留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全无缝桥梁用掺橡胶粉LEM-SHCC路桥连接板拉伸性能及其应用

占雪芳 王宪 严亨利 赵怡彬 石缘圆

占雪芳, 王宪, 严亨利, 赵怡彬, 石缘圆. 全无缝桥梁用掺橡胶粉LEM-SHCC路桥连接板拉伸性能及其应用[J]. 交通运输工程学报, 2022, 22(5): 104-118. doi: 10.19818/j.cnki.1671-1637.2022.05.005
引用本文: 占雪芳, 王宪, 严亨利, 赵怡彬, 石缘圆. 全无缝桥梁用掺橡胶粉LEM-SHCC路桥连接板拉伸性能及其应用[J]. 交通运输工程学报, 2022, 22(5): 104-118. doi: 10.19818/j.cnki.1671-1637.2022.05.005
ZHAN Xue-fang, WANG Xian, YAN Heng-li, ZHAO Yi-bin, SHI Yuan-yuan. Tensile performance and application of LEM-SHCC road-bridge link slab mixed with rubber powder for fully jointless bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 104-118. doi: 10.19818/j.cnki.1671-1637.2022.05.005
Citation: ZHAN Xue-fang, WANG Xian, YAN Heng-li, ZHAO Yi-bin, SHI Yuan-yuan. Tensile performance and application of LEM-SHCC road-bridge link slab mixed with rubber powder for fully jointless bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 104-118. doi: 10.19818/j.cnki.1671-1637.2022.05.005

全无缝桥梁用掺橡胶粉LEM-SHCC路桥连接板拉伸性能及其应用

doi: 10.19818/j.cnki.1671-1637.2022.05.005
基金项目: 

国家自然科学基金项目 51904357

湖南省自然科学基金项目 2021JJ41085

湖南省科技创新计划项目 2020RC4049

湖南省教育厅科研项目 21B0270

详细信息
    作者简介:

    占雪芳(1983-),女,江西德兴人,中南林业科技大学讲师,工学博士,从事新型材料及桥梁结构性能研究

  • 中图分类号: U441

Tensile performance and application of LEM-SHCC road-bridge link slab mixed with rubber powder for fully jointless bridge

Funds: 

National Natural Science Foundation of China 51904357

Natural Science Foundation of Hunan Province 2021JJ41085

Science and Technology Innovation Program of Hunan Province 2020RC4049

Scientific Research Fund of Hunan Provincial Education Department 21B0270

More Information
  • 摘要: 为了解决全无缝桥梁路桥连接板裂缝宽度与板内力过大等问题,将橡胶粉等体积部分替代细砂掺入应变硬化水泥基复合(SHCC)材料可制备低弹性模量的SHCC材料(LEM-SHCC),用于全无缝桥梁路桥连接板;进行了5种不同体积橡胶粉掺量(0、5%、10%、15%和20%)LEM-SHCC基本材性(密度、抗压强度和弹性模量)及拉伸性能试验,分析了橡胶粉掺量对LEM-SHCC的强度和变形性能的影响,并采用拉、压应变比差评价了橡胶粉掺量对SHCC材料的影响,获得了LEM-SHCC的最优配合比;针对橡胶粉掺量为15%的LEM-SHCC路桥连接板,研究了最不利荷载作用下(温降荷载)其吸纳变形能力、拉伸变形性能及开裂后裂缝分布规律,并与同尺寸SHCC路桥连接板的各项性能进行了比对;进行了LEM-SHCC路桥连接板的敏感参数(橡胶粉掺量、板底摩擦因数和板长等主要影响因素)有限元对比分析。研究结果表明:橡胶粉的掺入降低了SHCC的弹性模量,提升了SHCC的延性,当橡胶粉掺量达15%时,SHCC的弹性模量降低了40%,而延性却提升了近50%,且裂缝宽度有效地控制在60 μm以内;LEM-SHCC路桥连接板吸纳纵向变形达到10 mm时,LEM-SHCC路桥连接板表面微裂缝多(近180条),裂缝间距小(15~80 mm),且开裂后裂缝宽度控制在60 μm以内,此时张拉端板应力为2.1 MPa,锚固端锚固力为150.5 kN,卸载后裂缝闭合,无纤维被拉出或拉断;吸纳同样的纵向变形10 mm时,LEM-SHCC板的内力比同尺寸的SHCC板小;LEM-SHCC板的内力受橡胶粉掺量的影响较大,当其掺量为15%时,LEM-SHCC板性能最优,LEM-SHCC板的内力受板底摩擦因数的影响不大,板长的增加能有效地改善LEM-SHCC板的受力性能,推荐LEM-SHCC路桥连接板的设计长度为8.5 m。

