留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长寿命UHPFRC组合钢桥面板研究综述

段兰 袁翊竑 王春生 BRÜHWILEREugen

段兰, 袁翊竑, 王春生, BRÜHWILEREugen. 长寿命UHPFRC组合钢桥面板研究综述[J]. 交通运输工程学报, 2024, 24(1): 68-84. doi: 10.19818/j.cnki.1671-1637.2024.01.004
引用本文: 段兰, 袁翊竑, 王春生, BRÜHWILEREugen. 长寿命UHPFRC组合钢桥面板研究综述[J]. 交通运输工程学报, 2024, 24(1): 68-84. doi: 10.19818/j.cnki.1671-1637.2024.01.004
DUAN Lan, YUAN Yi-hong, WANG Chun-sheng, BRÜHWILER Eugen. Review on research of long lasting UHPFRC composite steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 68-84. doi: 10.19818/j.cnki.1671-1637.2024.01.004
Citation: DUAN Lan, YUAN Yi-hong, WANG Chun-sheng, BRÜHWILER Eugen. Review on research of long lasting UHPFRC composite steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 68-84. doi: 10.19818/j.cnki.1671-1637.2024.01.004

长寿命UHPFRC组合钢桥面板研究综述

doi: 10.19818/j.cnki.1671-1637.2024.01.004
基金项目: 

国家自然科学基金项目 52078044

陕西省创新能力支撑计划项目 2019TD-022

中央高校基本科研业务费专项资金项目 300102219309

详细信息
    作者简介:

    段兰(1985-),女,陕西乾县人,长安大学副教授,工学博士,从事钢桥与组合结构桥梁研究

    通讯作者:

    王春生(1972-),男,黑龙江绥化人,长安大学教授,工学博士

  • 中图分类号: U448.36

Review on research of long lasting UHPFRC composite steel bridge deck

Funds: 

National Natural Science Foundation of China 52078044

Innovation Capability Support Program of Shaanxi Province 2019TD-022

Fundamental Research Funds for the Central Universities 300102219309

More Information
  • 摘要:

    从三方面归纳与剖析了超高性能纤维增强水泥基(UHPFRC)复合材料组合钢桥面板的研究进展,包括强韧性组合层选材、界面传力机制与损伤累积机理、设计方法与工程应用;总结了纤维类型、纤维掺量对UHPFRC轴拉性能和抗弯性能的影响规律,确定了支撑组合钢桥面板结构分析的多种本构模型;对比分析了热连接、冷连接和混合连接组合界面设计方式的技术特点,归纳了胶粘界面、冷连接剪力键界面与混合连接界面的传力机理试验与理论研究成果;总结了基于冷连接设计理念的组合钢桥面板在合理构造、设计方法、规范规程与工程实践等方面的研究成果,并探讨了长寿命组合钢桥面板的创新与发展方向。研究结果表明:单一或混杂纤维的掺入综合提升了UHPFRC的应变强化能力、弯曲变形能力、抗断裂能力、裂缝宽度控制能力和抗疲劳性能,轴拉条件下UHPFRC三线型简化本构模型有力支撑了组合钢桥面板的设计计算,弹塑性损伤本构模型可描述不可逆疲劳损伤累积;验证了冷连接组合界面的增韧效果与可靠性,新型剪力键既可以提高组合效应,也能增韧UHPFRC层,混合连接界面具有降低界面局部应力集中、提高整体界面抗剪刚度、改善界面传力、提升施工效率等综合技术优势,内聚界面本构模型可实现冷连接界面损伤累积反演分析,界面损伤预测结果准确可靠;基于冷连接的UHPFRC组合钢桥面板可以有效提高钢桥面板的局部刚度,相关设计方法可支撑标准的编制与工程实践;应进一步提升UHPFRC的性价比和界面连接的高效性和可靠性,以支撑组合钢桥面板的长寿命、强韧性、轻量化、易维护、低能耗设计与建造。

     

  • 图  1  轴拉试件破坏形态

    Figure  1.  Failure modes of axial tensile specimens

    图  2  单一或混杂纤维增韧的UHPFRC板弯曲韧性试验

    Figure  2.  Bending toughness test of single or hybrid fiber reinforced UHPFRC plate

