Surface structural characteristics of heat-reflective cooling pavement and their influence on optical and thermal performance
-
摘要: 研究了路表构造特性对于热反射降温涂层实际应用时光学反射及降温效果的影响程度,从而为缓解城市热岛效应的热反射降温沥青路面材料设计提供参考。采用正交设计方法设置9种代表性级配,并制备优选了反射率覆盖范围较广的白色、灰色、黑色热反射涂层。采用激光纹理扫描、空隙数字图像处理、反射波谱测试、基于室内太阳辐射模拟的降温试验等方法,分别获取路表宏微观形貌与光热性能指标,并进行相关性与显著性分析。研究结果表明:综合考虑涂层全频谱反射率及防眩视觉安全,最优级配类型为密级配最大公称粒径为5 mm的细粒式;热反射路面纵向纹理(尤其是轮廓算数平均偏差)较水平分布与空间形态而言对于反射率的影响较更显著,相关性系数达0.9;为降低路表纹理对反射降温性能的影响,建议将涂覆涂层后的路表纹理纵向评定参数轮廓算术平均偏差控制在0.2 mm以内,轮廓均方根偏差小于0.4 mm;最优级配条件下白色、灰色、黑色热反射路面降温效果分别达14.0 ℃、10.6 ℃、7.3 ℃;随着路表空隙率的提高,热反射路面总反射率呈线性下降趋势,降温效果折减率达13%~21%,因此可针对城市道路、停车场、人行道等具体应用路表条件,在热反射涂层设计时将其考虑在内。所提出的热反射降温路表构造特性对其光热性能的影响规律,可为热反射降温路面材料精准设计与性能提升提供理论依据。Abstract: To study the influence of pavement surface structural characteristics on the optical reflection and cooling effect of heat-reflective cooling coatings in practical applications and provide a reference for the design of heat-reflective cooling asphalt pavement materials to alleviate the urban heat island effect. The orthogonal design method was used to set nine representative gradations, and white, gray, and black heat-reflective coatings with a wide reflectance coverage range were prepared and optimized. Experimental methods including laser texture scanning, digital image processing of surface voids, reflection spectrum testing, and cooling effect tests based on laboratory solar radiation simulation were used to obtain the macro and micro morphology and optical and thermal performance indicators of the pavement, respectively, and then the correlation and significance analysis were conducted. Research results indicate that by taking into account the full-spectrum reflectance of the coatings and anti-glare visual safety, the optimal gradation type is the dense-graded fine-grained asphalt concrete with a maximum nominal particle size of 5 mm. The vertical texture of the heat-reflective pavement surface (especially the arithmetical mean deviation of the profile) has a more significant impact on the reflectance compared with the horizontal distribution and spatial morphology, with a correlation coefficient of 0.9. In order to reduce the influence of road surface texture on reflective cooling performance, it is recommended to control the vertical texture evaluation parameter, namely arithmetical mean deviation of the pavement surface after coating, within 0.2 mm and the root mean square deviation to be less than 0.4 mm. Under the optimal gradation conditions, the cooling effects of white, gray, and black heat-reflective cooling pavements can reach 14.0 ℃, 10.6 ℃, and 7.3 ℃, respectively. As the surface void ratio increases, the total reflectance of the heat-reflective pavement decreases linearly, and the reduction rate of the cooling effect is 13% - 21%. This factor can be considered when designing heat-reflective coatings based on specific application scenarios such as urban roads, parking lots, and sidewalks. The proposed influence law of surface structural characteristics of heat-reflective cooling pavements on their optical and thermal performance can serve as a theoretical basis for the precise design and performance improvement of heat-reflective cooling pavement materials.