     

  • 图  1  全无缝桥梁配筋路面板

    Figure  1.  Reinforced pavement slab of fully jointless bridge

    图  2  LEM-SHCC拉伸试件尺寸(单位: mm)

    Figure  2.  Dimensions of LEM-SHCC tensile specimen (unit: mm)

    图  3  不同橡胶粉掺量的LEM-SHCC抗压强度

    Figure  3.  Compressive strengths of LEM-SHCC with different rubber powder contents

    图  4  不同橡胶粉掺量的LEM-SHCC弹性模量对比

    Figure  4.  Elastic modulus comparison of LEM-SHCC with different rubber powder contents

    图  5  σ-ε关系对比

    Figure  5.  Stress-strain relationship comparison

    图  6  LEM-SHCC试件多裂缝特征

    Figure  6.  Multi fracture characteristic of LEM-SHCC specimens

    图  7  LEM-SHCC板模型设计(单位:cm)

    Figure  7.  Model design of LEM-SHCC slab (unit: cm)

    图  8  LEM-SHCC板试验模型

    Figure  8.  LEM-SHCC slab experimental model

    图  9  试验模型裂缝分布

    Figure  9.  Crack distribution of experimental model

    图  10  系统温降时LEM-SHCC路桥连接板受力计算

    Figure  10.  Force calculation of LEM-SHCC road-bridge link slab under temperature drop of system

    图  11  实测内力与理论值对比

    Figure  11.  Internal force comparison of experimental and theoretical values

    图  12  LEM-SHCC板与SHCC板裂缝分布对比(单位:cm)

    Figure  12.  Comparison of crack distributions of LEM-SHCC slab and SHCC slab (unit: cm)

    图  13  LEM-SHCC板ABAQUS模型

    Figure  13.  ABAQUS model of LEM-SHCC slab

    图  14  不同橡胶粉掺量的LEM-SHCC板拉力与位移关系

    Figure  14.  Tension-displacement relationships of LEM-SHCC slabs with different rubber powder contents

    图  15  不同橡胶粉掺量LEM-SHCC板损伤应力分布

    Figure  15.  Damage stress distributions of LEM-SHCC slabs with different rubber powder contents

    图  16  不同板底摩擦因数的LEM-SHCC板拉力与位移数值分析结果对比

    Figure  16.  Comparison of numerical analysis results of tension-displacements of LEM-SHCC slabs with different friction coefficients

    图  17  不同板长LEM-SHCC板拉力与位移数值分析结果对比

    Figure  17.  Comparison of numerical analysis results of tension-displacements of LEM-SHCC slabs with different slab lengths

    表  1  LEM-SHCC材料配合比

    Table  1.   Material mix ratios of LEM-SHCC

    编号 水泥含量/(kg·m-3) 粉煤灰含量/(kg·m-3) 砂子含量/(kg·m-3) 橡胶粉掺量/% 水含量/(kg·m-3) 减水剂体积含量/% PVA纤维体积含量/%
    J1 390 780 527 0 363 1 2
    J2 390 780 500 5 363 1 2
    J3 390 780 474 10 363 1 2
    J4 390 780 448 15 363 1 2
    J5 390 780 421 20 363 1 2
    下载: 导出CSV