    图  3  纤维外观

    Figure  3.  Fiber appearances

    图  4  数字图像技术监测损伤发展

    Figure  4.  Damage development monitored by digital image technology

    图  5  胶粘波折钢板剪力键的钢-UHPFRC组合板

    Figure  5.  Steel-UHPFRC composite plate glued with corrugated steel plate connector

    图  6  混合连接界面的钢-UHPFRC组合板

    Figure  6.  Steel-UHPFRC composite plate with hybrid connection interface

    图  7  采用胶粘界面的UHPFRC组合钢桥面板足尺疲劳试验

    Figure  7.  Fatigue test of full-scale UHPFRC composite steel bridge deck with adhesive interface

    图  8  双线性界面本构模型

    Figure  8.  Bi-linear constitutive model of interface

    图  9  焊接栓钉界面组合钢桥面板构造

    Figure  9.  Configuration of composite steel bridge deck with welded stud interface

    图  10  采用胶层连接的UHPFRC组合钢桥面板构造

    Figure  10.  Configuration of UHPFRC composite steel bridge deck connected by adhesive layer

    图  11  胶粘波折钢板剪力键UHPFRC组合钢桥面板

    Figure  11.  UHPFRC composite steel bridge deck glued with corrugated steel plate shear connectors

    图  12  胶粘波折钢板剪力键UHPFRC组合钢桥面板构造

    Figure  12.  Configuration of UHPFRC composite steel bridge deck glued with corrugated steel plate shear connectors

    图  13  混合连接界面的组合钢桥面板疲劳模型

    Figure  13.  Composite steel bridge deck fatigue model with hybrid connection interface

    图  14  带栓钉钢板条与焊接栓钉的冷热混合加固方案

    Figure  14.  Cold and hot hybrid reinforcement scheme of bonded steel plate with stud and welded stud

    图  15  采用混合连接的UHPFRC组合钢桥面板构造

    Figure  15.  Configuration of UHPFRC composite steel bridge deck using hybrid connection

  • [1] TSAKOPOULOS P A, FISHER J W. Full-scale fatigue tests of steel orthotropic decks for the Williamsburg Bridge[J]. Journal of Bridge Engineering ASCE, 2003, 8(5): 323-333. doi: 10.1061/(ASCE)1084-0702(2003)8:5(323)
    [2] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69-76. doi: 10.3969/j.issn.1001-7372.2013.02.011

    WANG Chun-sheng, FU Bing-ning, ZHANG Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2013, 26(2): 69-76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.011
    [3] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. doi: 10.3969/j.issn.1001-7372.2017.03.002

    ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002
    [4] 王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. doi: 10.3969/j.issn.1001-7372.2017.03.009

    WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.009
    [5] 李传习, 柯璐, 陈卓异, 等. 正交异性钢桥面板弧形切口及其CFRP补强的疲劳性能[J]. 中国公路学报, 2021, 34(5): 63-75. doi: 10.3969/j.issn.1001-7372.2021.05.007

    LI Chuan-xi, KE Lu, CHEN Zhuo-yi, et al. Fatigue behavior and CFRP reinforcement of diaphragm cutouts in orthotropic steel bridge decks[J]. China Journal of Highway and Transport, 2021, 34(5): 63-75. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.007
    [6] WANG Chun-sheng, ZHAI Mu-sai, DUAN Lan, et al. Cold reinforcement and evaluation of steel bridges with fatigue cracks[J]. Journal of Bridge Engineering, 2018, 23(4): 01048014.
    [7] WANG Chun-sheng, WANG Yu-zhu, DUAN Lan, et al. Fatigue performance evaluation and cold reinforcement for old steel bridges[J]. Structural Engineering International, 2019, 29(4): 563-569. doi: 10.1080/10168664.2019.1593069
    [8] 李传习, 雷智杰, 冯峥, 等. 轻量化STC-钢组合桥面板静力性能研究[J]. 交通科学与工程, 2021, 37(1): 26-33. doi: 10.3969/j.issn.1674-599X.2021.01.005

