced vibration characteristics between semi-open girder and separated edge-boxes open girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009

半开口和分离边箱开口断面主梁竖向涡振性能对比

doi: 10.19818/j.cnki.1671-1637.2021.04.009
基金项目: 

国家自然科学基金项目 51778545

中国博士后科学基金项目 2019M663897XB

详细信息
    作者简介:

    段青松(1987-),男,河北保定人,西南科技大学讲师,工学博士,从事桥梁风工程与结构动力学研究

    通讯作者:

    马存明(1976-),男,山东单县人,西南交通大学教授,工学博士

  • 中图分类号: U441.3

Comparison of vertical vortex-induced vibration characteristics between semi-open girder and separated edge-boxes open girder

Funds: 

National Natural Science Foundation of China 51778545

China Postdoctoral Science Foundation 2019M663897XB

More Information
    Author Bio:

    DUAN Qing-song(1987-), male, assistant professor, PhD, swjtu_dqs@163.com

    Corresponding author: MA Cun-ming(1976-), male, professor, PhD, mcm@swjtu.edu.cn
  • 摘要: 为深入研究不同截面形式开口断面主梁的涡振性能及其发生机理,针对半开口和分离边箱开口断面2种主梁,进行了1∶50节段模型风洞试验,考虑等效质量、风攻角和阻尼比等因素的影响,计算了2种主梁断面的斯托罗哈数;基于线性和非线性理论,估算了实桥竖向涡振振幅;建立了二维数值模拟分析模型,验证了数值模拟方法的准确性,并对比了2种主梁断面周围的瞬时涡量和平均流线结构。分析结果表明:2种主梁在风攻角为3°和5°时均发生竖向涡振,且出现2个涡振区,第2个涡振区主梁竖向涡振最大振幅明显大,5°风攻角时2种主梁竖向涡振振幅比3°风攻角时大75%;风攻角为5°,阻尼比为0.8%时,分离边箱开口断面主梁竖向涡振最大振幅比开口断面大28%;随着Scruton数的增大,主梁竖向涡振的最大振幅接近线性减小,相同Scruton数工况下,5°风攻角时分离边箱开口断面主梁竖向涡振振幅最大,3°风攻角时半开口断面主梁振幅最小,说明正风攻角越大,主梁断面越钝,其涡振性能越差;5°风攻角时分离开口断面更钝,引起气流更大的分离,来流风在2种主梁断面的桥面上方和主梁开口处均形成漩涡,由于斜腹板和风嘴作用,主梁开口处尺寸较大的漩涡被打碎为几个尺寸接近的较小漩涡,优化了主梁的涡振性能。

     

  • 图  1  主梁断面(单位:m)

    Figure  1.  Cross sections of girders (unit: m)

    图  2  风洞中的节段模型

    Figure  2.  Sectional models in wind tunnel

    图  3  两主梁断面竖向涡振振幅

    Figure  3.  Vertical vortex-induced vibration amplitudes of two girder cross sections

    图  4  断面A在不同阻尼比下的竖向涡振振幅

    Figure  4.  Vertical vortex-induced vibration amplitudes of cross section A at different damping ratios

    图  5  断面B在不同阻尼比下的竖向涡振振幅

    Figure  5.  Vertical vortex-induced vibration amplitudes of cross section B at different damping ratios

    图  6  主梁最大竖向涡振振幅随Sc变化

    Figure  6.  Variations of maximum vertical vortex-induced vibrationamplitudes of girders with Sc

    图  7  平均气动力系数对比

    Figure  7.  Comparison of average aerodynamic coefficients

    图  8  两断面周围半个周期内的瞬时涡

    Figure  8.  Instantaneous vorticities around two cross sections in half a period

    图  9  两断面周围的平均流线

    Figure  9.  Mean streamlines around two cross sections

    表  1  节段模型主要参数

    Table  1.   Main parameters of sectional models

    参数 桥梁A 桥梁B
    实桥 模型 实桥 模型
    主梁宽度B/m 38.00 0.76 38.00 0.76
    主梁高度H/m 2.800 0.056 2.700 0.054
    每延米等效质量m/(kg·m-1) 41 911.000 16.706 61 875.000 24.554
    每延米等效质量惯矩I/(kg·m2·m-1) 3 505 138 0.561 6 748 829.000 1.080
    竖向频率fv/Hz 0.260 3 2.440 0 0.288 9 2.602 0
    扭转频率ft/Hz 0.466 4.300 0.700 6.372
    下载: 导出CSV