    表  2  粉煤灰化学成分试验结果

    Table  2.   Test results of chemical compositions of fly ash

    成分 SiO2 Al2O3 Fe2O3 CaO MgO SO3 烧失量 f-CaO
    质量百分比/% 47.60 27.24 7.71 9.75 5.20 1.00 1.25 0.25
    下载: 导出CSV

    表  3  拉、压应变比r

    Table  3.   Ratios of tensile strain to compressive strain

    橡胶粉掺量/% 0 5 10 15 20
    拉伸极限应变st 0.015 0 0.016 7 0.018 1 0.023 9 0.010 2
    压缩极限应变sc 0.002 17 0.002 79 0.002 95 0.003 16 0.003 27
    拉、压应变比r 6.910 5.980 6.140 7.560 3.120
    拉、压应变比差h 0.000 -0.937 -0.776 0.651 -3.790
    下载: 导出CSV

    表  4  试验模型参数

    Table  4.   Parameters of experimental model

    参数 SHCC纵向钢筋根数 纵向钢筋直径/mm 接线路面的纵向配筋率 钢筋抗拉强度标准值/MPa LEM-SHCC的抗拉强度/MPa LEM-SHCC的重度/(kN·m-3) LEM-SHCC的弹性模量/MPa 层间摩擦因数
    取值 3 12 0.45% 335 3.5 16.2 1.35×104 1.25
    下载: 导出CSV

    表  5  裂缝宽度与裂缝间距实测值与理论值的比较

    Table  5.   Comparison between experimental and theoretical values of crack width and crack spacing

    板类型 裂缝数量 裂缝平均宽度/ μm 裂缝最大宽度/ μm 裂缝最小宽度/ μm 裂缝平均间距/mm 裂缝最大间距/mm 裂缝最小间距/mm
    实测值 理论值 实测值 理论值 实测值 理论值 实测值 实测值 理论值 实测值 实测值
    LEM-SHCC路桥连接板 181 ≥167 50 60 65 40 30 33 80 15
    SHCC路桥连接板 154 ≥125 65 80 80 40 36 44 100 20
    下载: 导出CSV

    表  6  LEM-SHCC板与SHCC板内力对比

    Table  6.   Comparison of internal forces of LEM-SHCC slab and SHCC slab

    板类型 板的应变/10-6 板的应力/MPa 张拉端钢筋应变/10-6 张拉端钢筋应力/MPa
    LEM-SHCC板 155.0 2.1 148.0 29.6
    SHCC板 152.0 2.8 162.0 32.4
    下载: 导出CSV

    表  7  LEM-SHCC板与SHCC板锚固力对比

    Table  7.   Comparison of anchor forces between LEM-SHCC slab and SHCC slab

    板类型 张拉力/kN 锚固力/kN 力差/kN 力差/张拉力/%
    LEM-SHCC板 157.3 150.5 6.8 4.3
    SHCC板 210.2 196.6 13.6 6.5
    下载: 导出CSV
  • [1] 占雪芳. 半整体式全无缝桥合理结构体系研究[D]. 长沙: 湖南大学, 2011.

    ZHAN Xue-fang. The research on the rational structural forms of the semi-integral abutment jointless bridge[D]. Changsha: Hunan University, 2011. (in Chinese)
    [2] 陈宝春, 付毳, 庄一舟, 等. 中国无伸缩缝桥梁应用现状与发展对策[J]. 中外公路, 2018, 38(1): 87-95. doi: 10.14048/j.issn.1671-2579.2018.01.020

    CHEN Bao-chun, FU Cui, ZHUANG Yi-zhou, et al. The application status and development strategy of jointless bridges in China[J]. Journal of China and Foreign Highway, 2018, 38(1): 87-95. (in Chinese) doi: 10.14048/j.issn.1671-2579.2018.01.020
    [3] 占雪芳, 邵旭东. 半整体式全无缝桥接线路面裂缝宽度计算[J]. 中外公路, 2015, 35(3): 58-62. doi: 10.14048/j.issn.1671-2579.2015.03.015

    ZHAN Xue-fang, SHAO Xu-dong. Calculation of crack width of approach pavement of the semi-integral abutment jointless bridge[J]. Journal of China and Foreign Highway, 2015, 35(3): 58-62. (in Chinese) doi: 10.14048/j.issn.1671-2579.2015.03.015
    [4] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.02.002
    [5] LI V C, HORⅡ H, KABELE P, et al. Repair and retrofit with engineered cementitious composites[J]. Engineering Fracture Mechanics, 2000, 65(2/3): 317-334.
    [6] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6): 45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008

    XU Shi-lang, LI He-dong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6): 45-60. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.06.008
    [7] ROKUGO K, KANDA T, YOKOTA H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials and Structures, 2009, 42(9): 1197-1208. doi: 10.1617/s11527-009-9541-8
    [8] BOSHOFF W P, VAN ZIJL G. Time-dependent response of ECC: characterisation of creep and rate dependence[J]. Cement and Concrete Research, 2007, 37(5): 725-734. doi: 10.1016/j.cemconres.2007.02.001
    [9] ZHAN Xue-fang, LIU Kai-le, ZHAO Yi-bin, et al. Tensile performance of SHCC road-bridge link slabs in fully jointless bridges[J]. Advances in Civil Engineering, 2021, 2021: 6643643.
    [10] 祁学智, 周洪, 刘家宏. 废橡胶综合利用应分类处置、梯次利用[J]. 中国橡胶, 2021, 37(11): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XJZG202111019.htm

    QI Xue-zhi, ZHOU Hong, LIU Jia-hong. Comprehensive utilization of waste rubber should be classified and treated in echelon[J]. China Rubber, 2021, 37(11): 35-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJZG202111019.htm
    [11] THOMAS B S, GUPTA R C, MEHRA P, et al. Performance of high strength rubberized concrete in aggressive environment[J]. Construction and Building Materials, 2015, 83: 320-326. doi: 10.1016/j.conbuildmat.2015.03.012
    [12] SIDDIKA A, MAMUN M A A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: a review[J]. Construction and Building Materials, 2019, 224: 711-731. doi: 10.1016/j.conbuildmat.2019.07.108
    [13] SOFI A. Effect of waste tyre rubber on mechanical and durability properties of concrete—a review[J]. Ain Shams Engineering Journal, 2018, 9: 2691-2700. doi: 10.1016/j.asej.2017.08.007
    [14] 付传清, 彭兆雄, 屠一军, 等. 掺废旧橡胶颗粒纤维混凝土在路面工程中应用的可行性分析[J]. 混凝土, 2015(5): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201505043.htm

    FU Chuan-qing, PENG Zhao-xiong, TU Yi-jun, et al. Feasibility analysis on application of waste rubber particle and fibre mixed concrete in pavement[J]. Concrete, 2015(5): 149-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201505043.htm
    [15] 莫金旭, 曾磊, 郭帆, 等. 橡胶粉对聚丙烯纤维混凝土力学性能和微观结构的影响[J]. 建筑材料学报, 2020, 23(5): 1222-1229. doi: 10.3969/j.issn.1007-9629.2020.05.031

    MO Jin-xu, ZENG Lei, GUO Fan, et al. Effect of rubber powder on mechanical properties and microstructure of polypropylene fiber reinforced concrete[J]. Journal of Building Materials, 2020, 23(5): 1222-1229. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.05.031
    [16] 何智海, 李增, 詹培敏, 等. 橡胶粉对水泥基材料性能影响的研究进展[J]. 混凝土, 2020(6): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202006021.htm

    HE Zhi-hai, LI Zeng, ZHAN Pei-min, et al. Research progress of effect of rubber powder on the properties of cement-based materials[J]. Concrete, 2020(6): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202006021.htm
    [17] 张志刚. 钢桥面高延性水泥基材料铺装层自愈合机理与疲劳损伤研究[D]. 南京: 东南大学, 2016.