    LI Chuan-xi, LEI Zhi-jie, FENG Zheng, et al. Research on static performance of lightweight STC-steel composite deck[J]. Journal of Transport Science and Engineering, 2021, 37(1): 26-33. (in Chinese) doi: 10.3969/j.issn.1674-599X.2021.01.005
    [9] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. doi: 10.1016/j.cemconcomp.2013.12.015
    [10] MAKITA T, BRÜHWILER E. Tensile fatigue behaviour of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Materials and Structures, 2014, 47(3): 475-491. doi: 10.1617/s11527-013-0073-x
    [11] WANG Shu-nan, XU Li-hua, YIN Cong-ru, et al. Constitutive behavior of ultra-high-performance steel fiber reinforced concrete under monotonic and cyclic tension[J]. Journal of Building Engineering, 2023, 68: 105991. doi: 10.1016/j.jobe.2023.105991
    [12] 王俊颜, 耿莉萍, 郭君渊, 等. UHPC的轴拉性能与裂缝宽度控制能力研究[J]. 哈尔滨工业大学学报, 2017, 49(12): 165-169. doi: 10.11918/j.issn.0367-6234.201705148

    WANG Jun-yan, GENG Li-ping, GUO Jun-yuan, et al. Experimental study on crack width control ability of ultra-high performance concrete[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 165-169. (in Chinese) doi: 10.11918/j.issn.0367-6234.201705148
    [13] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11): 3925-3938. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202111035.htm

    GAO Xiao-long, WANG Jun-yan, GUO Jun-yuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3925-3938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202111035.htm
    [14] 方志, 周腾, 刘路明, 等. 超高性能混凝土受拉性能试验研究[J]. 铁道学报, 2022, 44(5): 157-165. doi: 10.3969/j.issn.1001-8360.2022.05.020

    FANG Zhi, ZHOU Teng, LIU Lu-ming, et al. Experimental study on tensile properties of ultra-high performance concrete[J]. Journal of the China Railway Society, 2022, 44(5): 157-165. (in Chinese) doi: 10.3969/j.issn.1001-8360.2022.05.020
    [15] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm

    ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm
    [16] 邓金岚, 杨简, 陈宝春, 等. 超高性能纤维增强混凝土单轴本构关系和钢纤维增强作用对其影响[J/OL]. 复合材料学报, 2024, DOI: 10.13801/j.cnki.fhclxb.20230613.001.

    DENG Jin-lan, YANG Jian, CHEN Bao-chun, et al. Uniaxial constitutive relation of ultra-high performance fiber reinforced concrete and the effect of steel fiber reinforcement on it[J/OL]. Acta Materiae Compositae Sinica, 2024, DOI: 10.13801/j.cnki.fhclxb.20230613.001.(inChinese)
    [17] 王春生, 段兰, 王茜, 等. 超高性能钢纤维混凝土及其制备方法: 中国, 201710624944. X[P]. 2019-10-11.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. Ultra-high performance steel fiber reinforced concrete and its mixed method: China, 201710624944. X[P]. 2019-10-11. (in Chinese)
    [18] MOBASHER B, LI An-ling, YAO Yi-ming, et al. Characterization of toughening mechanisms in UHPC through image correlation and inverse analysis of flexural results[J]. Cement and Concrete Composites, 2021, 122: 104157. doi: 10.1016/j.cemconcomp.2021.104157
    [19] FANG Hao-zhen, GU Ming-gen, ZHANG Shu-feng, et al. Effects of steel fiber and specimen geometric dimensions on the mechanical properties of ultra-high-performance concrete[J]. Materials, 2022, 15(9): 3027. doi: 10.3390/ma15093027
    [20] KANG S T, LEE Y, PARK Y D, et al. Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber[J]. Composite Structures, 2010, 92(1): 61-71. doi: 10.1016/j.compstruct.2009.06.012
    [21] ASHKEZARI G D, FOTOUHI F, RAZMARA M. Experimental relationships between steel fiber volume fraction and mechanical properties of ultra-high performance fiber-reinforced concrete[J]. Journal of Building Engineering, 2020, 32: 101613. doi: 10.1016/j.jobe.2020.101613
    [22] 方志, 刘绍琨, 黄政宇, 等. 不同温度下超高性能混凝土的弯拉性能[J]. 硅酸盐学报, 2020, 48(11): 1732-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202011007.htm

    FANG Zhi, LIU Shao-kun, HUANG Zheng-yu, et al. Flexural properties of ultra-high performance concrete under different temperatures[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1732-1739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202011007.htm
    [23] DUAN Lan, BRÜHWILER E, WANG Chun-sheng. Cold stiffening of orthotropic steel decks by a composite UHPFRC layer[J]. Journal of Constructional Steel Research, 2020, 172: 106209. doi: 10.1016/j.jcsr.2020.106209
    [24] 王春生, 张洋, 段兰. 共聚甲醛纤维超高性能水泥基复合材料抗弯性能试验研究[J]. 复合材料学报, 2024, 41(1): 374-383. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202401032.htm