    表  2  竖向涡振的St

    Table  2.   St of vertical vortex-induced vibration

    断面 不同攻角(°)时的St
    3 5
    断面A(ξ=0.25%) 0.096 2、0.038 3 0.089 9、0.036 3
    断面B(ξ=0.30%) 0.079 3、0.036 0 0.082 6、0.036 3
    下载: 导出CSV

    表  3  模态影响因子

    Table  3.   Model influence factors

    模态影响因子 线性模型 非线性模型
    桥梁A 1.431 1.176
    桥梁A(基于正弦模态计算) 1.273 1.154
    桥梁B 1.565 1.216
    下载: 导出CSV
  • [1] 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201206016.htm

    NIE Jian-guo, TAO Mu-xuan, WU Li-li, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201206016.htm
    [2] 陈宝春, 牟廷敏, 陈宜言, 等. 我国钢-混凝土组合结构桥梁研究进展及工程应用[J]. 建筑结构学报, 2013, 34(增1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2013S1001.htm

    CHEN Bao-chun, MU Ting-min, CHEN Yi-yan, et al. State-of-the-art of research and engineering application of steel-concrete composite bridges in China[J]. Journal of Building Structures, 2013, 34(S1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2013S1001.htm
    [3] 葛耀君, 赵林, 许坤. 大跨度桥梁主梁涡激振动研究进展与思考[J]. 中国公路学报, 2019, 32(10): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201206005.htm

    GE Yao-jun, ZHAO Lin, XU Kun. Review and reflection on vortex-induced vibration of main girders of long-span bridges[J]. China Journal of Highway Transport, 2019, 32(10): 1-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201206005.htm
    [4] 金挺, 林志兴. 扁平箱形桥梁断面斯托罗哈数的雷诺数效应研究[J]. 工程力学, 2006, 23(10): 174-179. doi: 10.3969/j.issn.1000-4750.2006.10.033

    JIN Ting, LIN Zhi-xing. Reynolds number effects on Strouhal number of flat-box girder bridge decks[J]. Engineering Mechanics, 2006, 23(10): 174-179. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.10.033
    [5] LARSEN A, ESDAHL S, ANDERSEN J, et al. Storebelt Suspension Bridge—vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2): 283-296. http://www.sciencedirect.com/science/article/pii/S0167610500000544
    [6] FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of Trans-Tokyo Bay Crossing Bridge[J]. Journal of Structural Engineering, 2002, 128(8): 1012-1025. doi: 10.1061/(ASCE)0733-9445(2002)128:8(1012)
    [7] BELLOI M, FOSSATI F, GIAPPINO S, et al. Vortex induced vibrations of a bridge deck: dynamic response and surface pressure distribution[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133(10): 160-168. http://www.researchgate.net/publication/288802238_Effects_of_railings_on_vortex-induced_vibration_of_a_bridge_deck_section
    [8] MA Cun-ming, WANG Jun-xin, LI Qiu-sheng, et al. Vortex-induced vibration performance and suppression mechanism for a long suspension bridge with wide twin-box girder[J]. Journal of Structural Engineering, 2018, 144(11): 04018202. doi: 10.1061/(ASCE)ST.1943-541X.0002198
    [9] WU Teng, KAREEM A. Vortex-induced vibration of bridge decks: Volterra series-based model[J]. Journal of Engineering Mechanics, 2013, 139(12): 1831-1843. doi: 10.1061/(ASCE)EM.1943-7889.0000628
    [10] YANG Yong-xin, ZHOU Rui, GE Yao-jun, et al. Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios[J]. Journal of Fluids and Structures, 2016, 66: 476-489. doi: 10.1016/j.jfluidstructs.2016.08.010
    [11] 李加武, 王新, 张悦, 等. 桥梁风致振动的混沌特性[J]. 交通运输工程学报, 2014, 14(3): 34-42. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201403005

    LI Jia-wu, WANG Xin, ZHANG Yue, et al. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201403005
    [12] KUBO Y, KIMURA K, SADASHIMA K, et al. Aerodynamic performance of improved shallow π shape bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 2113-2125. http://www.sciencedirect.com/science/article/pii/S0167610502003288
    [13] IRWIN P A. Bluff body aerodynamics in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 701-712.
    [14] 朱乐东, 张海, 张宏杰. 多孔扰流板对半封闭窄箱梁涡振的减振效果[J]. 实验流体力学, 2012, 26(3): 50-55 doi: 10.3969/j.issn.1672-9897.2012.03.009

    ZHU Le-dong, ZHANG Hai, ZHANG Hong-jie. Mitigation effect of multi-orifice flow-distributing plate on vortex-induced resonance of narrow semi-closed box deck[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 50-55. (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.03.009
    [15] 张志田, 卿前志, 肖玮, 等. 开口截面斜拉桥涡激共振风洞试验及减振措施研究[J]. 湖南大学学报(自然科学版), 2011, 38(7): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201107002.htm

    ZHANG Zhi-tian, QING Qian-zhi, XIAO Wei, et al. Vortex- induced vibration and control method for a cable-stayed bridge with open cross section[J]. Journal of Hunan University (Natural Sciences), 2011, 38(7): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201107002.htm
    [16] 汪至雄, 张志田, 郄凯, 等. Π型开口截面斜拉桥弯扭耦合涡激共振及气动减振措施研究[J]. 振动与冲击, 2021, 40(1): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101009.htm

    WANG Zhi-xiong, ZHANG Zhi-tian, QIE Kai, et al. Bending-torsion coupled vortex induced resonance of π-type open section cable stayed bridge and aerodynamic vibration reduction measures[J]. Journal of Vibration and Shock, 2021, 40(1): 52-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101009.htm
    [17] 钱国伟, 曹丰产, 葛耀君. Π型叠合梁斜拉桥涡振性能及气动控制措施研究[J]. 振动与冲击, 2015, 34(2): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201502031.htm

    QIAN Guo-wei, CAO Feng-chan, GE Yao-jun. Vortex-induced vibration performance of a cable-stayed bridge with Π shaped composite deck and its aerodynamic control measurements[J]. Journal of Vibration and Shock, 2015, 34(2): 176-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201502031.htm
    [18] 孟晓亮, 郭震山, 丁泉顺, 等. 风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响[J]. 工程力学, 2011, 28(增1): 184-188, 194. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S1038.htm

    MENG Xiao-liang, GUO Zhen-shan, DING Quan-shun, et al. Influence of wind fairing angle on vortex-induced vibrations and flutter performances of closed and semi-closed box decks[J]. Engineering Mechanics, 2011, 28(S1): 184-188, 194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S1038.htm
    [19] 战庆亮, 周志勇, 葛耀君. 开口叠合梁断面气动性能的试验研究[J]. 桥梁建设, 2017, 47(1): 17-22 https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201701004.htm

    ZHAN Qing-liang, ZHOU Zhi-yong, GE Yao-jun. Experimental study of aerodynamic performance of open cross sections of composite girders[J]. Bridge Construction, 2017, 47(1): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201701004.htm
    [20] 段青松, 马存明. 边箱叠合梁涡振性能及抑振措施研究[J]. 桥梁建设, 2017, 47(5): 30-35 doi: 10.3969/j.issn.1003-4722.2017.05.006

    DUAN Qing-song, MA Cun-ming. Study of vortex-induced vibration performance and vibration suppression measures for composite girder with edge boxes[J]. Bridge Construction, 2017, 47(5): 30-35. (in Chinese) doi: 10.3969/j.issn.1003-4722.2017.05.006
    [21] 方根深, 杨詠昕, 葛耀君, 等. 半开口分离双箱梁涡振性能及其气动控制措施研究[J]. 土木工程学报, 2017, 50(3): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201703009.htm