    ZHANG Zhi-gang. Research on the self-healing mechanism and fatigue damage of ECC applying on steel bridge deck overlay[D]. Nanjing: Southeast University, 2016. (in Chinese)
    [18] ZHANG Zhi-gang, MA Hui, QIAN Shun-zhi. Investigation on properties of ECC incorporating crumb rubber of different sizes[J]. Journal of Advanced Concrete Technology, 2015, 13(5): 241-251.
    [19] HUANG Xiao-yan, RANDE R, NI Wen, et al. On the use of recycled tire rubber to develop low E-modulus ECC for durable concrete repairs[J]. Construction and Building Materials, 2013, 46: 134-141.
    [20] LI V C, YANG En-hua, LI Mo. Field demonstration of durable link slabs for jointless bridge decks based on strain-hardening cementitious composites—phase 3: shrinkage control[R]. Ann Arbor: Michigan Department of Transportation, 2005.
    [21] Al-FAKIH A, MOHAMMED B S, LIEW M S. On rubberized engineered cementitious composites (R-ECC): a review of the constituent material[J]. Case Studies in Construction Materials, 2021, 14: e00536.
    [22] ABDELALEEM B H, ISMAIL M K, HASSAN A A A. Structural behavior of rubberized engineered cementitious composite beam-column joints under cyclic loading[J]. ACI Structural Journal, 2020, 117(2): 55-66.
    [23] LEPECH M D, LI V C. Application of ECC for bridge deck link slabs[J]. Materials and Structures, 2009, 42(9): 1185-1195.
    [24] LI Nai-yi. Performance of link slab using ECC and UHPC[D]. College Park: University of Maryland, 2019.
    [25] 丰元飞. SHCC材料在桥面无缝连续化中的应用研究[D]. 福州: 福州大学, 2013.

    FENG Yuan-fei. Research of SHCC link slab in jointless bridge[D]. Fuzhou: Fuzhou University, 2013. (in Chinese)
    [26] 姚丽萍. 应变硬化水泥基复合材料配合比设计及性能优化[D]. 武汉: 湖北工业大学, 2018.

    YAO Li-ping. Mix design and performance optimization of strain hardening cementitious composites[D]. Wuhan: Hubei University of Technology, 2018. (in Chinese)
    [27] CHAIKAEW C, SUKONTASUKKUL P, CHAISAKULKIET U, et al. Properties of concrete pedestrian blocks containing crumb rubber from recycle waste tyres reinforced with steel fibres[J]. Case Studies in Construction Materials, 2019, 11: e00304.
    [28] 何壮彬, 覃峰. 基于等效夹杂理论的橡胶粉水泥混凝土总体有效弹性常数预报[J]. 新型建筑材料, 2016, 43(6): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201606009.htm

    HE Zhuang-bin, QIN Feng. Overall effective properties prediction of rubberized concrete based on equivalent inclusion theory[J]. New Building Materials, 2016, 43(6): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201606009.htm
    [29] MAALEJ M, LI V C. Flexural/tensile-strength ratio in engineered cementitious composites[J]. Journal of Materials in Civil Engineering, 1994, 6(4): 513-528.
    [30] 吴畅, 潘钻峰, 孟少平. 应变硬化水泥基复合材料单轴滞回本构模型[J]. 东南大学学报(自然科学版), 2015, 45(5): 969-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505026.htm

    WU Chang, PAN Zuan-feng, MENG Shao-ping. Uniaxial cyclic constitutive model for strain hardening cementitious composites[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(5): 969-974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505026.htm
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  214
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回