    WANG Chun-sheng, ZHANG Yang, DUAN Lan. Flexural performance of ultra-high performance fiber reinforced cementitious composite material doped with copolymer formaldehyde fiber[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 374-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202401032.htm
    [25] 邓宗才. 混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J]. 复合材料学报, 2016, 33(6): 1274-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201606018.htm

    DENG Zong-cai. Flexural toughness and characterization method of hybrid fibers reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1274-1280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201606018.htm
    [26] 李福海, 刘耕园, 刘梦辉, 等. 纤维协同效应下超高性能混凝土的弯曲性能[J]. 同济大学学报(自然科学版), 2023, 51(12): 1835-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202312005.htm

    LI Fu-hai, LIU Geng-yuan, LIU Meng-hui, et al. Flexural properties of ultra-high performance concrete under fiber synergistic effect[J]. Journal of Tongji University (Natural Science), 2023, 51(12): 1835-1844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202312005.htm
    [27] 田长进. 免蒸养超高性能混凝土性能调控机制及其加固钢桥面板疲劳评估[D]. 济南: 山东大学, 2023.

    TIAN Chang-jin. Performance regulation mechanism of non-steam curing ultra-high-performance concrete and its fatigue assessment of reinforced steel bridge deck[D]. Jinan: Shandong University, 2023. (in Chinese)
    [28] 韦亚平, 李绍成, 王有志, 等. 多尺度MgO膨胀剂与SAP协同作用对UHPC力学及收缩性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3154-3165. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202309011.htm

    WEI Ya-ping, LI Shao-cheng, WANG You-zhi, et al. Synergistic effect of multi-scale MgO expansion agent and SAP on mechanical and shrinkage properties of UHPC[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3154-3165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202309011.htm
    [29] SHEN Pei-liang, LU Lin-nu, HE Yong-jia, et al. Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete[J]. Construction and Building Materials, 2018, 162: 512-522. doi: 10.1016/j.conbuildmat.2017.11.172
    [30] 邓宗才, 连怡红, 赵连志. 膨胀剂、减缩剂对超高性能混凝土自收缩性能的影响[J]. 北京工业大学学报, 2021, 47(1): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202101008.htm

    DENG Zong-cai, LIAN Yi-hong, ZHAO Lian-zhi. Influence of expansion agent and shrinkage reducing agent on autogenous shrinkage of UHPC[J]. Journal of Beijing University of Technology, 2021, 47(1): 61-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202101008.htm
    [31] SHAHEEN E, SHRIVE N G. Optimization of mechanical properties and durability of reactive powder concrete[J]. ACI Materials Journal, 2006, 103(6): 444-451.
    [32] 胡志豪, 黄政宇, 刘路明. 超高性能混凝土气体渗透性能的试验研究[J]. 铁道科学与工程学报, 2022, 19(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202201016.htm

    HU Zhi-hao, HUANG Zheng-yu, LIU Lu-ming. Experimental research on gas permeability of ultra high performance concrete[J]. Journal of Railway Science and Engineering, 2022, 19(1): 141-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202201016.htm
    [33] 张志豪, 陈露一, 黄有强, 等. 海洋侵蚀环境下超高性能混凝土的力学与耐久性能研究[J]. 混凝土与水泥制品, 2022(7): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202207001.htm

    ZHANG Zhi-hao, CHEN Lu-yi, HUANG You-qiang, et al. Study on mechanical properties and durability of ultra-high performance concrete under marine erosion environment[J]. China Concrete and Cement Proeducts, 2022(7): 1-4, 9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202207001.htm
    [34] 王春生, 翟慕赛, HOUANKPO T N O, 等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm

    WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T N O, et al. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm
    [35] DE JONG F B P. Renovation techniques for fatigue cracked orthotropic steel bridge decks[D]. Delft: Delft University of Technology, 2007.
    [36] BUITELAAR P, BRAAM R, KAPTIJN N. Reinforced high performance concrete overlay system for rehabilitation and strengthening of orthotropic steel bridge decks[C]//ASCE. 2004 Orthotropic Bridge Conference. Reston: ASCE, 2004: 384-401.
    [37] DE CORTE W, HELINCKS P, BOEL V, et al. Generalised fracture mechanics approach to the interfacial failure analysis of a bonded steel-concrete joint[J]. Fracttura Ed Integrita Struturale, 2017, 11(42): 147-160.
    [38] 蒋金龙. 适于钢桥面铺装的钢-UHPC环氧增韧界面受力性能研究[D]. 重庆: 重庆交通大学, 2021.