    FANG Gen-shen, YANG Yong-xin, GE Yao-jun, et al. Vortex-induced vibration performance and aerodynamic countermeasures of semi-open separated twin-box deck[J]. China Civil Engineering Journal, 2017, 50(3): 74-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201703009.htm
    [22] WANG Jun-xin, MA Cun-ming, LI Ming-shui, et al. Experimental and numerical studies of the vortex-induced vibration behavior of an asymmetrical composite beam[J]. Advances in Structural Engineering, 2019, 22(10): 2236-2249. doi: 10.1177/1369433219836851
    [23] MA Cun-ming, DUAN Qing-song, LIAO Hai-li. Experimental investigation on aerodynamic behavior of a long span cable-stayed bridge under construction[J]. KSCE Journal of Civil Engineering, 2018, 22(7): 2492-2501. doi: 10.1007/s12205-017-0402-7
    [24] 杨咏漪, 陈克坚, 李明水, 等. 韩家沱长江大桥高低雷诺数涡激共振试验研究[J]. 桥梁建设, 2015, 45(3): 76-81 https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201503017.htm

    YANG Yong-yi, CHEN Ke-jian, LI Ming-shui, et al. Test study of vortex-induced vibration of Hanjiatuo Changjiang River Bridge at high and low Reynolds numbers[J]. Bridge Construction, 2015, 45(3): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201503017.htm
    [25] MATSUMOTO M. Vortex shedding of bluff bodies: a review[J]. Journal of Fluids and Structures, 1999, 13(7/8): 791-811. http://www.sciencedirect.com/science/article/pii/S0889974699902499
    [26] 张志田, 陈政清. 桥梁节段与实桥涡激共振幅值的换算关系[J]. 土木工程学报, 2011, 44(7): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107013.htm

    ZHANG Zhi-tian, CHEN Zheng-qing. Similarity of amplitude of sectional model to that of full bridge in the case of vortex-induced resonance[J]. China Civil Engineering Journal, 2011, 44(7): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107013.htm
    [27] 周帅, 陈政清, 华旭刚, 等. 大跨度桥梁高阶涡振幅值对比风洞试验研究[J]. 振动与冲击, 2017, 36(18): 29-35, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718005.htm

    ZHOU Shuai, CHEN Zheng-qing, HUA Xu-gang, et al. Wind tunnel experimental research on high-mode vortex-induced vibration for large span bridges[J]. Journal of Vibration and Shock, 2017, 36(18): 29-35, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718005.htm
    [28] 李明水, 孙延国, 廖海黎. 基于涡激力偏相关的大跨度桥梁涡激共振线性分析方法[J]. 空气动力学报, 2012, 30(5): 675-679. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201205019.htm

    LI Ming-shui, SUN Yan-guo, LIAO Hai-li. A linear approach of vortex induced vibration for long span bridges based on partial correlation of aerodynamic force[J]. Acta Aerodynamic Sinica, 2012, 30(5): 675-679. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201205019.htm
    [29] 朱乐东. 桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J]. 工程力学, 2005, 10(5): 204-208. doi: 10.3969/j.issn.1000-4750.2005.05.037

    ZHU Le-dong. Mass simulation and amplitude conversation of bridge sectional model test for vortex-induced resonance[J]. Engineering Mechanics, 2005, 10(5): 204-208. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.05.037
    [30] 黄俐, 周帅, 梁鹏. 桥梁断面两个涡振锁定区间的数值模拟研究[J]. 振动与冲击, 2016, 35(11): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611009.htm

    HUANG Li, ZHOU Shuai, LIANG Peng. Number simulation for two separate vortex-induced vibration lock-in intervals of bridge sections[J]. Journal of Vibration and Shock, 2015, 35(11): 47-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611009.htm
    [31] 刘海涛. y +值对MIRA模型气动参数计算精度的影响[J]. 交通运输工程学报, 2019, 19(4): 125-136. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201904012

    LIU Hai-tao. Influence of y + value on calculation accuracy of aerodynamic parameters of MIRA model[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 125-136. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201904012
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  202
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回