-
表 1 不同黑色、灰色热反射涂层中颜填料比例
Table 1. Pigment and fillers contents for black and grey reflective coatings
涂层类型 黑色颜填料质量占颜填料总量比例/% 涂层类型 黑色颜填料质量占颜填料总量比例/% CuO-黑色 CuO-黑色 100.0 Fe: Cr2O3 P.Br.29-黑色 Fe: Cr2O3 L0095-黑色 100.0 CuO+TiO2- HR灰色-1 CuO+TiO2- HNIR灰色-1 90.9 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-1 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-1 90.0 CuO+TiO2- HR灰色-2 CuO+TiO2- HNIR灰色-2 66.7 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-2 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-2 70.0 CuO+TiO2- HR灰色-3 CuO+TiO2- HNIR灰色-3 50.0 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-3 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-3 50.0 CuO+TiO2- HR灰色-4 CuO+TiO2- HNIR灰色-4 33.3 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-4 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-4 20.0 CuO+TiO2- HR灰色-5 CuO+TiO2- HNIR灰色-5 20.0 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-5 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-5 10.0 CuO+TiO2- HR灰色-6 CuO+TiO2- HNIR灰色-6 10.0 CuO+TiO2- HR灰色-7 CuO+TiO2- HNIR灰色-7 5.0 注:TiO2-HR对应涂层采用下文颜填料优选所得具有较高总反射率(High Reflectance, HR)的粒径为400 nm的TiO2,TiO2-HNIR对应具有较高近红外反射率(High Near Infrared Reflectance, HNIR)的粒径为1 000 nm的TiO2。 表 2 正交试验L9(34)因子及水平
Table 2. Orthogonal experiment factor and level of L9(34)
试验号 A B C 误差列 1 AC 5 F 1 2 AC 13 M 2 3 AC 20 C 3 4 SMA 5 M 3 5 SMA 13 C 1 6 SMA 20 F 2 7 OGFC 5 C 2 8 OGFC 13 F 3 9 OGFC 20 M 1 表 3 涂覆不同种类涂层的各级配类型沥青混合料反射率及亮度值
Table 3. Reflectance and lightness of asphalt mixtures with different gradations and coated with different types of heat reflective coatings
试件类型 白色涂层 灰色涂层 黑色涂层 无涂层对照组 Rtotal/% Rnir/% L* Rtotal/% Rnir/% L* Rtotal/% Rnir/% L* Rtotal/% Rnir/% L* 1 AC-5-F 84.40 87.90 96.02 59.39 74.95 65.95 33.01 50.67 36.20 5.77 6.42 28.15 2 AC-13-M 82.85 84.23 96.46 54.12 69.85 64.12 29.45 45.36 36.19 5.71 6.41 27.99 3 AC-20-C 75.25 75.73 93.02 51.70 66.98 61.61 26.43 40.84 35.83 5.09 5.70 26.13 4 SMA-5-M 81.80 83.38 95.90 54.33 69.80 64.54 29.24 45.04 36.19 6.00 6.65 28.76 5 SMA-13-C 77.28 77.93 94.28 51.73 67.21 62.36 27.22 42.03 36.13 5.59 6.02 27.69 6 SMA-20-F 76.62 80.28 92.35 52.18 68.03 62.35 27.54 42.50 36.15 5.09 5.61 26.13 7 OGFC-5-C 71.90 72.85 92.58 47.49 60.63 59.77 25.17 40.96 35.89 4.21 4.46 23.72 8 OGFC-13-F 71.00 71.55 90.19 47.47 61.78 59.65 25.89 40.04 36.05 4.05 4.15 23.44 9 OGFC-20-M 67.20 66.50 90.08 43.14 55.42 55.62 23.11 35.88 35.66 3.87 4.06 22.17 表 4 各试件指标及综合得分(白色涂层)
Table 4. Indexes and comprehensive scores of each specimen (white coating)
编号 量纲为1的指标 综合评分 Rtotal Rnir L* 1 1.00 1.00 0.07 0.72 2 0.91 0.83 0.00 0.61 3 0.47 0.43 0.54 0.48 4 0.85 0.79 0.09 0.60 5 0.59 0.53 0.34 0.49 6 0.55 0.64 0.64 0.61 7 0.27 0.30 0.61 0.38 8 0.22 0.24 0.98 0.45 9 0.00 0.00 1.00 0.30 权重 0.35 0.35 0.30 表 5 基于多指标综合评分法的优化计算结果(白色涂层)
Table 5. Optimization calculation results based on multi-index grading method (white coating)
均值与极差 A B C T1 0.60 0.57 0.60 T2 0.57 0.52 0.50 T3 0.38 0.46 0.45 R 0.22 0.11 0.14 因子主次 级配类型>最大公称粒径>级配粗细 理论最优配类型 AC-5-F 实际最优配类型 AC-5-F 表 6 单指标平衡评价法各参数直观极差分析计算表(白色涂层)
Table 6. Calculation table for range analysis of various parameters based on single index balanced evaluation method (white coating)
指标 均值与极差 A B C 理想最优类型 Rtotal T1 80.83 79.37 77.34 AC-5-F T2 78.57 77.04 77.28 T3 70.03 73.02 74.81 R 10.80 6.34 2.53 Rnir T1 82.62 81.38 79.91 AC-5-F T2 80.53 77.90 78.04 T3 70.30 74.17 75.50 R 12.32 7.21 4.41 L* T1 95.17 94.83 92.85 OGFC- 20-F T2 94.18 93.64 94.15 T3 90.95 91.82 93.29 R 4.22 3.02 1.29 表 7 单指标平衡评价法各参数方差与贡献率分析计算表(白色涂层)
Table 7. Calculation table for variance and contribution analysis of various parameters based on single index balanced evaluation method with white coating