    JIANG Jin-long. Study on mechanical properties of steel- UHPC epoxy toughened interface for steel deck pavement[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese)
    [39] DENG Peng-ru, MI Hong-ji, MITAMURA H, et al. Stress reduction effects of ultra-high performance fiber reinforced concrete overlaid steel bridge deck developed with a new interfacial bond method[J]. Construction and Building Materials, 2022, 328: 127104.
    [40] WANG Zhe, NIE Xin, FAN Jian-sheng, et al. Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams[J]. Construction and Building Materials, 2019, 195: 323-339.
    [41] 贺欣怡, 苏庆田, 姜旭, 等. 环氧胶粘结刚性铺装的正交异性桥面板力学性能[J]. 哈尔滨工业大学学报, 2020, 52(9): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009004.htm

    HE Xin-yi, SU Qing-tian, JIANG Xu, et al. Mechanical properties of orthotropic steel deck with epoxy adhesively bonded rigid pavement[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 25-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009004.htm
    [42] 李传习, 胡正, 李游, 等. 钢-超高性能混凝土胶接组合板受弯的界面性能[J]. 交通科学与工程, 2020, 36(4): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX202004005.htm

    LI Chuan-xi, HU Zheng, LI You, et al. Interfacial bonding performance of steel-ultra-high performance concrete adhesively bonded composite slabs[J]. Journal of Transport Science and Engineering, 2020, 36(4): 28-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX202004005.htm
    [43] LI You, MA Xiao-wan, LI Hong-yi, et al. Experimental study on flexural and interfacial shear properties of the steel-UHPC glued composite deck[J]. Engineering Structures, 2023, 293: 116643.
    [44] ZHANG Bo-shan, YU Jiang-jiang, CHEN Wei-zhen, et al. Interfacial properties between ultra-high performance concrete (UHPC) and steel: from static performance to fatigue behavior[J]. Engineering Structures, 2022, 273: 115145.
    [45] 王春生, 段兰, 王茜, 等. 长寿命钢桥结构体系、设计理论与制造技术探索[M]//陈艾荣, 阮欣. 桥梁维护、安全与运营管理——长寿命与智能化. 北京: 人民交通出版社, 2021: 257-304.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. Research on structure system, design theory and manufacturing technology of long-life steel bridge[M]//CHEN Ai-rong, RUAN Xin. Bridge Maintenance, Safety and Management: Long Life and Intelligentize. Beijing: China Communications Press, 2021: 257-304. (in Chinese)
    [46] HOUANKPO T O N. Structural behavior and design criteria of UHPFRC and steel composite bridge decks[D]. Xi'an: Chang'an University, 2022.
    [47] 段兰, 王春生, 王茜, 等. 基于粘结波折件的钢纤维混凝土组合钢桥面板: 中国, 201710621404.6[P]. 2023-04-11.

    DUAN Lan, WANG Chun-sheng, WANG Qian, et al. Steel fiber reinforced concrete composited steel bridge decks utilizing bonded corrugated shear connectors: China, 201710621404.6[P]. 2023-04-11. (in Chinese)
    [48] 段兰, 王春生, 王茜, 等. 基于粘结栓钉群的钢纤维混凝土组合钢桥面板: 中国, 201710621402.7[P]. 2020-02-14.

    DUAN Lan, WANG Chun-sheng, WANG Qian, et al. Steel fiber reinforced concrete composite steel bridge deck utilizing bonded stub group: China, 201710621402.7[P]. 2020-02-14. (in Chinese)
    [49] ZOU Yang, JIANG Jin-long, YANG Jun, et al. Enhancing the toughness of bonding interface in steel-UHPC composite structure through fiber bridging[J]. Cement and Concrete Composites, 2023, 137: 104947.
    [50] JIANG Jin-long, LENG Jing-cheng, ZHANG Jiang-tao, et al. Interfacial behavior of the steel-UHPC composite deck with toughened epoxy bonding[J]. Frontiers in Materials, 2022, 9: 859214.
    [51] 李萌, 邵旭东, 曹君辉, 等. UHPC加固重度开裂钢桥面界面抗剪静力试验研究[J]. 公路交通科技, 2021, 38(12): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202112009.htm

    LI Meng, SHAO Xu-dong, CAO Jun-hui, et al. Experiment study on interface static shear performance when severely cracked steel bridge decks are reinforced by UHPC[J]. Journal of Highway and Transportation Research and Development, 2021, 38(12): 73-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202112009.htm
    [52] 王洋, 邵旭东, 陈杰, 等. 重度疲劳开裂钢桥桥面的UHPC加固技术[J]. 土木工程学报, 2020, 53(11): 92-101, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202011010.htm

    WANG Yang, SHAO Xu-dong, CHEN Jie, et al. UHPC-based strengthening technique for significant fatigue cracking steel bridge decks[J]. China Civil Engineering Journal, 2020, 53(11): 92-101, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202011010.htm
    [53] DE CORTER W. Renovation techniques for rib to deckplate fatigue cracking in orthotropic bridge decks[J]. Scientific Research and Essays, 2011, 6(9): 1977-1986.
    [54] MA C H, DENG Peng-ru, MATSUMOTO T. Fatigue analysis of a UHPFRC-OSD composite structure considering crack bridging and interfacial bond stiffness degradations[J]. Engineering Structures, 2021, 249: 113330.
    [55] HOUANKPO T O N, DUAN Lan, WANG Chun-sheng. Structural performance analysis for UHPFRC-OSD composite bridge deck with cold connectors[M]//CHEN Ai-rong, RUAN Xin, FRANGOPOL D M. Life-cycle Civil Engineering: Innovation, Theory and Practice. Boca Raton: CRC Press, 2021: 1288-1296.
    [56] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129.
    [57] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525-531.
    [58] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434.
    [59] NEEDLEMAN A. An analysis of intersonic crack growth under shear loading[J]. Journal of Applied Mechanics, 1999, 66(4): 847-857.
    [60] CAMANHO P P, DÁVILA C G, AMBUR D R. Numerical simulation of delamination growth in composite materials[R]. Washington DC: NASA, 2001.
    [61] CAMANHO P P, DÁVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Washington DC: NASA, 2002.
    [62] DIENG L, MARCHAND P, GOMES F, et al. Use of UHPFRC overlay to reduce stresses in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2013, 89: 30-41.
    [63] SHAO Xu-dong, CAO Jun-hui. Fatigue assessment of steel-UHPC lightweight composite deck based on multiscale FE analysis: case study[J]. Journal of Bridge Engineering, 2018, 23(1): 05017015.
    [64] 赵秋, 蔡文平, 陈宝春. 基于平钢板连接件的钢-RPC组合桥面板抗剪试验研究[J]. 工程力学, 2017, 34(8): 171-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201708019.htm

    ZHAO Qiu, CAI Wen-ping, CHEN Bao-chun. Shear-test research on smooth-plate shear-force connector of steel and RPC composite deck[J]. Engineering Mechanics, 2017, 34(8): 171-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201708019.htm
    [65] CHEN Shi-ming, HUANG Yang, GU Ping, et al. Experimental study on fatigue performance of UHPC-orthotropic steel composite deck[J]. Thin-Walled Structures, 2019, 142: 1-18.
    [66] QIN Shi-qiang, ZHANG Jia-bin, HUANG Chun-lei, et al. Fatigue performance evaluation of steel-UHPC composite orthotropic deck in a long-span cable-stayed bridge under in-service traffic[J]. Engineering Structures, 2022, 254: 113875.
    [67] UNTERWEGER H, NOVAK F. Strengthening of orthotropic steel decks using UHPC: UHPC-concrete instead of asphalt layer for additional at least 50 years in service[C]//EUROSTEEL. The Online Collection for Conference Papers in Civil Engineering. Copenhagen: EUROSTEEL, 2017: 4502-4511.
    [68] DUAN Lan, HOUANKPO T O N, WANG Chun-sheng, et al. Orthotropic steel bridge deck study with UHPFRC cold composite overlay[M]//POWERS E, FRANGOPOL D M, AL-MAHAIDI R, et al. Maintenance, Safety, Risk, Management and Life-cycle Performance of Bridges. Boca Raton: CRC Press, 2018: 1319-1326.
    [69] 王春生, 段兰, 王茜, 等. 基于粘结钢纤维混凝土的组合钢桥面板及其铺筑方法: 中国, 201710625907.0[P]. 2019-10-11.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. Steel fiber reinforced concrete composite steel bridge deck utilizing epoxy bonded method and its construction techniques: China, 201710625907.0[P]. 2019-10-11. (in Chinese)
    [70] 王春生, 张洋, 李璞玉. 钢箱梁冷连接组合钢桥面板受力性能监测与评价[R]. 西安: 长安大学, 2023.