指标 因子 平方和 自由度 均方和 F值 因子贡献率 Rtotal A 194.60 2.00 97.30 97.78 71.10% B 61.80 2.00 30.90 31.05 22.08% C 12.52 2.00 6.26 6.29 3.89% 误差 1.99 2.00 1.00 2.94% 总和 270.90 8.00 F0.900(2, 2)=9.0, F0.950(2, 2)=19.0, F0.975(2, 2)=39.0 Rnir A 260.80 2.00 130.40 32.16 67.17% B 77.94 2.00 38.97 9.61 18.56% C 29.35 2.00 14.67 3.62 5.65% 误差 8.11 2.00 4.05 8.62% 总和 376.20 8.00 F0.900(2, 2)=9.0, F0.950(2, 2)=19.0 L* A 29.17 2.00 14.59 33.52 60.88% B 13.85 2.00 6.93 15.92 27.93% C 2.59 2.00 1.30 2.98 3.71% 误差 0.87 2.00 0.44 7.49% T 46.49 8.00 F0.900(2, 2)=9.0, F0.950(2, 2)=19.0 表 8 多元线性回归统计结果(ANOVA检验)
Table 8. Multiple linear regression statistical results (ANOVA test)
统计项 平方和 自由度 均方和 F值 显著性 R R2 调整后R2 回归方程 347.690 3 115.897 122.890 <0.001 0.965 0.932 0.924 残留误差 25.464 27 0.943 总计 373.154 30 表 9 多元线性回归统计结果(t检验)
Table 9. Multiple linear regression statistical results (t test)
模型 非标准化系数 标准误差 标准化系数 t值 显著性 共线性统计 容差 方差膨胀系数 常量 3.559 0.721 4.938 <0.001 ΔRuv -0.346 0.128 -0.305 -2.694 0.012 0.197 5.080 ΔRvisi 0.038 0.014 0.317 2.623 0.014 0.173 5.767 ΔRnir 0.161 0.024 0.936 6.757 <0.001 0.132 7.588 -
[1] JANDAGHIAN Z, AKBARI H. The effect of increasing surface albedo on urban climate and air quality: A detailed study for Sacramento, Houston, and Chicago[J]. Climate, 2018, 6(2): 19. [2] LI H, HARVEY J T, HOLLAND T J, et al. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management[J]. Envi-ronmental Research Letters, 2013, 8(1): 015023. [3] QIN Y H. A review on the development of cool pavements to mitigate urban heat island effect[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 445-459. [4] ANUPAM B R, SAHOO U C, CHANDRAPPA A K, et al. Emerging technologies in cool pavements: A review[J]. Con-struction and Building Materials, 2021, 299: 123892. [5] JIANG J, JIN Y L, BAO T, et al. Sensible heat discharging from pavements with varying thermophysical properties[J]. Sustainable Cities and Society, 2019, 45: 431-438. [6] GUI J, PHELAN P E, KALOUSH K E, et al. Impact of pavement thermophysical properties on surface temperatures[J]. Journal of materials in civil engineering, 2007, 19(8): 680-690. [7] QIN Y H, HILLER J E. Understanding pavement-surface energy balance and its implications on cool pavement deve-lopment[J]. Energy and Buildings, 2014, 85: 389-399. [8] AKBARI H, MENON S, ROSENFELD A. Global cooling: Increasing world-wide urban albedos to offset CO2[J]. Climatic Change, 2009, 94(3): 275-286. [9] 哈成勇. 道路涂料与涂装技术[M]. 北京: 化学工业出版社, 2001.HA Cheng-yong. Road coatings and painting technology[M]. Beijing: Chemical Industry Press, 2001. [10] 徐永祥, 李运德, 师华, 等. 太阳热反射隔热涂料研究进展[J]. 涂料工业, 2010, 40(1): 70-74.XU Yong-xiang, LI Yun-de, SHI Hua, et al. Present situa-tion and progress of solar heat reflective thermal insulating coatings[J]. Paint & Coatings Industry, 2010, 40(1): 70-74. [11] DONG S M, QUEK J Y, VAN HERK A M, et al. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17901-17910. [12] LI H, SABOORI A, CAO X J. Information synthesis and preliminary case study for life cycle assessment of reflective coatings for cool pavements[J]. International Journal of Transportation Science and Technology, 2016, 5(1): 38-46. [13] 郑木莲, 何利涛, 高璇, 等. 基于降温功能的沥青路面热反射涂层性能分析[J]. 交通运输工程学报, 2013, 13(5): 10-16. https://transport.chd.edu.cn/article/id/201305002ZHENG Mu-lian, HE Li-tao, GAO Xuan, et al. Analysis of heat-reflective coating property for asphalt pavement based on cooling function[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 10-16. https://transport.chd.edu.cn/article/id/201305002 [14] AYAR P, RUHI A, BAIBORDY A, et al. Toward sustain-able roads: A critical review on nano-TiO2 application in asp-halt pavement[J]. Innovative Infrastructure Solutions, 2024, 9(5): 148. [15] UEMOTO K L, SATO N M N, JOHN V M. Estimating thermal performance of cool colored paints[J]. Energy and Buildings, 2010, 42(1): 17-22. [16] KINOUCHI T, YOSHINAKA T, FUKAE N, et al. Deve-lopment of cool pavement with dark colored high albedo coat-ing[J]. Target: International Journal of Translation Studies, 2003, 50(40): 40. [17] 肖瑜. 