    WANG Chun-sheng, ZHANG Yang, LI Pu-yu. Monitoring and evaluation of mechanical performance of steel box girders with cold composited steel bridge decks[R]. Xi'an: Chang'an University, 2023. (in Chinese)
    [71] MURAKOSHI J, YANADORI N, ISHⅡ H. Research on steel fiber reinforced concrete pavement for orthotropic steel deck as a countermeasure for fatigue[C]//ASCE. Proceeding of the 2nd International Orthotropic Bridge Conference. Reston: ASCE, 2008: 359-371.
    [72] 田启贤, 高立强, 周尚猛. 超高性能混凝土-钢正交异性板组合桥面受力性能研究[J]. 桥梁建设, 2017, 47(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1003.htm

    TIAN Qi-xian, GAO Li-qiang, ZHOU Shang-meng. Study of mechanical behavior of composite bridge deck with ultra high performance concrete and orthotropic steel plate[J]. Bridge Construction, 2017, 47(3): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1003.htm
    [73] 曹君辉, 杨碧川, 邵旭东, 等. UHPC加固在役大跨径悬索桥钢桥面: 实桥试验与理论分析[J]. 湖南大学学报(自然科学版), 2023, 50(9): 32-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202309021.htm

    CHAO Jun-hui, YANG Bi-chuan, SHAO Xu-dong, et al. In-site test and theoretical analysis of innovative UHPC strengthening structure on steel deck of an in-service long-span suspension bridge[J]. Journal of Hunan University (Natural Sciences), 2023, 50(9): 32-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202309021.htm
    [74] 秦世强, 黄春雷, 张佳斌, 等. 基于应力监测的钢-UHPC组合桥面和环氧沥青钢桥面疲劳性能对比[J]. 东南大学学报(自然科学版), 2021, 51(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202101009.htm

    QIN Shi-qiang, HUANG Chun-lei, ZHANG Jia-bin, et al. Comparison of fatigue performance between steel-UHPC composite deck and epoxy asphalt steel deck based on stress monitoring[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(1): 61-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202101009.htm
    [75] 黄政宇, 李旦. 不锈钢纤维对超高性能混凝土的性能影响研究[J]. 铁道科学与工程学报, 2019, 16(2): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201902013.htm

    HUANG Zheng-yu, LI Dan. Study on the effect of stainless steel fiber on the performance of ultra-high performance concrete[J]. Journal of Railway Science and Engineering, 2019, 16(2): 376-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201902013.htm
    [76] MENG Wei-na, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research, 2017, 101: 46-54.
    [77] 王俊颜, 刘菲凡, 郭君渊. 超高性能轻质混凝土的循环拉伸力学性能[J]. 哈尔滨工业大学学报, 2021, 53(4): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202104019.htm

    WANG Jun-yan, LIU Fei-fan, GUO Jun-yuan. Cyclic tensile behavior of ultra-high performance lightweight concrete[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 170-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202104019.htm
    [78] 张清华, 程震宇, 邓鹏昊, 等. 新型钢-UHPC组合桥面板抗弯承载力模型试验与理论分析方法[J]. 土木工程学报, 2022, 55(3): 47-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202203006.htm

    ZHANG Qing-hua, CHENG Zhen-yu, DENG Peng-hao, et al. Experimental study and theoretical method on flexural capacity of innovative steel-UHPC composite bridge decks[J]. China Civil Engineering Journal, 2022, 55(3): 47-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202203006.htm
    [79] 王春生, 李璞玉, 许璐巍. 基于疲劳数字孪生的大跨度桥梁钢桥面板运维技术研究[R]. 西安: 长安大学, 2023.

    WANG Chun-sheng, LI Pu-yu, XU Lu-wei. Research on maintenance technology for steel bridge decks in large span bridges based on digital fatigue simulation[R]. Xi'an: Chang'an University, 2023. (in Chinese)
  • 加载中
图(15)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  36
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回