高近红外反射稀土颜料的制备与性能研究[D]. 赣州: 江西理工大学, 2018.XIAO Yu. Study on preparation and properties of rare earth pigments with high near infrared reflectance[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. [18] YOU Z L, ZHANG M Y, WANG J W, et al. A black near-infrared reflective coating based on nano-technology[J]. Energy and Buildings, 2019, 205: 109523. [19] 张缇. 硫硒化锌基近红外反射色料及其复合涂层材料的制备与性能研究[D]. 广州: 华南理工大学, 2019.ZHANG Ti. Synthesis and properties of zinc selenosulfide-based color pigments and coating composites with high near-infrared reflectance[D]. Guangzhou: South China University of Technology, 2019. [20] SYNNEFA A, DANDOU A, SANTAMOURIS M, et al. Cool colored coatings for passive cooling of cities[C]//AIVC. The International Workshop on Energy Performance and Environ-mental Quality of Buildings. Ghent: AIVC, 2007: 1-6. [21] YOU Z L, ZHANG M Y, BAI R Q, et al. A review of the near-infrared reflective coatings for cooling asphalt pavements in permafrost regions[J]. Construction and Building Mate-rials, 2025, 498: 143898. [22] CHEN Y, SHA A, CAO Y, et al. Iron-chromium based hi-gh infrared reflectance coating for cooling asphalt pavements towards low-carbon cities[J]. Construction and Building Ma-terials, 2025, 484: 141611. [23] 潘述平. 孔隙率对多孔透水路面反射率影响的试验研究[D]. 绍兴: 绍兴文理学院, 2019.PAN Shu-ping. Experimental Study on the Effect of Porosity on the Reflectivity of Porous Permeable Pavement[D]. Shao-xing: Shaoxing University, 2019. [24] CAO X J, TANG B M, ZOU X L, et al. Analysis on the cooling effect of a heat-reflective coating for asphalt pavement[J]. Road Materials and Pavement Design, 2015, 16(3): 716-726. [25] 曹雪娟, 唐伯明, 朱洪洲. 降低沥青路面温度的热反射涂层性能研究[J]. 重庆交通大学学报(自然科学版), 2010, 29(3): 391-393, 420.CAO Xue-juan, TANG Bo-ming, ZHU Hong-zhou. Study on performance of heat-reflective coat of lowering asphalt pave-ment temperature[J]. Journal of Chongqing Jiaotong Univer-sity(Natural Science), 2010, 29(3): 391-393, 420. [26] 王元元. 沥青路面抗滑特性与其表面粗糙特性之关系研究[D]. 南京: 东南大学, 2017.WANG Yuan-yuan. Study on the relationship between sliding resistance of asphalt pavement and its surface rough charac-teristics[D]. Nanjing: Southeast University, 2017. [27] 梁遐意. 低噪声功能路面表面纹理优化研究[D]. 广州: 华南理工大学, 2020.LIANG Xia-yi. Research and optimization of pavement sur-face texture with low noise function[D]. Guangzhou: South China University of Technology, 2020. [28] GUO H Y, LI X Y, WANG P. Characterization of absorp-tivities to solar radiation for colored pigments in coatings[J]. Journal of Coatings Technology, 2001, 73(923): 71-75. [29] DU Y C, WENG Z H, LI F, et al. A novel approach for pa-vement texture characterisation using 2D-wavelet decom-position[J]. International Journal of Pavement Engineering, 2022, 23(6): 1851-1866. [30] 沙爱民. 环保型路面材料与结构[M]. 北京: 科学出版社, 2012.SHA Ai-min. Material and structure of eco-friendly pave-ments[M]. Beijing: Science Press, 2012. [31] 谢宁. 热反射路面涂层全频谱混合反射行为与光-热环境影响研究[D]. 上海: 同济大学, 2023.XIE Ning. Investigation on full spectrum and mixed reflection behavior of reflective pavement coatings and its influence on light-thermal environment[D]. Shanghai: Tongji University, 2023. [32] ZHANG X, LI H, JIA M, et al. Laboratorial investigation on optical, thermal and pavement performance of biomimetic dark reflective coatings with composite structure for pave-ment cooling[J]. Building and Environment, 2024, 266: 112057. -
下载: